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We propose a gate-controllable spin-battery for spin current. The spin battery consists of a lateral
double quantum dot under a uniform magnetic field. A finite dc spin current is driven out of the
device by controlling a set of gate voltages. Spin current can also be delivered in the absence of
charge current. The proposed device should be realizable using present technology at low
temperature. ©2003 American Institute of Physic§DOI: 10.1063/1.1603331

To be able to generate and control spin current is of greagate voltage¥ ,, we shift these levels. In particular, we set
importance for spintronick. Traditionally, spin injection Vg 1ower SUCh that electron occupation number in the lower
from a ferromagnetic material to a normal metal or semiconQD is changing between 0 anddven to odg with the level
ductor material has been used to obtain spin polarized charggsf()wenT locating betweerw; and u,, whereu;=eV, is the
C_U”elm-l Spirll ir_‘jeztilc_’nr%”rfo nonl—Fe[)mi "q_Lﬁd*StWe't' 35 l\ay chemical potential of lead. Similarly, we setV ,pper SUCh
circularly polarized light have also been investigated. More ;
recently, several theoretical proposals for spin battery wergl];ﬁ;hﬁléj pgtirerQ[s)t;t:: an elgctrzr;h(;cdcizylgig hsibgeer;gr
reported for the generation of pure spin current without upper| 1S PUSTY g gy

€ypper, T U due to Coulomb interactiot. This way, the

charge currerit=® The idea is that when spin-up electrons . . . .
o ; . electron occupation number in the upper QD is changing
move to one direction while an equal humber of spin-down
between 1 and Zodd to evel and the levele,pper; +U

electrons move to the opposite direction, the net charge-: :
currentl,=e(l,+1,) vanishes and a finite spin curreht locates betweeru, and u3. The energy level diagram

=#/2(1,—1,) emerges. Hereé, (I,) is the spin-up(spin- shown in_ Fig. 2 is now established. From _Fig. 2, it is clear
down) electron current. Although conceptually interesting, that a spin-up electron in lead-1 can tunnel into the lower QD
existing spin-battery proposals all involve time dependengnd further to lead-2. Similarly, a spin-down electron in
external field$~®which make practical realization somewhat lead-2 can tunnel into the upper QD and flows to lead-3.
complicated. It is the purpose of this letter to propose andrherefore, in lead-2 spin-up electrons flow in and spin-down
investigate a spin-battery design which is gate controllablelectrons flow out: they move in opposite directions so that a
involving no time varying fields. net spin current is generated. Hence, by adjusting gate po-

The gate controllable spin battery is schematicallytentials the device of Fig. 1 generates a spin current in the
shown in Fig. 1. It consists of a lateral double quantum-doyegion labeled byA,B).

(QD) fabricated in two-dimensional electron gé&2DEG) We now present detailed analysis. The lateral double-QD
with split gate technology. The two QDs are coupled to threeﬂevice is described by the following Hamiltonian:
leads: lead-1 and 3 couple to one QD each, lead-2 couples to

both. The two QDs are separated by a high potential barrier
so that tunnel coupling between them can be neglected. To
distinguish spin of the electrons, a magnetic fi@lds ap-
plied to the QDs to induce a Zeeman splitting. Two gate
voltagesV , control energy levels of the-th QD, where
a=upper,lower @,l), indicating the upper and lower QD of
Fig. 1. Finally, the terminal voltages for the three leads are
set such thatv,>V,>V; (Fig. 2), they provide energy
source for the spin battery.

Before presenting results, we first discuss why the sys-
tem of Fig. 1 can deliver a spin current. Due to fi@8d a
spin degenerate level, of the a-QD is split into spin-up/
down levelse,; /€, . Letus assume,;<e,| . By adjusting  FIG. 1. Schematic diagram for the lateral quantum dot. The lightly shaded

region represents two-dimensional electron gas, the darker regions are the

metal gategincluding split gatesV,,, V,, and gate voltag&/y ,). The
¥Electronic mail: guo@physics.mcgill.ca dotted box represents the region in which a pure spin current flows through.
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FIG. 2. Schematic plot of energy level position and the tunneling process © e d) 2s
during spin-battery operation. —0.004 : :
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H= E (€,— UgMBa/Z)dLUdM"' E UadZTdaTdleal FIG. 3. (a) and(b) for electron currents,; andl,, , charge currenilt (unit
ao @ e), and spin current,g (unit #/2), vs magnetic field parameteyuB/2.
Other parameters arel’; jower=I'2j0wer= I 2,upper I 3,upper= 0-005, KgT

t T =0.01, Ujower= 1.0, Uypper= 0.9, €jower= p1, andeyppert Uypper= t3- (©) 126
+%r fnkankoanka""nkzm (thenkodaetH.C) (D) 4 l2s VS I'gupper With guB/2=0.03. Other parameters ard; jouer

=0.004,T'; owe=0.005, andl, pper=0.006. (d) 15¢ and |l o VS €pgyer With
where aly, (@) andd’,(d,,) are creation@nnitilation o 05 Omer parameiciaia and(@ are the same as fose® and
operators in leadr and thea-QD, respectively. Each QD has (b).
a single particle energy level, with spin indexo, and the
intradot Coulomb interaction id ,. To account for magnetic de de I f
field B, €, has a term-oguB,/2 whereg is a constant. We f _Gj(r( €)=— _E M[G;U(e) -G2 (e)].
permitU yppe Uower aNAB ppei® Blower, bUt these details do 2m LA
not affect our general results. The last term in the Hamil-

. . . This completes the analytical derivation.
tonian describes the coupling between the QDs and the leads, We set bias voltage, =0.05, 4,=0, us=—0.05 S0

andt“:“ Is the cguplmg strepgth. We SBlupper= L3 jower= 0, ctlhat m1> o> us. We set gate voltage¥, , such that at
meaning there is no coupling between the upper-QD and .. o' maanetic fielde, .= s ande. 4+ U . — With
lead-1 and between the lower-QD and lead-3. . gn lower™ /1 upper™ ~upper™ #43- Y177

this condition there is one electron in the upper QD. Figures

We solve electron currerit, , using standard Keldysh .
nonequilibrium Green’s function methddEGPH’ (A=1): 3@ ant_j 3b) ShOW_S electron (?urreritm_ andln, ; _charge
currentin lead-2,.=e(l;+15|); and spin current in lead-2

_ r 1~<
\I/\r;ﬁ;re lgE|ZEZQIE((TF/ZTZ)arna_[fn(f)_G,méf)Il+ 264&’(;)2 5= (f/2) (11— 13|), versus a uniform field streng®. At
na=2T2|ty 4| “0(e—€py) is the linewidth func . . _
. . L L L zero B, electron current is nonpolarized so tHat=1I,,,
tion. f,(¢€) is the Fermi distribution function in lead- The : :
. i . < . and bothl ,, andl ,5 vanish. WherB increases from zero, the
NEGF G, (€) is the Fourier transform oG, ~(t): with . tradot level e i lit. Then level d
G ()=—i6(t){d,.(0).d" () and G= (1) intradot level e, is split. Then levelseoyer,; and eypper
ag aorthao a + U pper@re moved into the bias “window” betwees, (u3)
and u,, while levels e gyer, and €ypper; + U ypper are moved

=i(d},,(0)dy(1)). -
We solve the retarded Green's functi@,, in by the out of the window, see Fig. 2. In this situation the electron

;tandard equation cr)]f motion technﬂgug \évhtlare |nd|reDct tunneléurrent in lead-1 and lead-3 are polarized Wity %, .
Ing processes such as upper Qkad-2—lower QD areé  yyo06ver, we havel;|>[1,| and|l3|<[l3/|. In the fol-
neglected, this is reasonable because the long middle barr%Wing we focus on current in lead-2, shown in Figo In

between the QDs helps to block such events to a large eXte%ad—Z the value of electron current equals to the value of

We obtairf I, , but their flow direction is exactly opposite to each other,
- hence, we havé,; = —1,, . We therefore obtain zero charge
€. .tU,n,5 ! . .
G' (€)= ag @ a9 2) currentl,,=0; and a net spin currerit,y; emerges. When

parameterguB/2~0.03, the indradot levels gy ; and
€upper, T Uypperare in the middle of the bias window, leading
to the maximum spin current. If fiel increases further, the
where €,,=€e—€,,—U,, €,,=€,—0oguB, 2, T, spin current slightly decreases.
=2,.I"h., andn g is the intradot occupation number of state The device discussed here should be realizable using
o in the a-QD. n,; needs to be calculated self-consistently present technology because lateral double-QD structures
from the self-consistent equation n, ;= have already been fabricatddur analysis also show that
—i[ (de/l2m) G, (€). As usual Gy, (€) has two resonances: the device does not have a very strict parameter requirement.
one at energye,, for which the associated state,; is (i) The sizes of the two QDs need not be the same; the
empty; the other is a&,,+ U, for which the associated state intradot Coulomb interaction parametéus e, U ower N€Ed
€,5 1S occupied. not be the samdii) The fieldB may or may not be uniform,
Following the approach of Ref. 8, we obtdideG >, (¢€) it may also point to any direction. For different directions of
which is needed in computing current and occupation numB, a spin current is still induced but the spin polarization

ber would depends on the field directiofiii ) The four coupling
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strengths 'y jower: "2, 10wer: I'3,uppen ] 2,uppe) DEIWEEN the QDs In summary, we have shown that gate-controllable spin
and the leads can be controlled by split gate voltagedattery for spin current is possible. Such a device should be
(Vsp1:Vsp2:Vspa: Vspa) @s shown in Fig. 1, and they do not fabricable using present technology. We believe the present
need to be the same. In fact, one may fix any 3 of the 4 andesign to be superior as no time-dependent field is involved.
only regulate the last one to obtain a pure spin current withn the present work, we did not discuss detection of pure spin
zero charge current. For example, fixidQ ower” 2 10wer ~ CUrrent without charge current, but such discussions already
#I'5 uppen the spin current 5 and charge current,, vs  exist in literaturé®*>1% and we refer interested readers to
'3 upperis shown in Fig. &). At a special value of'3 pper  them.

given by relation T3 uppel 2,upperd T upper
=TI"1 jowed 2,1ower I lower, | 2¢ Vanishes and onli,g exists.(iv)
So far we have se ge= 1 and € ppert Uypper= m3, but
these conditions can be relaxed. For example,efper
+ U ppe= —0.06, somewhat different froms, by regulat-
ing the lower-QD levek,q,e, Using gate voltag¥ g iower, We
can easily find the operation point for larbg with zerol 5,
as shown in Fig. @l). (v) As for the parameter values, in Fig. s.A. wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V.
3 we have usetzgT=0.01. Assuming this is equivalent to  Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science

100 mK X other parameter values used to generate Fig. 3 can294 1488(2000; G. A. Prinz,ibid. 282 1660(1998.
Q. Si, Phys. Rev. Leti81, 3191(1998.

be deduced. We findV;=pu,/e~43 uV, V,=0, VSTI 3]. Zutic, J. Fabian, and S. D. Sarma, Appl. Phys. L#8.1558(2001); 82,
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