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Spin-current-induced electric field
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We theoretically investigate properties of the induced electric field of a steady-state spin-current without
charge current, using an “equivalent magnetic charge” method. Several general formula for the induced
electric field are derived which play the role of “Biot-Savart law” and “Ampere’s law.” Conversely, a moving
spin is affected by an external electric field and we derive an expression for the interaction torque.
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In a traditional electric circuit the number of spin-up and field should survive in the case without a charge current and
spin-down electrons are the same, and both kinds of eleswithout a net magnetization. However, in order to unambigu-
trons move in the same direction under an external electriously establish that the induced electric field is indeed due to
field. The total spin-currenit;=o(l;—1)) is therefore zero, ~spin current, not due to any other source such as the time
and only the charge currehg;=e(l;+1,) is relevant. When varying magnetic field in the single moving MM case, in the
a system includes ferromagnetic materials, or under an extepresent paper, we investigate the field induced Isteady-
nal magnetic field, electron spins can be polarized so that thetate spin-current in general situations where there is no
total spin of the system is nonzero. Then, the correspondingharge, no charge current, and zero total spin. Importantly,
charge current is polarized, i.e., current due to spin-up elegve equally treat spin and charge as sources of electromag-
trons, |, is not equal to the spin-down curreint, although netic field; and we systematically study the properties of the
both kinds of electrons move in the same direction, as schespin-current-induced field, by deriving several formula
matically shown in Fig. (). This gives a nonzero total spin- Which play the role as the “Biot-Savart law” and “Ampere’s
current. Spin-polarized charge-current has been the subjew.”
of extensive investigations for last two decadé®Recently, To start, we recall that a static classical MMproduces a
a very interesting extreme case of a finite spin-current withmagnetic fieldB. Consider a classical MNh due to a tiny
out charge-current has been investigated by severdharge-current ring, see Fig(cl. The charge-current ik,
groups®~® Such a situation comes about when spin-up elecand radius of the ring is5. The magnetic field of this
trons move to one direction while an equal number of spin-charge-current ring is easily obtained by the Biot-Savart law.
down electrons move to the opposite direction, as schematiFhen, lets—0* and|,.—% but keepm= 782l Ny, as a
cally shown in Fig. 18). Then the total charge-current is ,nstant Q. is the unit vector of the MM the magnetic

identically zero and only a net spin-current exists. This is juskia|4 B due to MM m. at space poinR, can be written as
the opposite situation of the traditional charge current with- ’ '

out any spin. A pure spin current without an accompanying wom-R
charge current, in the form of Fig.(d), has recently been B=-V T (1)
experimentally demonstrated in semiconductor nanostruc- 4mR

tures with optical contrdi.
By Ampere’s law, a charge current induces a magnetic (a) 1‘ 1‘ 1‘—>

field in the space surrounding it. In this paper, we ask and <—‘1, ‘1, \1,

answer the following questions: can a pure steady-state spin-

current without charge current induce an electric field? If so, (c) y (d) ,z
what are the properties of this induced electric field? The

problem can be viewed in the following way. Associated +q

with the electron spirr, there is a magnetic mome(M)

gugo, Whereug is the Bohr magneton anglis a constant. | X /+ X
Therefore when there is a spin-currdgt there is a corre- —-q

sponding MM current ,=gugls. In the rest of the paper,  (€)
we theoretically prove that a pure MM current with zero total
MM can induce an electric field. It has been well known for T T 1‘ T T—>
decades that a single moving MM is equivalent to an electric
dipole/ it therefore follows that an infinite one-dimensional  Fic 1. Schematic plots for the spin current with zero charge
line of moving MM’s not only has its associated magnetic current(a), the spin-polarized currerib), the MM of a small cur-
field, it can also induce an electric fidld!° Recently, Hirsch  rent ring (c), the two equivalent magnetic charges of the M,
had given a formula for the electric field induced by a singleand the straight infinite long MM linde). (f) shows the electric
moving magnetic dipol@.He also arguétithat this electric  (solid) and magneti¢dotted line of force for the motive MM line.
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Another method for obtaining the same magnetic field is byy x E=— gB/dt to VXE=—(JB/dt) — moIme, Where Jyc
using the mathematical construction of equivalent magnetigs the magnetic charge currehithe last equation means that

charge’ In this method, we imagine the Mivh being con-
sisted of a positive and a negative magnetic chatgg,.
situated very close to each other with a distandesee Fig.
1(d)]. Whens—0* andg,,c— o, we holdm=q,con, as a
constant. Each magnetic chargg,. produces a magnetic

a moving magnetic charge can produce an electric field. The
electric field E produced by a volumélinearn element of
magnetic charge current,,.dV (I1,dl), is simply

HodmcdVXR ol ndIXR

(4)
4R 47R3

field wodmcR/4mR3. The fieldB induced by MMm can then

be obtained by adding contributions of the two magnetic
charges* qp,,c. Of course, we again obtain E(.). Note that  Now we are ready to solve the electromagnetic field of our
the language of magnetic charge is only a mathematical conrp moving MM lattice because it is equivalent to two lines
struction convenient for our derivatioAsand no magnetic of positive/negative moving magnetic charges: they are eas-

monopole is hinted whatsoever.
After reviewing the magnetic field of static MM, in the
rest of the paper we consider MM’s in motion. In the first

ily obtained by integrating Eq$1l) and(4), respectively. The
same final results of Eq92) and (3) are obtained. The
present derivation allows us to conclude that the magnetic

example we consider the simplest case of a classical infifie|q B is induced by MM and the electric fieH is induced

nitely long one-dimensiondllD) lattice of chargeless MM,
with the whole lattice moving with speed[see Fig. 1e)].

The induced field for this situation can be calculated exactIyM
by a simple Lorentz transform, therefore providing a bench-.
mark result for our more general results to be discussed later.

Let p,, be the linear density of MM for the lattice and we
will use two methods to solve the electromagnetic field of
the spin-current.

Method 1 We first solve the totahagnetidield of a static
1D MM lattice by integrating Eq¢l) over the lattice. This is
easy to do and we call the resuBgaiic: Bstatic
=~V (mopmnm* R, /27R? , whereR, =R—(R-1)1. Herel
is unit vector along the lattice. Then we make a relativistic
transformation: the electromagnetic field of the moving MM
lattice can be obtained straightforwardly by the Lorentz
transform ofBgaic. The results are

)

)

where y=1/\1— (v%/c?). Clearly, there has to be an in-
duced electric fieldE and this field is related to.® We note
that although the results are unambiguously obtained, wi
have not identified the physical origin of the resulting elec-
tromagnetic field, i.e., this method does not tell us whethe
the field is induced by the MM or by the MM current. For
this reason, we analyze the same problem again from a se
ond method.

B= yBstatics

E= — yVXBstatics

by the MM current. Figure (f) shows electric-field lines and
magnetic-field lines at thg-z plane, here the infinitely long

M lattice is along thex axis andﬁm is along the+ z direc-
tion.

If there exists another infinitely long MM lattice with op-
posite MM direction (n,,) and opposite moving direction
[—v, shown in Fig. 1a)], then the net MM is canceled ex-
actly and only a net MM current exists. In this case, it is easy
to confirm that the magnetic field due to each lattice adds
up to zero identically, while the electric field reinforces
each other so that the total electric field of the composite
system is doubled. Hence we conclude that this finite electric
field must originate from the MMurrent and it cannot be
due to any other effects.

In the example above, we have clearly shown that a clas-
sical 1D MM current can induce an electric field In the
following we investigate the question: can electron M.,
spin) current induce an electric field? We also extend the
above 1D model to general situation. Before proving this is
indeed the case, we emphasize the fact that since adiM
spin is itself a vector unlike charge which is a scalar, the
MM current density cannot be described only by a single

ector J,,dV (or I ,dl). In order to completely describe a
M current density! we have to use a set of two vectors

fNm,JndV) or (N, 14dl), in which J,, expresses the
strength and direction of the flow of MM currents, whilg,
expresses the polarization of the MM itself. This is different
from the familiar charge current. Note that for two MM cur-

Method 2.Here we use the equivalent magnetic chargeyent, if only theirJ,, are the same and their, are different,

method discussed above. This means removing the curre
density of the ring at the equationVXB= ugJec

+ uoeg(dE/dt), and adding the imaginary magnetic charge
at the equationV-B=0, i.e., this equation changes to

tHey are two different MM currents and their induced electric
fields are also differentsee below.

In the following, we apply the equivalent magnetic charge
method to deduce a general result beyond 1D for the quan-

V -B=p0pmc, Wherepn is the volume density of magnetic tum object of electron spin-current. Here, the spin or MM
charge. We emphasize again that this practice is only a mathyf an electron at space pointis equivalent to a positive

ematical trick to solve our problem. When our MM moves
the original Maxwell equation in which the MNh is de-
scribed by a tiny charge-current ring satisfies relativistic co

variance. Clearly, Maxwell equations after the equivalent‘el

magnetic chargen/ 8 atr + (5/2)n,, and a negative magnetic
charge—m/§ atr—(8/2)n,,. The spin current iy ,JndV)
t the space is equivalent to two magnetic charge currents:

magnetic charge transformation must also satisfy relativisti©ne is Om/8)dV at r+(8/2)ny, and the other—(Jp/5)dV

covariance. This covariance can be achieved, as shown
standard textbook,by changing the Maxwell equation to

'mr—(&/Z)ﬁm, whered—0*. We make the very reasonable
fundamental assumption that any electromagnetic field in-

054409-2



SPIN-CURRENT-INDUCED ELECTRIC FIELD PHYSICAL REVIEW B9, 054409 (2004

duced by moving electron spins, if exists, must satisfy relacan produce an electric field. This formula can be thought as

tivistic covariance. From this assumption, the Maxwell equathe “Biot-Savart law” for spin-current-induced electric field.

tions for the magnetic charge and its current are We emphasize that in the derivation of E®), the only
assumption made was that the electromagnetic field of the

VXE=_ @ o] ) moving spin satisfies relativistic covariance. As a check, ap-
at 0¥me: plying Eqg. (9) to the 1D lattice exactly solved above, it is
straightforward to perform the integration and obtain &).
JE Some further discussion of our results are in order. An
VX Bzﬂofoﬁ + podecs (6) electron has its charge and M{dpin: charge produces elec-
tric field, charge-current produces magnetic field, spin pro-
V-E=pe.le @) duces m_agnetic field, and we have jt_Jst_shown that a steady
ect =0 state spin-current produces an electric field.
VB=pigprme, ) (i) For the case of a spin current without charge current

shown in Fig. 1a), the total net charge is zero for our neutral
where p,c and p,. are the volume density of the magnetic System; the total charge-current is zero; and the total MM is
and electric chargel,,. andJ are their current density. In also zero. The only nonzero quantity is the total spin-current
contrast, in the original Maxwell equation, the source of field(MM curreny. Our results predict even for this situation, an
are electric charge and its current: the field of a MM is cal-electric field is induced by the presence of spin current.
culated by turning this moment into an infinitesimal charge- (i) For the spin-polarized charge-current shown in Fig.
current loop as we have done above. Here, we use the mag(h), which have been extensively investigated receftg,
netic charge description and its associated current to expre§§arge current, total MM, and a spin current may all exist. In
the spin of particles and the spin current. We emphasize threlis case, the charge current and MM produce magnetic field,
points. and the spin current produces electric field.

(i) Equationg5)—(8) are more superior for our problem of (iii) For a closed-loop circuit in which a steady state spin
calculating fields of electron spin-current because they dgurrent flows, one can prove that the induced electric field
not require us to turn electron spins into little charge-currenhas the propertg E-dl=0, whereC is an arbitrary close
loops. No one knows how to do the latter, in fact, because theontour not cutting the spin current. This is true even when
inner structure of an electron is not known. Hence, while théhe spin current threads the contddr very different from
original Maxwell equations do not directly describe fields of the Ampere’s law of magnetic field induced by a charge cur-
electron spin and the spin current, E®—(8) can describe rent.
them and this description is very reasonable if we only in- Figure 2 shows electric-field lines of a spin-current ele-
vestigate fields outside of an electron, e.g.,Ror107° A ment @, JndV). The spin-current element is located at

(i) Equations(5)—(8) do not represent an attempt of re- grigin, 3 points to+ x direction, andh,, is in the x-z plane.
writing Maxwell equation. Theyare the Maxwell equation
Whef‘ Wwe use equwalent magnetic charge and dem"’lmjmeqectric fieldE must be perpendicular td, (i.e., tox axis),
relativistic covariance. we plot the field lines in thg-z plane atx=—1, 0, and+1

(iii) Note that although Eqs5)—(8) did appear in old P X y-2p — 4, O and+ L.
literature’ they were for describing totally different physics. () For 0= /2, ny,L Jy,. At x=0, the field line configu-
For instancé, if there exists a magnetic monopole, Maxwell ration is SImIIar(aIthoug_h not_exact_ly th_e sar)jm that pro-
equation will have the form of Eq$5)—(8). Since no mono- duced by an equtnc dipole iRy direction[Fig. 2(a)]. At
pole has ever been found, one recovers the standard form &f *1, the field lines have a mirror symmetry between up-
Maxwell equation by settingy,. and pyc to zero! In this ~ Per and lower half-z plane[Fig. 2(b)].
work, we equally treat spin and charge as sources of electro- (ii) For =0, n[J,,. At x=0, E=0 for anyy andz. At
magnetic field so thaf,,. and p,,. describe spin and spin x==1, the field lines are concentric circlgBig. 2(c) and
current, without involving any magnetic monopole. 2(d)]. The center of the circles is gt=z=0 whereE=0.

From Eqgs.(5)—(8), the electric field induced by an infini- (iii) For 6= /3, the fields are shown in Figs(e and
tesimal element of magnetic charge currdpidV is ob-  2(f) for x==x1. In fact, thisE can be decomposed into a
tained from Eq.(4). Then the total electric fiel&E of the  summation of two terms corresponding to the fieldsdof
element of MM current fﬁm,\]de) can be calculated by =/2 and0=0. At x=0, the field lines are similar to that
adding the two contributions of the two magnetic charge curshown in Fig. 2a). It is worth mentioning that from Fig. 2, it

rents: 0,,/8)dV at (5/2)ﬁm and — (J,,/8)dV at _(5/2)ﬁm is clearly shown tha$.E-dl#0. Note that this is not con-

The angle betweed,, and n,, is 6. Because the induced

5—0"). We obtair? tradictory to chqraqteris_ti(iii) of the last paragraph, because
(6=07). We obtai there the electric field is produced by a steady closed-loop
& spin-current.
E= J ﬂdevxi N — Ml 9 So far we have demonstrated that a spin current can in-
4 R3 R? deed induce an electric field. In the following, we investigate

_ . how a moving spin is affected by an external electromagnetic
Equation(9) clearly shows that the MM currentf,,JndV)  field }® Consider a lab fram&’ where there is an electro-

(i.e., spin current ¢,J.dV)=[n,,(Im/gus)dV]) indeed magnetic field E’,B’), and a static MMm’. There is a
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(a):6=n/2, x=0 (b):6=m/2, x=%1 =(p1,P2,P3,iW/c) from frameX’ to 3 gives the force-

: on the moving magnetic chargg,. by the electromagnetic
field E,B: F=dp/dt=(dp/d7)(d7/dt)=[dp;/d,
y H(dpy/dr), y {(dps/ dn)] = dmdB1, ¥ 'Bj, ¥ 'B3)
=qmd B— (V/c?) X E], wherer is the proper timet is the
time, the quantity with a priméwithout prime is in frame
3’ (2), and the direction ofy, is the same as velocity.
Hence, a moving MMm (or spino) in an external electro-
magnetic fieldE,B feels a torqué* mx[B— (v/c?) X E].
Then the associated potential energy is:

. (10

Y%
—m-(B——2XE>=—g,uBa--
c

B Y E
——X

CZ
Clearly, the term—m-B describes the action of magnetic
field on m which is well known; and the terrm-[(v/c?)
X E] expresses the action of electric ficldon the moving
MM.

So far we have found that a spin current can induce an

electric fieldE; and conversely, an external electric field puts
a moment of force on a spin current. The magnitudes of these

effects can be estimated. Consider a spin currept,d,,)
flowing in an infinitely long wire with cross section area of

2 mmx2 mm. Letn,LJ,, take electron density #m?3

and a drift velocity 102 m/s, then the spin-current-induced
electric field is equivalent to that of a potential difference
~12 uV at distances-1.1 mm and 1.1 mm on either side

of the wire. This electric potential is indeed very small, but is
definitely nonzero and should be measurable using present
technologies.

FIG. 2. Schematic plots of electric-field lines for a spin-current
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lar result as Eq(9). However, we emphasize that the induced
electric field of spin currentm,deV) exists even when the
total MM m is zero. This way, one unambiguously shows that
the source of field was indeed the spin current.

3Note that the electric field acting on the moving spiy. (10)]
has been found beforfC.-M. Ryu, Phys. Rev. Lett76, 968
(1996]. Here we use the equivalent magnetic charge method to

deduce it again.
14Notice when electromagnetic field and B are nonuniform, the

spin directionﬁj and/or its moving directionJ; are different
from others, the spin current can also be describedKioy/
=21ﬁj®deV. For the tensor description method, the spin cur-
rentKdV induced electric field can be obtained by using a simi-
lar method as presented in the text:

o 1|, 3R(R-1)
E= Z EK&VX& T

i —
i=xy,z

WhereKi:(Kix,Kiy,KiZ). X 2
?Note that Ref. 8 studied the electromagnetic field induced by a Moving MM m feels a moment of forcmxz[B—(v/c )} E]. It
moving magnetic dipolen. Reference 8 also mentioned a simi- 1S subjected to a net forcen(- V)[ B— (v/c%) X E].
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