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The dephasing effect on the quantum spin Hall effect (QSHE) is studied. Without dephasing, the

longitudinal resistance in a QSHE system exhibits the quantum plateaus. We find that these quantum

plateaus are robust against the normal dephasing but fragile with the spin dephasing. Thus, these quantum

plateaus survive only in mesoscopic samples. Moreover, the longitudinal resistance increases linearly with

the sample length but is insensitive to the sample width. These characters are in excellent agreement with

the recent experimental results [Science 318, 766 (2007)]. In addition, we define a new spin Hall resis-

tance that also exhibits quantum plateaus. In particular, these plateaus are robust against any type of de-

phasing and therefore, survive in macroscopic samples and better reflect the topological nature of QSHE.
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Recently, the quantum spin Hall effect (QSHE), existed
in a new quantum state of matter with a nontrivial topo-
logical property, has generated great interest [1]. QSHE
occurs in the topological insulator with a bulk energy
gap and two helical edge states crossing inside the gap.
This energy-band structure guarantees that the carriers
only flow along the boundary and that carriers with oppo-
site spin polarizations move in opposite directions on a
given edge. The other key ingredient for QSHE is the
presence of the spin-orbit interaction (SOI). When elec-
trons move under an electric field, the SOI drives the
electrons with opposite spins to deflect to the opposite
transverse boundaries, and the special energy-band
structure leads to the quantum spin Hall conductance [1].
The existence of QSHE was first proposed in a graphene
film in which the SOI opens a band gap around the
Dirac points and establishes the edge states [2]. Soon
afterwards, QSHE was predicted to exist in some other
two- or three-dimensional systems [3–6]. In particular,
Bernevig et al. recently found that CdTe=HgTe=CdTe
quantum well has an ‘‘inverted’’ type energy-band struc-
ture with proper well thicknesses [6] where QSHE natu-
rally exists. Soon after this work, QSHE was successfully
realized in an experiment [7,8] in which a quantized lon-
gitudinal resistance plateau was observed when the
sample’s electron density was varied in the absence of a
magnetic field [7].

However, in the experiment of Ref. [7], the quantized
longitudinal resistance plateaus could only emerge in
mesoscopic samples. This character is very different from
the regular quantum Hall effect (QHE). In QHE, the Hall
resistance plateaus exist in macroscopic samples, robust
against the impurity scattering as well as the inelastic
(dephasing) scattering. This leads some to speculate that
the inelastic scattering which induces phase relaxation,
destroys the quantized plateaus in QSHE [1,6], however,
there has been no theoretical or experimental investigation
thus far.

In this Letter, we study how QSHE is affected by de-
phasing. We mainly focus on two questions: (i) How does
dephasing affect the quantized longitudinal resistance pla-
teau of QSHE samples as measured in the recent experi-
ment [7]; (ii) Is there an observable physical quantity
showing a quantized value in macroscopic samples, reflect-
ing the topological nature of QSHE?
In a realistic sample, there are in general a number

of possible dephasing processes, but these can be classi-
fied into two categories. In the first kind, the carriers lose
only the phase memory while maintaining the spin mem-
ory, such as with the dephasing processes caused by the
electron-electron interaction, the electron-phonon interac-
tion, etc., these are named normal dephasing in this Letter.
In the second kind, the carriers lose both phase and spin
memories, such as with the spin-flip dephasing processes
caused by the magnetic impurities, the nuclear spins, etc.,
named spin dephasing. We consider a six-terminal device
[shown in Fig. 1(a)], as in the experimental setup [7], and
the dephasing processes are simulated by using the
Büttiker’s virtual probes [9]. By applying the Landauer-
Büttiker formalism combined with the nonequilibrium
Green function method [10,11], the longitudinal resistance
is calculated. The results show that the longitudinal resis-
tance exhibits the quantum plateaus without dephasing or
with the normal dephasing, but are then destroyed by the
spin dephasing. Thus, these quantum plateaus are only
observable in a mesoscopic sample in which the sample
length is smaller than the spin-dephasing length. More
interestingly, we introduce a novel spin Hall resistance
that also exhibits the quantized plateaus. In particular,
these plateaus survive under both normal and spin dephas-
ings, and are thus observable in macroscopic samples,
similar to the conventional QHE.
In the tight-binding representation, the Hamilton-

ian of the six-terminal QSHE device can be written

as [12–14] H ¼ �½Phiji�tei�ð�Þ�ijcyi�cj� þ H:c:� þ
½Pik��k�a

y
ik�aik� þ ðtk�ayik�ci� þ H:c:Þ�. The first term

PRL 103, 036803 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JULY 2009

0031-9007=09=103(3)=036803(4) 036803-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.036803


describes the QSHE system including the central region

and the six terminals. cyi� (ci�) is the creation (annihilation)
operator of an electron on the lattice site iwith spin �, t ¼
@
2=2m�a2 represents the nearest hopping matrix element

with the lattice constant a. Because of the SOI, an extra
spin-dependent phase �ð�Þ�ij is added in the hopping

element, with �ð�Þ¼1 (�1) for � ¼" (#) [15]. The sum-
mation of four �ij along each unit satisfies

P
h�ij ¼

eBeffa
2=@, with an effective magnetic field Beff coming

from the SOI. The second term represents the Hamiltonian
of virtual leads and their couplings to the central sites. Here
we assume that the dephasing only occurs in the central
region, and each site i in the central region is attached by a
virtual lead. The size of the central region is ðLþ 2MÞ �
W as shown in Fig. 1(a). In addition, if we take �ð�Þ ¼ 1,
the Hamiltonian describes a QHE system [16].

Using multiprobe Landauer-Büttiker formula, the cur-
rent in the lead p (either real or virtual lead) with spin
index � can be expressed as

Jp� ¼ ðe=@ÞX
q�p

T�
pqðVp� � Vq�Þ; (1)

where Vp� is the spin-dependent bias in the lead p. T�
pq ¼

Tr½�p�G
r�q�G

a� is the transmission coefficient from the

lead q to p with spin �, where the linewidth functions
�p� ¼ i½�r

p� ��rþ
p��, the Green function Gr ¼ ½Ga�y ¼

½EFI�Hcen �P
p��

r
p���1, Hcen is the Hamiltonian in

the central region, and �r
p is the retarded self-energy due

to the coupling to the lead p. [11] For the real lead p (p ¼
1, 2, 3, 4, 5, 6), the self-energy �r

p can be calculated

numerically. For the virtual leads, �r
p ¼ �i�=2 and � is

the dephasing strength.
In our simulations, a small external bias is applied

between the lead 1 and lead 4 with V1" ¼ V1# ¼ �V4" ¼
�V4# ¼ V, which drives a current I14 ¼ I1 ¼ �I4 flowing

along the longitudinal direction. For normal dephasing,
electrons only lose the phase memory while maintaining
the spin memory by going into and then coming back from
the virtual leads. Thus, for each virtual lead i the currents
have the constraint that Ji" ¼ Ji# ¼ 0, and Vi" is usually not
equal to Vi#. But for spin dephasing, electrons can lose both
phase and spin memories, so one has Vi" ¼ Vi# and Ji" þ
Ji# ¼ 0 for each virtual lead i. In the recent experiment [7],

the four transverse real leads are the voltage probes, so
Jp" þ Jp# ¼ 0 and Vp" ¼ Vp# � Vp for p ¼ 2, 3, 5, and 6.

Combining Eq. (1) together with all boundary conditions
for the real and virtual leads, the voltage Vp� and current

Jp� in each real lead can be obtained. Then

the longitudinal resistance R14;23 � V23=I14 ¼ ðV2 �
V3Þ=ðI1" þ I1#Þ and I2s=I14 ¼ ðI2" � I2#Þ=I14 can be calcu-

lated and will be presented next. Here R14;23 is the mea-

sured quantity in the recent experiment [7]. In addition, we
also consider the case in which the four transverse leads are
taken as spin-bias probes with their currents Jp" ¼ Jp# ¼ 0.

In this case, we define a new spin Hall resistance Rs �
ðVi" � Vi#Þ=I14 (i can be any transverse lead, for instance

i ¼ 2), and its result will be shown in this study as well.
In the numerical calculations, we take the hopping ma-

trix element t ¼ 1 as the energy unit. The Fermi energy is
selected at EF ¼ �3t which is near the energy-band bot-
tom�4t. Since the flux in a unit lattice is � ¼ 1 when the
efficient magnetic field Beff ¼ h=ðea2Þ, h=ðea2Þ was taken
as the unit of Beff . The dephasing strength is described by
the parameter �, which is directly related to the phase
coherence length L� [16], an experimental observable

parameter. Figures 2(b) and 2(c) show the relation of L�

vs �. With increasing �, L� decreases rapidly and mono-

tonically for either normal or spin dephasing. To test out
our model, we first investigate the effect of dephasing on
the integer QHE [i.e., �ð�Þ ¼ 1 in the Hamiltonian]. As
shown in Fig. 1(b), the quantized Hall resistance plateaus
of R14;26 in QHE are hardly affected by either dephasing, in

agreement with previous experimental and theoretical re-
sults [16].

FIG. 2 (color online). (a) shows R14;23 vs � with L ¼ 32a,
W ¼ 32a, M ¼ 24a, and Beff ¼ 0:5 (thin curves) and 0.3 (thick
curves). (b) and (c) show L� vs � at Beff ¼ 0:5 (b) and 0.3 (c)

with W ¼ 32a. The solid and dotted curves in (a)–(c) are for the
normal and spin dephasings.
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FIG. 1 (color online). (a) Schematic diagram for a six-terminal
Hall bar sample, the gray (or red) area is the central region
containing dephasing. (b) The Hall resistance R14;26 vs the

magnetic field B for different dephasing strengths �. (c) and
(d) illustrate the longitudinal resistance R14;23 vs Beff in the
presence of normal and spin dephasings, respectively. The
parameters are M ¼ 24a, L ¼ 32a, and W ¼ 32a.
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Now, we present our numerical results of the dephasing
effect on QSHE. Figures 1(c) and 1(d) show the longitu-
dinal resistance R14;23 versus Beff for the normal and spin

dephasings with different dephasing strength �. In the
absence of dephasing (solid lines), R14;23 exhibits perfect

quantum plateaus at h=2�e2 (� ¼ 1; 2; 3; . . . ). Note that in
the experiment of Ref. [7], only one plateau was observed
since only one edge channel is there for each spin compo-
nent at a given edge. In our theoretical model, one allows
multichannels. Thus, the experimental situation corre-
sponds to the highest plateau at h=2e2 with � ¼ 1 in our
model. In the presence of dephasing, the quantum plateaus
of R14;23 behave quite differently depending on the type of

dephasing. With normal dephasing, the plateau structure
remains and R14;23 changes only slightly in between the

plateaus. For normal dephasing, temperature causes the
dephasing broadening in �, thus, this shows that QSHE
is insensitive to T at low temperatures. However, from
Fig. 1(d), one sees that with spin dephasing, R14;23 in-

creases significantly even with small �.
Next, we investigate the effect of dephases in more

detail. Figure 2(a) shows R14;23 versus dephasing strength

� for fixed Beff ¼ 0:5 and 0.3, which are at the centers of
the 1st and 2nd plateaus. For the normal dephasing, the
increase of R14;23 is extremely slow with increasing �. For
example, at � ¼ 0:2t, the sample size is about one order
larger than the phase coherence length L�, but R14;23 is

only increased by less 4%. In contrast, for the spin dephas-
ing, R14;23 increases rapidly with increasing �. For ex-

ample, even for a small � ¼ 0:02t, in which the sample
length is shorter than L�, R14;23 is increased by about 16%.

For normal dephasing, the carriers maintain their spin
memories, and backscattering occurs only when a carrier
is scattered from one boundary to the opposite one. So the
backscattering is very weak except when the Fermi energy
is near a Landau level center, and the quantum plateaus of
R14;23 can survive even with very large normal dephasing.

But for the spin dephasing, the spin of a carrier can be
flipped, and the backscattering occurs on each boundary.
So the longitudinal resistance R14;23 is strongly affected by

the spin dephasing. In a real experimental sample, the spin
dephasing always exists to some degree, due to magnetic
impurities, nuclear spin fluctuations, etc., thus, the quan-
tum plateaus of longitudinal resistance of QSHE only
survive in mesoscopic samples. This explains why the
quantum plateau was not observed in samples with large
lengths [7].

In Figs. 3(a) and 3(b), R14;23 dependence on the system

sizes is studied. For normal dephasing, the plateau of R14;23

stays at the quantized value regardless of the sample length
L or the width W since the backscattering is weak in all
cases except for very small W. On the other hand, for spin
dephasing, R14;23 is almost independent of the widthW but

is linearly increasing with the length L since the backscat-
tering is stronger with larger L. In Fig. 3(c), we plot R14;23

in logarithmic scale as done in the experimental figures [7].

Similar to the experimental plots, R14;23 approximatively

shows the plateau characteristics regardless of the dephas-
ing strength �, although the plateau values may well
exceed the idealized quantized values of h=2�e2 in the
absence of spin dephasing. Combining all the results from
Figs. 1–3, we qualitatively explain the experimental find-
ings on the behavior of the longitudinal resistance R14;23

and its dependence on temperature, sample length, and
sample width [7].
Up to now, we have found that the quantum plateaus of

longitudinal resistance R14;23 survive only for mesoscopic

samples due to spin dephasing. Does there exist an observ-
able physical quantity in macroscopic QSHE samples? Or
more importantly, is there an observable quantity to better
reflect the topological nature of the QSHE than R14;23. We

find that a new spin Hall resistance Rs � ðVi" � Vi#Þ=I14
can fulfill the purpose. Figures 4(c) and 4(d) show the spin
Hall resistance Rs, and it exhibits the quantum plateaus at
h=2�e2 even with strong normal or spin dephasing. For
example, at � ¼ 0:1t, the sample length exceeds L� by

1 order of magnitude, the plateaus of Rs still stay at the
quantized values. This means that these plateaus will be
visible in macroscopic QSHE samples. The robustness of
Rs against either dephasing is similar to what appeared in
the Hall resistance plateaus in the conventional QHE [see
Fig. 1(b)]. Let us explain the origin of the story with the aid
of Figs. 4(a) and 4(b), in which the chemical potential
along a given boundary is shown. In the left and right
leads, the chemical potentials are always spin in-
dependent with V1� ¼ �V4� ¼ V. In the central region,
the chemical potential Vc� is spin dependent. Without spin
dephasing, Vc" ¼ V and Vc# ¼ �V [see Fig. 4(a)] since the

spin-up electrons flow to the right while the spin-down
electrons flow to the left. In the presence of spin dephasing,
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FIG. 3 (color online). (a) and (b) show R14;23 vs the sample
length L with W ¼ 32a (a) and the width W with L ¼ 32a (b),
M ¼ 24a, and Beff ¼ 0:5. The solid and dashed lines are for the
normal and spin dephasings, respectively. (c) shows R14;23 vs Beff

for different sample lengths L and spin-dephasing strengths �
with W ¼ 32a and M ¼ 24a.
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the chemical potential Vc� descends along the longitudinal
direction [see Fig. 4(b)]. But in order to keep the current I14
to be a constant, Vc" � Vc# needs to be also unchanged

regardless of the positions along the sample and the spin-
dephasing strength � since the current I14 is carried by the
edge states between Vc" and Vc#. Therefore, the plateaus of
the spin Hall resistance Rs ¼ ðV2" � V2#Þ=I14 will stay

unchanged even with strong spin dephasing (i.e., in macro-
scopic samples). In addition, due to constant nature of Rs,
the ratio of the transverse spin current to the longitudinal
current [e.g., I2s=I14, see Figs. 4(e) and 4(f)] and the spin
accumulation on the boundary can also survive in the
presence of strong normal and spin dephasings. Finally,
we need to point out that the difference of V2" � V2# is an
experimental measurable quantity [17–19]. In a recent
experimental work [18], by using a quantum-point contact
the spin bias in a quantum dot was successfully detected. In
addition, in a very recent experimental work [19], the spin
bias in an one-dimensional (micron-wide) channel has
been successfully detected. This one-dimensional geome-
try is quite similar to the edge channels in the HgTe
samples where the QSH experiment was performed.

In summary, the effect of dephasing on QSHE is studied.
We find that the quantum plateaus of the longitudinal
resistance R14;23 are insensitive to the normal dephasing,

but are severely affected by the spin dephasing, so that
these quantum plateaus exist only in mesoscopic samples.
This result explains why the quantum plateaus of R14;23 are

only observed in small-size samples in the recent experi-
ment [7]. The dephasing effect also provides the under-

standing of observed dependence of R14;23 on temperature,

sample length, and sample width. In addition, we find a
new spin Hall resistance that also exhibits quantum pla-
teaus. In particular, these plateaus stay at quantized values
in macroscopic samples and better reflect the topological
nature of QSHE.
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FIG. 4 (color online). (a) and (b) are the schematic diagrams
for the chemical potential along a given boundary with (a) and
without (b) spin dephasing. (c) and (d) plot the spin Hall
resistance Rs vs Beff . (e) and (f) illustrate the function I2s=I14
vs Beff . (c) and (e) are for the normal dephasing case, and (d) and
(f) are for the spin dephase case. The parameters are M ¼ 24a,
L ¼ 32a, and W ¼ 32a.
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