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Thermal-Induced Dissociation and Unfolding of Homodimeric DsbC
Revealed by Temperature-Jump Time-Resolved Infrared Spectra
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ABSTRACT The thermal stability of DsbC, a homodimeric protein disulfide isomerase in prokaryotic periplasm, has been
studied by using temperature-dependent Fourier transformation infrared and time-resolved infrared spectroscopy coupled
with temperature-jump initiation. The infrared absorbance thermal titration curves for thermal-induced unfolding of DsbC in
D2O exhibit a three-state transition with the first transition midpoint temperature at 37.1 5 1.1�C corresponding to dissociation,
and the second at>74.5�C corresponding to global unfolding and aggregation. The dissociation midpoint temperature of DsbC in
phosphate buffer shifts to 49.2 5 0.7�C. Temperature-jump time-resolved infrared spectra in D2O shows that DsbC dissociates
into the corresponding germinate monomeric encounter pair with a time constant of 40 5 10 ns independent of the protein
concentration and 77% of the newly formed monomeric encounter pair undergoes further coil to helix/loop transition with
a time constant of 160 5 10 ns. The encounter pair is expected to proceed with further dissociation into monomers. The disso-
ciation of DsbC is confirmed by size-exclusion chromatography and subunit hybridization. The in vivo oxidase activity of DsbC
attributed to the monomer has also been observed by using cadmium sensitivity and the oxidative state of b-lactamase.
doi: 10.1016/j.bpj.2009.08.049
INTRODUCTION

Disulfide bonds are important for the folding, stability, and

function of many proteins. In prokaryotic cells they are cata-

lytically formed by the Dsb family proteins in the periplasm

(1). The DsbA rapidly donates its disulfide bond to unfolded

secreted or membrane proteins, and is then reoxidized by an

inner membrane protein DsbB, constituting the oxidation

pathway (1). The disulfide isomerase DsbC, composed of

2 � 216 amino acid residues (2) with chaperone activity

(3), is thought to isomerize mismatched disulfide bonds

and to be kept reduced by another inner membrane protein

DsbD (1), constituting the reduction/isomerization pathway.

It has been shown recently that DsbC can also assist DsbA to

oxidatively fold envelope proteins in a DsbD-independent

manner, which suggests that some cross talk can occur

between the two pathways (4).

The disulfide isomerase DsbC is a V-shaped homodimer

with each arm of the V as a subunit, which consists of the

N-terminal domain responsible for dimerization connected

via a hinged linker helix to the C-terminal thioredoxin

(Trx)-fold domain (5). The two active sites (Cys98-Gly-

Tyr-Cys101), one in each Trx-fold domain, are essential for

isomerase activity. Linkage of monomeric Trx, DsbA or
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the a domain of protein disulfide isomerase, each of which

individually has no or low isomerase activity, to the associ-

ation domain of DsbC, forms a dimeric molecule, which

acquires isomerase activity (6). Substitution of glycine49

(Gly49) with arginine (Arg) converts the dimeric disulfide

isomerase into a monomeric oxidase (7,8), suggesting that

dimerization acts to protect DsbC active sites from DsbB-

mediated oxidation (7,9,10). By comparative study of the

intrinsic fluorescence changes of DsbC and its two mutants

DsbC-G49R and Y52W with excitation at both 295 and

280 nm, Ke et al. (8) have shown that guanidine hydrochlo-

ride (GdnHCl)-induced unfolding of dimeric DsbC is a ther-

modynamically reversible three-state transition via a stable

monomeric folding intermediate formed in the first transition

at low GdnHCl concentrations.

The temperature-jump (T-jump) technique provides a

unique means to study the thermal stability of proteins by

triggering a fast protein unfolding/folding process with

a heat pulse at an accessible temporal resolution as high as

70 ps (11). Fourier transform infrared (FTIR) absorption in

the amide I band for polypeptides provides finger prints

of the secondary structures (12–14). A combination of the

T-jump and the time-resolved infrared (IR) absorbance

difference spectra has become a powerful tool for tracing

the changes of secondary structures in the thermal-induced

folding/unfolding dynamics of proteins (15,16). By using

these methods we have investigated the thermal stability of

the DsbC dimer, which, to the best of our knowledge, has

not been studied before. Our results show that the DsbC

dimer undergoes thermal-induced dissociation at a midpoint

temperature (Tm) of 37.1�C in D2O and 49.2�C in phosphate
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D2O buffer. The DsbC dissociation path revealed by IR

studies is further supported by biological evidence.

MATERIALS AND METHODS

Materials

Recombinant DsbC and DsbC-G49R proteins were prepared according to

Ke et al. (8) (see the Supporting Material) in 99.9% D2O (pD 5.8) or D2O

buffer containing 50 mM K2DPO4/KD2PO4 (pD 7.0) at 12.5 mg/mL. A solu-

tion of mixed glutamic acid (Glu) and aspartic acid (Asp) with a weight

ratio of 1:2 close to that of the DsbC molecule was prepared in D2O at

12.5 mg/mL. In addition, DsbC carboxymethylated at both thiols of the

active site �CGYC� motif, known as mmDsbC, was prepared according

to Zapun et al. (2).

FTIR spectroscopy

Temperature-dependent FTIR spectra were collected on a spectrometer

(ABB-BOMEM, Bureau, Quebec, Canada) equipped with a liquid nitrogen

cooled broad band mercury-cadmium-telluride detector. A two-compart-

ment CaF2 sample cell with a 56-mm thick Teflon spacer was used for the

protein solution and reference D2O, respectively. The measurements were

carried out in a homemade vacuum chamber with a temperature controlled

to an accuracy of 50.1�C by water circulation. An average of 50 scans

was taken for each spectrum.

T-jump and time-resolved IR difference
absorbance spectra

The T-jump IR apparatus has been described in Ye et al. (17) and Zhang et al.

(18). Briefly, the 1.9-mm T-jump pulse was generated via Raman shifting the

fundamental output of a Nd/YAG laser (Lab 170, 10 Hz, 8–12 ns; Spectra

Physics, Mountain View, CA) in a cell filled with 750 psi H2 gas. The

T-jump induced transient IR absorbance changes were measured by using

a mid-IR CO laser at a spectral resolution of R4 cm�1 (Dalian University

of Technology, Dalian, China), in conjunction with an mercury-cadmium-

telluride detector (Kolmar, Newburyport, MA) and a digital oscilloscope

(Tektronix model TDS 520D). The temperature-dependent FTIR spectra

of D2O were taken as an internal standard for T-jump calibration

(17,19,20). The temporal resolution after deconvolution of the instrumental

response of this system is ~30 ns (17). The instrument response function is

limited mainly by the detector/preamplifier system. The combined total

response function set as Gaussian was determined to be approximately

with a bandwidth (full-width at half-maximum) of 80 ns. This experimen-

tally determined instrument response function was convolved with a single

exponential to best fit the infrared transient (21,22).

The T-jump time-resolved IR difference absorbance spectrum requires

repeated data collection for a high signal/noise ratio, thus the reversibility

of the protein folding/unfolding is imperative for reliability of the data.

FTIR spectra for heating-and-cooling cycled sample were collected to deter-

mine the highest accessible temperature at which reversibility of the protein

folding/unfolding remained (17). This was found to be ~40�C and 70�C for

DsbC and DsbC-G49R in D2O, respectively.

Spot titers for cadmium resistance

Spot titers were used to measure the relative cadmium resistance of different

genotype strains according to Quan et al. (23). Briefly, mid-log phase cells of

different strains with an optical density (OD600) of 1 were serially diluted in

sterile 150 mM NaCl. Each dilution of 2 mL was plated onto LB plates sup-

plemented with 0, 5, 10, 20, 40, 100, and 200 mM of CdCl2 and 10 mM

IPTG, and incubated overnight at 37�C and 42�C. All spot titers were carried

out in duplicate or triplicate.
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Oxidation of b-lactamase by DsbC in vivo

Mid-log phase cells containing pBR322 with OD600 of 1 at 37�C were

collected for resuspension in 5% trichloroacetic acid, and the acid precipi-

tates were alkylated by incubation in 50 mM Tris-HCl, pH 8.0, with 10 mM

4-acetamido-40-maleimidylstilbene-2,20-disulfonic acid (AMS), 1 mM

EDTA, and 1% SDS for 30 min at 30�C and another 10 min at 37�C. The

reactions were analyzed by NUPAGE Tris-Glycine 14% (Invitrogen, Carls-

bad, CA). The disulfide bond formation in b-lactamase (Bla) was visualized

by Western blot with rabbit anti-Bla antibody (Chemicon, Temecula, CA).

RESULTS AND DISCUSSION

Although DsbC in crystal has been shown to exist as a dimer,

the structural elements involved in dimerization are surpris-

ingly small, limited to two pairs of very short b-strands. The

dimerization domains are composed of one a-helix (a1) and

six-stranded central b-sheet (b1–b6) with the interface formed

essentially by only nine b-sheet hydrogen bonds linking b4 to

the b5 of the opposite monomers (6) (Fig. 1). The interaction,

consisting almost entirely of just nine hydrogen-bonds, may

be relatively weak, and quite a few single-point mutants result

in monomerization of the protein (7). Monomeric DsbC

mutant only shows oxidase activity (7,8). Furthermore,

DsbC has been reported to show oxidative activity under

certain conditions (4). To study the thermal stability of the

DsbC dimer, we tried to find spectroscopic tags for dimeriza-

tion/monomerization using infrared spectroscopy. The amide

I band in particular is very sensitive to secondary structural

elements and intermolecular hydrogen bonding between

�COO� groups and �NH3
þ groups or solvent H2O (D2O)

molecules (see Table 1 for the wavenumber assignments of

the various spectral bands). We reasoned that comparison of

wild-type dimeric DsbC with the single-point mutant DsbC-

G49R, which acts to monomerize DsbC, might allow us to

find a spectroscopic signal for dimerization. If such a tag-

signal could be found we could analyze the kinetics and

temperature dependence of the dimer-monomer transition.

FIGURE 1 Cartoon representation of the crystal structure of dimeric

DsbC (Protein Data Bank 1EEJ and PyMOL). The residues of Glu and

Asp are shown in pink, Gly49 as orange spheres, and the nine hydrogen

bonds between the two monomers as red dotted lines.
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TABLE 1 Assignment of the observed amide I band

Observed (cm�1)

Assignment

Reported (cm�1)

average/extremes ReferencesFTIR T-jump

1610 1608 Hydrogen bonding between �COO� and intermolecular amino acid 1605/1600 ~ 1610 (28,34)

1623 1619 Hydrogen bonding between �COO� and solvent molecules 1619/1617 ~ 1620 (28,34)

1614 1614 (low-frequency) Intermolecular anti-parallel b-sheets from aggregation 1620/1610 ~ 1630 (19,34–38)

1681 1684 (high-frequency) 1683/1680 ~ 1690

1632 1627 b-sheet 1630/1623 ~ 1641 (34,36,39)

1641 1640 Random coil 1645/1640 ~ 1650 (34,36,39)

1654 1650, 1658 a-Helix and loop 1652/1650 ~ 1656 (12,17,27,34,39–41)

1664, 1674 Turn 1671/1660 ~ 1675 (34,42–44)
derivative spectra of DsbC at 25�C exhibit three major

troughs at ~1632, 1654, and 1681 cm�1 probably due to
Steady-state FTIR spectra at various temperatures

The IR spectra of dimeric DsbC protein (Fig. 2 A) and the

monomeric DsbC-G49R mutant (Fig. 2 C) are broadband

spectra, in which the intensities of the main spectral peaks

decrease with increasing temperature accompanied by an

increase in absorption at flanking wavenumbers. Here, the

weight concentrations of the two proteins are the same;

however, the observed IR absorption intensities are different.

This can be attributed to the electric effect on the dipole

moment transition strength (24,25). As the surface of the

DsbC molecule becomes charged, the monomeric unit exerts

an electric field on its counterpart, leading to an increased IR

absorbance with respect to the monomer in a less polar

medium D2O. When the ionic strength of the medium

increases as in a buffer solution, the intensity difference

between the dimer and the monomer become reversed

(data not shown). Second-derivatives of the absorption

spectra with an enhanced spectral sensitivity are used to

find the component absorption peaks, and that of the back-

ground absorption as a reference shows that the peaks in

the second derivative spectra of the proteins are indicative

of the secondary structural components rather than the noises

(Fig. 2, B and D) (26,27). As shown in Fig. 2 B, the second-
b-strands, a-helices/loop, and side-chain carboxyl groups,

respectively. Remarkable differences are found for these

two proteins, i.e., a significant band at 1641 cm�1 attributed

to random coils appears for DsbC-G49R but is insignificant

for DsbC, suggesting that there are more random coils in the

former. On heating to 80�C, an increased peak at 1684 cm�1

and the appearance of a new trough at 1615 cm�1 suggest the

formation of anti-parallel b-sheets in both aggregated DsbC

and DsbC-G49R. It is notable that the circular dichroism

(CD) spectra of DsbC and DsbC-G49R at room temperature

are exactly the same (data not shown), incapable of showing

any secondary structural difference between the dimer and

monomer.

The absorption spectra of DsbC taken at 25�C and 50�C
are significantly different (Fig. 2 A), but those of DsbC-

G49R are basically identical (Fig. 2 C). This suggests that

dimeric DsbC but not monomeric DsbC-G49R undergoes

conformational changes at temperatures between 25�C and

50�C, caused mainly by monomerization.

The DsbC crystal structure shows clearly that there are

some b-sheets participating in the formation of dimeric
FIGURE 2 FTIR absorption spectra and corresponding

secondary derivative spectra for DsbC and DsbC-G49R.

(A) Absorption spectra of DsbC at 0.2 mM, in D2O (pD

5.8); (B) the corresponding second derivative spectra. (C)

Absorption spectra of DsbC-G49R at 0.4 mM, in D2O

(pD 5.8); (D) the corresponding second derivative spectra.

The second derivative of the background absorption

(without sample) is plotted for comparison. Experiments

were carried out at the temperatures as indicated. Arrows

in the absorption spectra denote the direction of the absor-

bance change with increasing temperature.
Biophysical Journal 97(10) 2811–2819
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interface, and thus the signal around 1630 cm�1 is a particu-

larly sensitive measure of the dimer formation. The thermal

titration curve of DsbC at 1629.5 cm�1 exhibits a three-state

transition curve with the first transition midpoint temperature

(Tm) at 37.1 5 1.1�C and the second deduced to be>74.5�C
(Fig. 3 A), where the uncertainty is caused by lack of a clearly

defined upper plateau. In contrast, the IR absorbance thermal

titration curve for DsbC-G49R at 1638 cm�1 only shows a

two-state transition with Tm> 83.8�C (Fig. 3 B). In fact,

the thermal titration curves at other wavenumbers all exhibit

a roughly two-state transition. Because the first transition is

absent from the monomeric mutant, we ascribe the transition

with Tm ¼ 37.1 5 1.1�C to the disruption of the b-sheets

participating in dimerization. It should be noted that for

DsbC, when the temperature is raised from 10�C to 30�C,

the slight increase in the IR absorbance of the dimer and

monomer does not correspond to the secondary structural

change, but is probably due to the salt effect on IR absorption

in the buffer, which results from thermally activated ions

binding onto the hydrophobic surface. In D2O, the ions are

protons.

Besides the secondary structure, hydrogen bonding near

the dimeric interface can also be a good indicator of dimer-

ization. The absorption band at 1619 cm�1 can be assigned

to asymmetric stretching of side-chain carboxylate groups

of Asp or Glu residues forming hydrogen bonds with

water molecules (28). After the thermal titration of DsbC

at 1619 cm�1 two transitions are also found with one having

a Tm at 36.0 5 1.0�C and another at >74.6�C (Fig. 3 C). In

contrast, DsbC-G49R at this wavenumber again shows only

a single transition starting around 72�C. The minor change in

the thermal titration curve for DsbC-G49R at temperatures

below 55�C closely parallels that of free Glu/Asp acids in

solution, suggesting that it is not specific to the thermal-

induced protein conformational change. Thus the transition

observed with a Tm of 36.0 5 1.0�C reflects the opening

of the hydrophobic clefts during the thermal disruption of

the dimeric interface, because the IR absorption band for

hydrogen bonding of carboxylate groups and solvent mole-

cules is very sensitive to the hydrophobicity of its microen-

vironment (29). The major increase in IR absorption at

1619 cm�1 seen for both DsbC and DsbC-G49R at temper-

atures above 70�C indicates significant formation of protein

aggregates.

To explore the biological significance of the results

obtained in D2O we further investigated the thermal stability

of DsbC in buffer. Due to the Debye-Hückle dielectric effect

(30) and the salting-in effect (24) on the IR absorbance,

investigations of protein secondary structural changes have

rarely been reported in buffer. We also find that the IR absor-

bance titration curve is no longer appropriate for analysis of

structural change over a temperature range before protein

aggregation (data not shown). Therefore, we propose a meth-

od for construction of the thermal titration curves in buffer

by using the relative compositions of the major secondary
Biophysical Journal 97(10) 2811–2819
FIGURE 3 IR absorbance thermal titration curves in D2O of (A) DsbC at

1629.5 cm�1, and (B) DsbC-G49R at 1638 cm�1. (C) Comparison of the

thermal titration curves at 1619 cm�1 of DsbC, DsbC-G49R, and Glu/Asp

in a weight ratio of 1:2 as in DsbC, with a total concentration of 12.5 mg/mL.

The data are fitted to solid sigmoid curves with error bars expressed as

mean 5 SD (n ¼ 3).



T-Jump IR Study of DsbC Unfolding 2815
structural components instead of their IR absorption intensi-

ties. It is expected that the salt effect on the absolute IR

absorption intensity can be leveled off by such an intrinsic

scaling. The relative compositions were derived from the

global multiple Gaussian-peak fitting of all the FTIR spectra

acquired at different temperature with fixed peak positions,

where total number of peaks for the global fitting is 7, i.e.,

1614 and 1680 cm�1 both corresponding to anti-parallel

b-sheets, 1633, 1643, and 1654 cm�1 to b-sheets, random coils

and a-helix/loop respectively, 1660 and 1670 cm�1 both to

turn.

We apply this method to construct the thermal titration

curves of proteins in buffer. Fig. 4 presents the correspond-

ing thermal titration curves for three major secondary struc-

tural components, i.e., b-sheets (1633 cm�1), random coils

(1643 cm�1), and a-helix/loop (1654 cm�1), respectively,

for DsbC and DsbC-G49R. It is interesting to note that the

percentages of the three secondary structural components in

the monomer almost have the same value and do not change

with the temperature before protein aggregation, if we

consider the analytical uncertainty. This acts as an IR tag

for the presence of the monomer. Inspecting the correspond-

ing thermal titration curves for DsbC, we find that the three

titration curves for the corresponding secondary structural

compositions begin to converge to those of the DsbC-G49R

monomer at the temperature of 40�C. This fact strongly

suggests that the DsbC dimer begins to dissociate into mono-

mers at a temperature above 40�C in buffer. Fitting the

thermal titration curve of the random coils for DsbC leads

to a Tm of 49.2 5 0.7�C. This indicates that DsbC also disso-

ciates in buffer but with a higher Tm, revealing a significant

stabilizing effect of the buffer on the DsbC dimer.

FIGURE 4 Thermal titration curves constructed by the relative composi-

tions for three major secondary-structural components of DsbC and DsbC-

G49R in phosphate buffer. b-sheets (,), a-helix/loop (6), and random

coil (B). The thermal titration curve of random coils for DsbC is fitted as

bold solid curve.
T-jump time-resolved IR difference absorbance
spectra

Fig. 5 displays the time-resolved IR difference absorbance

spectra of DsbC and DsbC-G49R in response to the T-jump.

We first focus on the absorption changes that take place

around 1640 cm�1 (random coils), as we showed previously

that one of the principal spectral differences occurs at this

wavenumber. A striking difference between the T-jump

time-resolved IR absorbance difference spectra of these two

proteins is that DsbC has an absorption peak at 1640 cm�1

whereas DsbC-G49R shows a bleaching trough. The

kinetics of absorption change for DsbC (Fig. 6 C) at this

wavenumber is concentration-independent when we varied

the protein concentration by a factor up to 3 (12.5, 6.25,

and 3.12 mg/mL), and it can be resolved into two kinetic

processes: an absorption phase with a time constant (t) of

40 5 10 ns, and a bleaching component with a t of

150 5 10 ns. The increase in absorption corresponds to a

rapid but temporary increase in random coils for DsbC, sug-

gesting disruption of the b-sheet at the dimeric interface

leading to the formation of the geminate monomeric en-

counter pair, concomitant with the formation of random coils

in the monomeric encounter pair. The bleaching of this

newly formed random coil (77%) corresponds to the forma-

tion of the a-helical/loop structures at 1657 cm�1 (160 5

10 ns, Fig. 6 B), a transition similar to that observed in

DsbC-G49R where the bleaching at 1640 cm�1 occurs at

the same time as the increase in absorption at 1658 cm�1,

both having a t of 40 5 10 ns (Fig. 6 E). Therefore, the

absorption at 1640 cm�1 observed for DsbC strongly

suggests the thermal-induced dimeric dissociation.

FIGURE 5 Time-resolved IR absorbance difference spectra in D2O. The

absorbance difference spectra in the amide I region were recorded at

1.4 ms after the T-jump from 28�C to 37.5�C for DsbC (B) and from

28�C to 35.5�C for DsbC-G49R (6). The data with error bars are expressed

as mean 5 SD (n ¼ 3).
Biophysical Journal 97(10) 2811–2819
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FIGURE 6 IR kinetic traces of DsbC and DsbC-G49R in

D2O. IR kinetic traces of (A–C) DsbC with a T-jump from

28�C to 37.5�C, and (D–F) of DsbC-G49R with a T-jump

from 28�C to 35.5�C, were probed at different wavenum-

bers as indicated and fitted as solid curves by using a mono-

exponential function. In C the IR kinetic trace of DsbC at

1640 cm�1 (a) can be resolved into an absorption (b) and

a bleaching curve (c) of a monoexponential process.
There are several other differences in the T-jump time-

resolved IR difference absorbance spectra between DsbC

and DsbC-G49R in Fig. 5. Their spectral assignments may

be summarized as follows:

1. The 1608 cm�1 bleaching peak shows the thermal-

induced breaking of intermolecular hydrogen bonds

between the side-chain carboxylate of Glu or Asp and

the amino groups.

2. Bleaching at the 1619 cm�1 peak originates from breaking

of the hydrogen bond, as discussed in the previous section,

and the corresponding kinetics are different for the dimer

and monomer (Fig. 6, A and D).

3. The decrease in absorption at 1627 cm�1 (Fig. 6, A and D)

corresponds to a decrease in b-sheet content. The amount of

change is probably larger for the DsbC because a substantial

amount of its b-sheets is involved in dimer formation that is

likely to be disrupted by the temperature jump. Disruption

of the b-sheet structures in DsbC-G49R indicates that partial

disruption of the b-sheet structures of the building blocks of

the thioredoxin fold also occurs on temperature jump.

4. DsbC and DsbC-G49R both exhibit a bleaching peak at

1664 cm�1, indicating disruption of the turn structures

in parallel with the disruption of the b-sheets.

5. The bleaching bands at ~1689 cm�1 (Fig. 6, B and F) for

DsbC and DsbC-G49R mainly come from the thermal-

induced bleaching of the side-chain carboxylic groups

(�COOD) of residue Glu and Asp.
Biophysical Journal 97(10) 2811–2819
Fig. 6, A and D, show that the breaking of hydrogen bonds

at 1619 cm�1 in DsbC-G49R is a faster process (t z 25 ns)

than in DsbC (t z 50 ns), suggesting that the pertinent side-

chain carboxyl groups in DsbC are located near the hydro-

phobic cleft, and the slower hydrogen bond breaking process

reflects the thermal-induced opening of the cleft. The bleach-

ing kinetics at 1627 cm�1 for DsbC (Fig. 6 A) and DsbC-

G49R (Fig. 6 D) indicate disruption of the hydrogen bonds

maintaining the b-sheet structures; here again the disruption

process in DsbC is apparently slower than in DsbC-G49R,

a trend similar to that for the kinetics at 1619 cm�1.

Unlike the bleaching kinetics of DsbC-G49R probed at

1640 cm�1, which well corresponds to that of the absorption

band at 1658 cm�1, the bleaching kinetics at 1689 cm�1 of

DsbC-G49R with a t of 80 510 ns (Fig. 6 F) does not match

the kinetics of the other observable secondary structural

components. We find that this type of kinetics is in agree-

ment with the bleaching kinetics of Glu and butyric acid

with a t of 80 5 10 ns (Fig. 6 F). Therefore, the kinetics

in Fig. 6 F can be attributed to the thermal-induced proton

dissociation from the carboxylic groups of the side-chain

Glu and Asp rather than to anything that is specific to the

protein backbone. Interestingly, the bleaching kinetics at

1689 cm�1 of DsbC assigned to the deprotonation of

the side-chain carboxylic groups matches the kinetics at

1657 cm�1 (a-helix/loop, t ¼ 160 5 10 ns) (Fig. 6 B).

Because the deprotonation of the free carboxylic group in
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FIGURE 7 Model for thermal-induced two-stage dissociation/unfolding of DsbC at the dimeric interface.
solvent is a faster process (80 ns), the observed slower depro-

tonation can be attributed to those buried carboxylic groups

where the opening of the hydrophobic cleft is the rate deter-

mining step.

The long-term kinetics were also investigated for tem-

perature relaxation (cooling) processes over time intervals

longer than several microseconds. The corresponding

T-jump time-resolved IR absorbance difference spectra (with

a delay time of up to ~50 ms) were found to be quite similar

to those displayed in Fig. 5. We also plotted the CD titration

curve of DsbC in buffer. The unfolding process in terms of

the intensity loss at 222 nm can also be fitted by two two-state

transitions with a Tm of 46.7 5 0.3 and 74.0 5 0.1�C, respec-

tively. Due to the CD spectral overlap of the b-sheet and

a-helical structures, the CD intensity change mainly reflects

the thermal disruption of the b-sheet at the dimeric interface.

Based on the above facts as well as that the thermal-

induced dissociation kinetics of dimeric DsbC are concentra-

tion-independent, indicative of a nondiffusion controlled

process, we propose a two-stage scheme for the dissociation

and unfolding of the DsbC (Fig. 7):

N242M42U;

where N, M, and U refer to the native state, the intermediate

germinate monomeric encounter pair, and the unfolded mono-

meric encounter pair, respectively. The first stage involves

two synchronized processes: disruption of the intersubunit

hydrogen bonds at the dimeric interface and concurrent forma-

tion of the random coil with a t of 40 5 10 ns leading to form

the intermediate germinate monomeric encounter pair, imme-

diately followed by a coil-helix/loop transition in the newly

formed monomeric encounter pair with a t of 160 5 10 ns.

Biochemical evidence of DsbC dissociation

Size-exclusion chromatography (Fig. 8 A) shows that the

elution volume of DsbC increases with increasing tempera-

tures, but that of DsbC-G49R changes only slightly, close

to that of DsbC at 65�C, indicating thermal-induced dissoci-

ation of DsbC at elevated temperatures. Moreover, nondena-

turing PAGE (Fig. 8 B) of the mixture of DsbC and mmDsbC

at an equal ratio in 100 mM K2HPO4/KH2PO4, pH 7.5,
shows three bands: the upper band for native DsbC, the

middle for the heterodimer, and the bottom for mmDsbC.

The appearance of the heterodimer indicates the presence

of dissociation of homodimers and reassociation of mono-

mers. The subunit exchange reactions approach equilibrium

within 10 min at 37�C, and even faster at 43�C, but there is

very little within the timeframe of the experiment at 30�C.

All these support the results obtained by IR spectroscopy.

FIGURE 8 Biochemical evidence of DsbC dissociation. (A) Size-exclu-

sion chromatography of DsbC and DsbC-G49R. Chromatography was

carried out on a Superdex 75 water-jacketed column (Amersham, Biosci-

ences, Piscataway, NJ) using 100 mM sodium phosphate buffer, pH 7.0,

at 23�C, 37�C, 45�C, 55�C, and 65�C with a flow rate of 1 mL/min. (B) Non-

denaturing 6% PAGE of hybrid mixtures. The mixtures of DsbC and

mmDsbC at a ratio of 1:1 were incubated in buffer (100 mM K2HPO4/

KH2PO4, pH 7.5) at 30�C, 37�C, and 43�C for 1, 5, and 10 min as indicated,

and then mixed with a loading buffer in ice for electrophoresis.
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FIGURE 9 Potential oxidase activity of DsbC in vivo.

(A) Spot titers for cadmium resistance. The Escherichia

coli strain ER1821 with different genotypes shows various

resistances to cadmium. Cells were grown on LB or LB

with 10 mM cadmium at 37�C or 43�C as indicated in

the figure. Wild-type and dsbC� strains show the highest

cadmium resistance. The dsbA� dsbC� strain shows higher

cadmium sensitivity than the dsbA� strain, and also shows

43�C temperature sensitivity to a certain extent. (B) Oxida-

tion of Bla by DsbC in vivo red and ox represent reduced

and oxidized Bla, respectively. All the experiments were

carried out as described in the text.
The in vivo oxidase activity of DsbC

We next investigated the possible in vivo relevance of the

apparent instability of the DsbC dimer. In the absence of

the components of the disulfide catalytic machinery, peri-

plasmic proteins contain multiple free thiols, and the binding

of Cd2þ to these free thiols blocks disulfide bond formation,

thus preventing proper folding of the proteins (31,32). Wild-

type strains are much more cadmium-resistant (CdR),

presumably because the free thiols are oxidized rapidly by

the DsbA-DsbB disulfide bond formation machinery. Thus

cadmium sensitivity is a good in vivo measure of thiol

oxidase activity. Though DsbC is kept reduced by DsbD in

the cell to function as an isomerase, Vertommen et al. (4)

have shown that DsbC can function independent of DsbD,

suggesting an oxidase role in vivo. In consistency with their

results, we found that the dsbA� dsbC� strain does show

increased cadmium sensitivity compared with the dsbA�

strain, indicating a weak in vivo oxidase activity of DsbC

(Fig. 9 A). To directly measure the in vivo oxidase activity

of DsbC, we further examined the oxidation state of

TEM1-Bla, which contains only a single disulfide bond

and is active even in the absence of this disulfide bond.

The formation of this disulfide requires an oxidase but not

an isomerase. Thus the state of oxidation of Bla is a good

measure of oxidase activity in vivo. As shown in Fig. 9 B,

Bla is mostly oxidized in the wild-type and dsbC� strains,

but largely reduced with a small portion oxidized in the

dsbA� strain. In the dsbA�dsbC� strain the oxidized portion

is almost absent. These data strongly indicate that DsbC is

able to function as an oxidase in vivo.

We reported previously that monomeric thioredoxin-like

proteins or domains, which have only oxidase or reductase

activity, can form dimers and acquire new isomerase activity

when fused with an association component, such as the

N-terminal domain of DsbC (2) or the bacterial proline
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cis/trans isomerase FkpA (33), and accordingly proposed

a strategy by which biological molecules could gain new

functions and achieve higher efficiency through an evolution

process. The thermal instability of DsbC investigated in this

study by temperature-dependent FTIR and T-jump time-

resolved IR absorbance difference spectroscopy in D2O and

buffer as well, together with the in vitro and in vivo biological

determinations, is just an imprint of such an evolution.

In addition, it has been pointed out recently that DsbC is

not restricted to function only as an isomerase in the isomer-

ization pathway, but is able to function in both the oxidation

and isomerization pathways, and may possibly act as a stand-

alone protein folding catalyst (4). The thermal instability of

DsbC characterized in this study provides what we believe

to be is an appropriate structural base and evolutional signif-

icance for this new viewpoint.
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