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A significant feature of the one-dimensional super Tonks-Girardeau gas is its metastable gas-like state with a
stronger Fermi-like pressure than for free fermions which prevents a collapse of atoms. This naturally suggests
a way to search for such strongly correlated behavior in systems of interacting fermions in one dimension. We
thus show that the strongly attractive Fermi gas without polarization can be effectively described by a super
Tonks-Girardeau gas composed of bosonic Fermi pairs with attractive pair-pair interaction. A natural description
of such super Tonks-Girardeau gases is provided by Haldane generalized exclusion statistics. In particular, they
are equivalent to ideal particles obeying more exclusive statistics than Fermi-Dirac statistics.
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Introduction. Recent experimental progress in manipulat-
ing cold atoms in reduced one-dimensional (1D) geometry
[1–4] has stimulated intensive study of the physical properties
of quantum gases, among which an important benchmark is the
experimental realization of Tonks-Girardeau (TG) gases [3,4].
For the effective 1D systems, the effective 1D interactions can
be tuned to reach the strongly interacting regime via Feshbach
resonance or confinement-induced resonance [5]. The most
recent experimental breakthroughs are the realization of a 1D
super TG (sTG) gas of bosonic Cesium atoms [6] and a 1D
spin-imbalanced Fermi gas of 6Li atoms [7].

Whereas the TG gas describes the strongly repulsive Bose
gas [8,9], the sTG gas describes a gas-like phase of the
attractive Bose gas which can be described by a system of
attractive hard rods [10,11]. The sTG gas state corresponds to
a highly excited state in the integrable interacting Bose gas
with attractive interaction [12]. Although the sTG state is a
highly excited state which in principle should decay into the
cluster ground state [13,14] of the attractive Bose gas, such
a state is found to be realized and stabilized by switching
the interactions between bosons from strongly repulsive to
strongly attractive [6]. Due to the large kinetic energy inherited
from the TG phase, the hard core behavior of the particles with
Fermi-like pressure prevents the collapse of the sTG phase
after the switch of interactions from repulsive to attractive
[10,12].

In this Rapid Communication, we propose a scheme
to realize the sTG gas in a Fermi system with attractive
interactions. In contrast to the realization in the attractive
interaction regime of the Bose gas [6], the sTG gas is composed
of composite bosons which are bound pairs of fermions with
opposite spins and thus is a true ground state (GS). We further
demonstrate that such a sTG gas is identical to a system of ideal
particles obeying Haldane generalized exclusion statistics
(GES) [15] where the particles and holes are not equally
weighted. In this sense, sTG and Fermi gases may also provide
insight into the conceptual understanding of Haldane GES,
which may possibly be counted by manipulating ultracold
atoms.

Attractive fermion model. We consider a system composed
of two hyperfine components with identical particle numbers
N↑ = N↓ = N/2 in an elongated potential trap with ω⊥ � ωx ,
where ωx and ω⊥ ≡ ωy = ωz are angular frequencies in
the axial and radial directions respectively. N is the total
number of fermions. Under the condition ω⊥/ωx � N , such
Fermi systems are dynamically described by an effective 1D
Hamiltonian

H =
N∑

i=1

− h̄2

2mF

∂2

∂x2
i

+ gF

∑
i<j

δ(xi − xj ), (1)

where gF = −2h̄2/(mF aF
1D) is the effective 1D interaction

strength related to the three-dimensional s-wave scattering
length aF

s by [5] aF
1D = −l⊥( l⊥

aF
s

− |ζ (1/2)|√
2

) with l⊥ = √
h̄/mω⊥

the characteristic oscillator length in the radial direction.
The eigenvalues of Hamiltonian (1) are given by E =

h̄2

2mF

∑N
j=1 k2

j with kj determined by the Bethe ansatz equations
(BAE) [16,17]

exp(ikjL) =
M∏

α=1

kj − �α + icF /2

kj − �α − icF /2
,

N∏
j=1

�α − kj + icF /2

�α − kj − icF /2
= −

M∏
β=1

�α − �β + icF

�α − �β − icF

,

where cF = mF gF /h̄2 = −2/aF
1D, j = 1, . . . , N , α = 1, . . . ,

M and M = N/2 is the number of fermions with spin down.
This interacting fermion model has been widely studied

(see, e.g., Refs. [18–25] and references therein). For strongly
attractive interaction, i.e., L|cF | � 1, the GS solutions of the
BAE correspond to M = N/2 pairs of neutral charge bound
states with kα = �α ± icF /2 + O(δ) for α = 1, . . . , M . Here
all �’s are real and δ is a very small number of order
exp(−L|cF |) [26]. The BAE thus reduce to

exp(2i�αL) = −
M∏

β=1

�α − �β + icF

�α − �β − icF

. (2)
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The eigenvalues of Hamiltonian (1) are given by E =
−Mεb + h̄2

2mF

∑M
α=1 2�2

α where the binding energy εb =
(h̄2/2mF )c2

F /2, which characterizes internal energy and the
other energy terms include the kinetic energy of the bound pairs
and marginally interacting energy produced from pair-pair
scattering in the strongly attractive interaction limit. In this
limit and in the absence of an external field, we may subtract
the binding energy from the energy, i.e.,

EF
0 = E + Mεb = h̄2

2mF

M∑
α=1

2�2
α. (3)

For strong coupling, the explicit �’s follow from the BAE (2),
i.e., �m ≈ (2m+1)π

2L
(1 − M

L|cF | )
−1 (up to order 1/c2

F ), with m =
−M/2,−M/2 + 1, . . . ,M/2 − 1. Here we assume M is even.
The GS energy follows as [21,22]

EF
0 ≈ h̄2

2mF

1

6
M(M2 − 1)

π2

L2

(
1 − M

L|cF |
)−2

. (4)

Equivalence to a sTG gas. On the other hand, the 1D
interacting Bose gas composed of NB bosons is described by
the Hamiltonian

H =
NB∑
i=1

− h̄2

2mB

∂2

∂x2
i

+ gB

∑
i<j

δ(xi − xj ), (5)

with gB = −2h̄2/(mBaB
1d ). The energy eigenvalues are given

in terms of the quasimomenta kj by

E = h̄2

2mB

NB∑
j=1

k2
j , (6)

which satisfy the BAE [9]

exp(ikjL) = −
NB∏
l=1

kj − kl + icB

kj − kl − icB

, (7)

with cB = mBgB/h̄2 = −2/aB
1D.

In the TG regime (cB → ∞) the quasimomenta
km ≈ (2m+1)π

L
(1 + 2NB

L|cB | )
−1, with m = −NB/2,−NB/2 +

1, . . . , NB/2 − 1. Here NB is even. The GS energy of the
strongly repulsive Bose gas in the TG regime (up to order
1/c2

B) is given by

ET G ≈ h̄2

2mB

1

3
NB

(
N2

B − 1
) π2

L2

(
1 + 2NB

L |cB |
)−2

. (8)

For attractive interaction cB < 0, the GS solution for the
BAE (7) is an N -string solution and the GS is described by a
cluster state [13,14] with energy E0 = − 1

12c2
BNB(N2

B − 1).
We note that the BAE (7) still have real solutions for
cB < 0, which obviously correspond to highly excited states.
Solving the BAE (7) gives an explicit form for a gas-like
highly excited state with km ≈ (2m+1)π

L
(1 − 2NB

L|cB | )
−1, where

m = −NB/2,−NB/2 + 1, . . . , NB/2 − 1. Here NB is even.
In the strongly attractive region (cB → −∞), the energy of
the sTG gas state follows as [12]

EST G ≈ h̄2

2mB

1

3
NB

(
N2

B − 1
) π2

L2

(
1 − 2NB

L |cB |
)−2

. (9)

FIG. 1. (Color online) Quasimomentum distribution for the GS
of the repulsive Bose gas with γ = 50 and the sTG gas phase of the
attractive Bose gas with γ = −50 for NB = 11 (left). The deviation
from the free fermion distribution versus γ (right). Here γ = cB/n.

Comparing Eqs. (4) and (9), it is clear they are identical
if cB = 2cF , NB = M = N/2 and mB = 2mF (see also
Ref. [21]). Since the bound pair formed by two fermions with
opposite spin has a mass mB = 2mF , we can conclude that the
M bound pairs are equivalently described by the sTG phase of
the interacting Bose gas with the effective 1D scattering length

aB
1D = 1

2aF
1D. (10)

We note that relation (10), obtained by an exact mapping
based on the exact many-body solutions, is consistent with
that obtained by solving the four-body problem [20].

The mapping between the GS of the attractive Fermi gas and
the sTG phase of the attractive Bose gas is exact and does not
rely on the strong interaction expansion. In fact, substituting
cF = cB/2 into BAE (2) and making a replacement 2�α =
kα , one finds that BAE (2) are identical to BAE (7) and the
energy (3) is identical to the energy (6). To give a concrete
example, we show the solutions of the BAE (2) and (7) in Fig. 1.
For |γ | = 50, the roots of the sTG gas and strongly repulsive
Bose gas are very close to the momentum distributions of free
fermions, but on opposite sides of the free fermion distribution.
With |γ | → ∞, they approach the free fermion distribution.
In Fig. 2, we show the GS energy for the repulsive Bose gas,
the eigenenergy for the sTG gas phase of the attractive Bose
gas, and the GS energy EF

0 for the attractive Fermi gas for
different values of γ . It is clear that the subtracted GS energy
EF

0 for the attractive Fermi gas is identical to the eigenenergy
for the corresponding sTG gas phase with mB = 2mF , instead
of the mass for the Bose gas.

The above conclusion also holds true in the thermodynamic
limit M,L → ∞ with n = M/L finite, in which the GS
energy (3) can be expressed in the form of the Gaudin integral
equations [17]. The Gaudin equations for attractive fermions
coincide exactly with the integral equation form of the sTG
phase—they do not match the Lieb-Liniger equations for the
Bose gas. We note that this mismatch in the sign of the integral
equations for attractive fermions and repulsive bosons was
already noted [19]. However, the “wrong” sign was argued to
be irrelevant in the strong coupling limit. Here we recognize
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FIG. 2. (Color online) GS energy for the repulsive Bose gas
(triangles), the eigenenergy for the sTG gas phase of the attractive
Bose gas (dots), and the GS energy EF

0 for the attractive Fermi gas
(squares) versus 1/γ . EF represents the GS energy of the TG gas
with γ → ∞.

that the GS of strongly attractive fermions shares the same
signature as the sTG phase of the attractive Bose gas.

The low energy physics of 1D interacting bosons can
be described by Tomonaga-Luttinger liquid (TLL) theory
(see [27] for a review). The TG gas, which describes the
strongly repulsive phase, corresponds to a TLL with K > 1
(K ≈ (1 + 2/|γ |)2) which characterizes the correlation length,
e.g., the one-body correlation function g(1) = 〈�†(x)�(0)〉 ∝
1/x

1
2K . The sTG phase corresponds to a highly excited gas-like

state where the particles are strongly correlated. This strongly
collective behavior may be phenomenologically described
by the TLL parameter K ≈ (1 − 2/|γ |)2 in the strongly
interacting limit [12], which is smaller than 1. Consequently,
the paired state of the Fermi gas is also described by a TLL
with K < 1. In general, a system with K < 1 sometimes shows
CDW quasi-order, making the system a quasi-supersolid [28].
However, we notice that the quasi-supersolid phase generally
appears in lattice systems [28,29] with long range interactions.
For a continuum system with only short range interactions, the
quasi-supersolid phase or CDW order may be hard to realize
in general, in contrast to other ultra-cold atomic systems in
optical lattices [28,29].

Haldane exclusion statistics. Cooperative and collective
behavior are significant features of many-body physics. In
1D pairwise dynamical interaction between identical par-
ticles is inextricably related to their statistical interaction.
In particular, coherence between dynamical interaction and
statistical interaction results in transmutation between these
two types of interactions [30]. This can be seen from the
equivalence between the 1D Bose gas and Haldane GES [15].
This equivalence was set up via an exact mapping

αij := α(k, k′) = δ(k, k′) − 1

2π
θ (k − k′), (11)

between the Bethe ansatz function θ (k) = 2c/(c2 + k2) and the
GES parameter α [31]. In general, GES (11) for the 1D Bose
gas is mutual statistics, i.e., α(k, k′) depends on all of the other

quasimomenta when moving one particle away from the GS.
Importantly, for the special case of strongly interacting bosons
in 1D, Haldane GES [15] gives a quantitative description
of the fermionization process where the parameter αT G =
(1 + 2NB

|cB | )−1 < 1 is nonmutual [30]. In this case, the bosons
are strongly correlated and behave like identical particles with
GES αT G. Here we further remark that for attractive bosons
the GES description is not valid due to the existence of string
solutions to the BAE. However, we may view all real Bethe
ansatz roots as a GES distribution. In particular, from the set of
quasimomenta {km ≈ (2m+1)π

L
(1 − 2NB

L|cB | )
−1} of the sTG state

we conceive that the minimum of separation in momentum
space is larger than that of free fermions. In general, the
momentum separation for identical particles with GES is given
by kj ≡ 2π (α + �) [32], where � can be an arbitrary integer.
For free fermions the minimum separation of the momentum
is 2π/L with α = 1. This minimum α naturally results in
unequal weights for particle density ρ(k) and hole density
ρh(k) distributions. We understand that for the sTG gas and
the TG gas α number of bosons removed from the GS creates
one hole, i.e.,

2π [αρ(k) + ρh(k)] ≈ 1, (12)

with α = αT G or αsT G. This gives the Haldane GES descrip-
tion with nonmutual GES. In this sense the recent experimental
measurements in a 1D sTG gas of Cesium atoms [6] may also
provide a measure of Fermi-like pressure induced from the
GES parameter αST G = (1 − 2NB

|cB | )−1 which is greater than the
pure Fermi statistics value α = 1.

For strongly attractive fermions in the absence of an external
field, the neutral charge bound pairs become bosonic hard-core
bosons with nonmutual GES statistics αF = (1 − M

|cF | )
−1 [25].

It is clearly seen that the GES parameters αST G for the sTG gas
and αF for bound pairs of fermions are equivalent under the
mapping cB = 2cF , NB = M = N/2. The nonmutual GES for
the TG gas, sTG gas and strongly attractive fermions can be
unified by the most probable distribution n(ε)

n(ε) = 1

α + w(ε)
, (13)

where the function w(ε) satisfies the equation

wα(ε)[1 + w(ε)]1−α = eε−µ/KBT , (14)

with µ the Fermi-like cut-off energy. Here we can easily
see that for α = 0 and α = 1 the most probable distribution
n(ε) (13) reduces to Bose-Einstein statistics and Fermi-Dirac
statistics, respectively.

Now for TG and sTG bosons we have NB =∫ ∞
0 dεGB(ε)n(ε) and EB = ∫ ∞

0 dεGB(ε)n(ε)ε with den-

sity of states GB(ε) = L/
√

2π2h̄2ε/mB . On the other
hand, for attractive fermions NF = 2

∫ ∞
0 dεGF (ε)n(ε) and

EF
0 = 2

∫ ∞
0 dεGF (ε)n(ε)ε with pair state density GF (ε) =

L/
√

π2h̄2ε/mF . For zero temperature, the GS energies of the
TG gas and strongly attractive fermions are easily obtained
through their nonmutual GES (13), along with the excited
state energy for the sTG gas. The sTG gas result (9) can also
be obtained from the minima of separation in quasimomentum
space derived from GES. The GES approach provides an
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alternative way to describe the thermodynamics of these
models.

In summary, we have studied the equivalence between
the GS of the strongly attractive Fermi gas and the sTG
gas. We have shown that Haldane GES provides a natural
description of these strongly correlated states. By comparing
strongly attractive fermions with the Bose gas, we find that
the bound Fermi pairs formed in the strongly attractive
regime should be described by the sTG phase of the LL
model of attractive bosons, rather than the LL model of
repulsive bosons. This finding suggests that we can realize
the sTG gas by preparing a 1D Fermi gas in the strongly
attractive regime. Since the Fermi pairs are unbreakable in

the strongly attractive limit, such a state is expected to be
very stable. Moreover, our results suggest that experimental
observation of Haldane statistics can be done by detecting the
breathing mode of the attractive Fermi gas without polarization
and comparing with the result obtained from the integrable
anyon model with GES parameter α as fitting parameter
[30].
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