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We investigate transition of a one-dimensional interacting Bose gas from a strongly repulsive regime to a
strongly attractive regime, where a stable highly excited state known as the super Tonks-Girardeau gas was
experimentally realized very recently. By solving exact dynamics of the integrable Lieb-Liniger Bose gas, we
demonstrate that such an excited gas state can be a very stable dynamic state. Furthermore we calculate the
breathing mode of the super Tonks-Girardeau gas which is found to be in good agreement with experimental
observation. Our results show that the highly excited super Tonks-Girardeau gas phase can be well understood
from the fundamental theory of the solvable Bose gas.
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Introduction. Recent experimental advances with ultra-
cold atoms have opened up a new avenue for the study of
one-dimensional (1D) strongly correlated many-body systems
which continue to inspire significant developments in physics
[1–4]. Exquisite tunability of 1D effective interacting strength
via Feshbach resonance or the confinement-induced resonance
[5–7] allows the simulation of low-dimensional quantum
gases with arbitrary interaction strength. The experimental
realization of Tonks-Girardeau (TG) gases [3,4] has provided
a direct test on the fermionization of Bose gas in the strongly
interacting limit [8,9]. Very recently, Haller et al. [10] have
made a new experimental breakthrough on the realization of
the stable highly excited gas-like phase called the super-Tonks-
Girardeau (STG) gas, which was predicted theoretically [11]
and verified from the integrable interacting Bose gas with
attractive interactions [12]. Their experimental results have
stimulated further theoretical study of such novel states with
strong correlations in 1D many-body systems [13], which was
also found theoretical correspondence in a strongly attractive
Fermi gas without polarization [14].

In general, experimental realization of a stable excited state
is difficult and a little counterintuitive since it has no analog in
traditional solid-state systems, where a pure excited state is not
stable due to the energy dissipation between the system and
the environment. The experimental progress [10] opens the
door for searching novel quantum states in quantum gases
and studying physical properties of stable excited phases,
which provides a promising new area of activity in cold
atoms. However, the metastability, dynamics, and statistical
signature of the excited states are still far from understood.
Current theoretical understanding of the STG gas is based on
the intuitive explanation that the STG gas inherits hard core
behavior from the repulsive TG gas which prevents the collapse
to its true cluster ground state (GS) [11–17]. As a matter of fact,
the STG gas is obtained from the TG gas by a sudden switch of
interactions, this process is, in principle, a dynamics problem
for the interacting boson model. Therefore a comprehensive
understanding of the STG gas is highly desirable and it is also
important to show that such a stable state really follows from

the fundamental quantum dynamics of an exactly solvable
model.

In this work, we demonstrate how the GS of the repulsive
TG gas translates to the highly excited state of the strongly
attractive TG gas through a sudden switch of interactions. We
also show that the highly excited STG phase is stable and
the transition rate to the GS is almost completely suppressed
in the strongly interacting regime. Furthermore, we calculate
the energy of the STG gas by solving the exact Bethe ansatz
equations (BAE’s) and determine the collective excitation
modes of the STG gas with the help of the local density
approximation (LDA), which agrees quantitatively with the
experimental data.

Interacting boson model. We consider a quasi-1D system
with N bosons tightly confined in an elongated trap which is
described by an effective 1D Hamiltonian

H =
N∑

i=1

− h̄2

2m

∂2

∂x2
i

+ g
∑
i<j

δ(xi − xj ), (1)

with g = −2h̄2/(ma1d) being the effective 1D interaction
strength and a1d the effective 1D scattering length [5,6]. As
a simple but fundamental integrable interacting boson model,
the exact results for the Lieb-Liniger (LL) model (1) play
an important role in understanding quantum statistical and
many-body correlation effects of a 1D bosonic quantum gas
[9,18–21]. The model (1) is exactly solved by the Bethe ansatz
method with eigenfunctions taken as superpositions of plane
waves over all permutations of the momenta

�(x1, . . . , xN ) =
∑
P

AP e
i
∑

j kPj
xj , (2)

where the wave functions are defined in the do-
main x1 < x2 < · · · < xN and the coefficients AP =
(−1)P

∏N
j<l

ikpl
−ikpj

+c√
(kpl

−kpj
)2+c2

are functions of the two-particle

scattering phase shifts with (−1)P = ±1 for odd or even P .

1050-2947/2010/81(3)/031609(4) 031609-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.031609


RAPID COMMUNICATIONS

CHEN, GUAN, YIN, HAO, AND GUAN PHYSICAL REVIEW A 81, 031609(R) (2010)

The quasimomenta kj are determined by the BAE’s [9]

exp(ikjL) = −
N∏

l=1

(
kj − kl + ic

kj − kl − ic

)
. (3)

Here the coupling constant g = h̄2c/m with interaction
strength c = −2/a1d determined by the effective 1D scattering
length a1d. The total momenta of the system is given by K =∑N

j=1 kj and the eigenenergies are given by E = h̄2

2m

∑N
j=1 k2

j .
For repulsive interaction c > 0, all solutions kj of (3) with

j = 1, . . . , N are real numbers. Alternatively the solutions
follow by solving the log form

kjL = 2πIj −
N∑

i=1

2 arctan[(kj − ki)/|c|], (4)

of the BAE’s. The GS solution corresponds to Ij = (N +
1)/2 − j . On the other hand, for attractive interaction c <

0, the GS solution to the BAE’s follows from the N -
string solution kj = λj + i(N + 1 − 2j )(c/2 + δj ), where
j = 1, . . . , N and δj are small deviations which fall off
exponentially to zero as c → −∞. Correspondingly, the GS
is described by a cluster state [15] with the energy E0 =
− 1

12c2N (N2 − 1).
STG phase. Although the GS solution corresponds to the

N -string solution, the BAE’s (3) still have real solutions even
for c < 0, which, however, correspond to some highly excited
state of the attractive Bose gas and can be determined by
solving the BAE’s

kjL = 2πIj +
N∑

i=1

2 arctan[(kj − ki)/|c|]. (5)

For the solutions with Ij = (N + 1)/2 − j , the corresponding
state is just the STG gas state [12]. In the strongly attractive
interaction limit (c → −∞), the quasimomentum distribu-
tion of real roots determined from (5) reduces to the free
Fermi distribution with a minimum separation between two
quasimomenta 2π/L. As the attraction strength decreases,
the gas-like highly excited state has a stronger anyonic-like
pressure than the Fermi pressure. For strongly attractive
interaction (c → −∞), the energy of the STG gas state [12] is
given by ESTG = h̄2

2m
1
3N (N2 − 1)π2

L2 [1 + 4N
L|c| + 12N2

L2|c|2 + · · ·],
which is continuously connected to the GS energy of the
TG gas ETG = h̄2

2m
1
3N (N2 − 1)π2

L2 [1 − 4N
L|c| + 12N2

L2|c|2 − · · ·] as
|c| → ∞ [8].

Quench dynamics. Suppose that the initial state
|�in(X, t = 0)〉 = |ψ0(X, c)〉 is prepared in the strongly re-
pulsive limit c � 1, after a quick switch from the repulsive
regime to the attractive regime with c′ < 0, the wave function
|�(X, t)〉 = eiHt |�i(X, c)〉 can be calculated via

|�(X, t)〉 =
∞∑

n=0

eiEnt cn|ψn(X, c′)〉, (6)

where cn = 〈ψn(X, c′)|ψ0(X, c)〉 with ψn(X, c′) representing
the nth eigenstate of the LL model with attractive interaction
strength c′ and X the abbreviation of x1, . . . , xN . From (6), it
is straightforward that the probability for the state after quench
staying in a STG phase is given by |〈ψSTG(X, c′)|ψ0(X, c)〉|2,

FIG. 1. (Color online) Quasimomentum distributions for the
ground state of the repulsive and the STG gas phase of the attractive
Bose gas with different values of γ .

which also represents the transition probability from an initial
TG phase to the final STG phase. The wave function ψSTG

is determined by the Bethe ansatz wave function (2) with kj

determined by the solutions of (5) with Ij = (N + 1)/2 − j .
Similarly, the transition probability from the initial TG state
to the cluster state is given by |〈ψcluster(X, c′)|ψ0(X, c)〉|2.
Since the Bethe ansatz wave functions ψn(X, c) can be exactly
determined by solving BAE’s, in principle we can calculate
the transition probabilities exactly.

For simplicity, we first consider the case with c′ = −c, that
is, the system is initially in the GS of the LL gas with c > 0,
and then suddenly switch to the attractive regime with strength
−c. We note that the BAE solutions for the repulsive LL gas
and that for the STG gas correspond to the same set of Ij

according to Eqs. (4) and (5). In the limit c = −c′ → ∞, the
solutions are given by kj = Ij 2π/L, (i.e., they are exactly
the same). In Fig. 1, for particle number N = 9, we show
the BAE solutions for the repulsive LL gas and the STG gas
with different values of γ = c/ρ. In the strongly interacting
regime (i.e., |γ | � 1) the quasimomentum distributions for the
repulsive LL gas and the STG gas approach the free fermion
“orbitals” from different sides. As |γ | decreases, the deviation
from the free-fermion distribution becomes more obvious.
From the change of momentum distribution, we can expect
that the overlap between the GS wave function of the strongly
repulsive LL gas and the eigen wave function for an STG gas,
(i.e., |〈ψSTG(X,−c)|ψ0(X, c)〉|) is close to 1 for very large |γ |
and exactly 1 when |γ | → ∞.

To see how the transition rate changes with respect to γ ,
we calculate the overlap of the wave functions between the
repulsive and attractive regimes. To conceive the signature of
the overlap between the two regimes, we consider a system
with N = 4 and calculate the transition rate from the initial
repulsive LL gas to the STG gas with different |γ |. In Fig. 2,
we show the transition rate from an initial repulsive gas with
γ = 200, to a final STG phase with different values γ < 0. As
expected, the transition probability to the STG phase is close
to one after switching to the strongly attractive regime whereas
the probability for dynamically falling into the cluster state is
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FIG. 2. (Color online) Transition probabilities from the TG gas
to STG phase. Inset: the transition probabilities from TG gas to the
cluster state.

almost completely suppressed. However, when the system is
switched into the weakly attractive regime, the STG phase is no
longer stable and the probability for falling into the cluster state
increases quickly. The transition rate for the larger system does
not change qualitatively, however, the calculation for a large
system is a very time-consuming task due to the calculation
of multidimensional integrals. Our calculations give a clear
signature of the metastable STG gas against collapsing into
the cluster state.

Properties for the STG gas. As shown in the previous
calculation, the transition rate to the STG phase is very high
in the strongly interacting regime. Therefore such a highly
excited state with a stronger pressure than the Fermi pressure
can be reached through switching the interaction from strong
repulsion into strong attraction. We note that such pressure is
inherited from the repulsive gas (i.e., transmutes the statistical
kinetic energy into the attractive STG phase). In the thermo-
dynamic limit with N,L → ∞, the eigen energy of the STG
phase can be represented in the integral form: ESTG/L =
h̄2

2m

∫
k2ρ(k) dk

2π
and ρ(k) = 1

2π
− 1

2π

∫ Q

−Q

2|c|ρ(k′)
c2+(k−k′)2 dk′, where

the integration limit Q is determined by ρ = ∫ Q

−Q
ρ(k)dk. By

making the replacement of variables k = Qx, c = Qλ and
g(x) = ρ(Qx) according to [9], the energy per atom can be
expressed as ε (ρ) = h̄2

2m
ρ2e (γ ), which can be obtained by

solving the system of equations

e(γ ) =
∣∣∣γ
λ

∣∣∣3
∫ 1

−1
g(x)x2dx, (7)

g(x) = 1

2π
− 1

2π

∫ 1

−1

2λg(x ′)
λ2 + (x − x ′)2

dx ′, (8)

and λ = |γ | ∫ 1
−1 g(x)dx. The above equations are very similar

to LL’s solutions for the repulsive boson gas except the minus
sign in Eq. (8). By numerically solving the integral equation,
we can obtain e(γ ) and thus the energy density ε(ρ) and the
chemical potential µ(ρ) = ∂ρ[ρε(ρ)]. For the STG phase in the
strongly attractive regime, we find e(γ ) ≈ π2

3 (1 + 4
|γ | + 12

|γ |2 +
32
|γ |3 (1 − π2

15 )).

FIG. 3. (Color online) e(γ ) and g2(γ ) versus |γ |.

In Fig. 3, we show e(γ ) for different values of γ ,
which is found to be well fitted in the whole attrac-
tive regime by a rational function e (γ ) = 4π2

3 (1 + p1 |γ | +
p2γ

2 + p |γ |3 /4)/(1 + q1 |γ | + q2γ
2 + p |γ |3) with p1 =

0.075, p2 = 0.013, q1 = 0.227, q2 = 0.034, and p = 0.004.
We also calculate the local two-particle correlation func-
tion g2 = 〈�†�†��〉 which can be obtained by g2(γ ) =
ρ2de(γ )/dγ [20]. The STG phase exhibits stronger local
correlation than the repulsive Bose gas. For the STG gas in
a harmonic trap with Vext = mω2

xx
2/2, we can determine the

density distribution of the STG gas using LDA [21,22].
According to the LDA, one can assume that the system

is in local equilibrium at each point x in the external trap.
The density distribution of the STG gas is then obtained
from the local equation of state µ[ρ(x)] = µ0 − Vext(x) under
the Thomas-Fermi approximation with the normalization
condition

∫
dxρ(x) = N . Using the density distribution, one

can then calculate the mean square radius of the trapped STG
gas via 〈x2〉 = ∫

ρ(x)x2dx/N . Following Refs. [11,22], we
can calculate the frequency of the lowest breathing mode
given by ω2 = −2〈x2〉/(d〈x2〉/dω2

x). Comparing with the
Monte Carlo simulations [11], our result (solid line) based
on the exact solutions of BAE’s has a pronounced peak with
a maximum of breathing mode frequency ω2/ω2

x reaching
the value about 4.5, which coincides with the experimental
data, see Fig. 4. Here the discrepancy between the theoretical

FIG. 4. (Color online) Breathing mode of the STG gas. The
experiment data with error bars and Monte Carlo result are reproduced
from Fig. 3(a) of Ref. [10].
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prediction from the LL model and the experimental data
inspires us to search for a new theoretical framework capable of
understanding the quantum dynamics of the excited quantum
gas phase.

To this goal, we notice that the resonance regime of switch-
ing the interaction from strong repulsion to strong attraction
can be identified as an anyonic type of interaction c/ cos(κ/2)
[23,24]. We also understand that strongly interacting bosons
have lost their bosonic signature due to the transmutation
between statistical and dynamical interactions [14]. This
naturally suggests for us to consider the integrable model of
anyons as a fitting model to the experiment on the STG gas.
The dynamic process of switching the interaction from strong
repulsion to strong attraction may be viewed as the change
of quantum statistics from less to more exclusive than Fermi
statistics. To conceive this nature of the STG gas, we also
calculate the breathing mode of the integrable model of anyons
with κ = 3.93 greater than the free Fermi case κ = π , see
dash-dotted line. The good agreement with the experiment data
implies that the anyonic signature may relate to the statistical
signature of the highly excited state of interacting bosons.
However, we notice that in the weak coupling regime the

involvement of cluster states of few particles [13] is the main
reason for the discrepancy between the theoretical prediction
and the experimental data. When the system is not in the
strongly attractive regime, the STG phase is no longer stable,
see Fig. 4.

Summary. In summary, we have investigated the transition
from the GS of strongly repulsive bosons to the gas-like
highly excited state of attractive bosons through a switch of
interaction. By solving the quench dynamics problem of the
interacting bosons, we have shown that the gas-like excited
state is stable in the strongly attractive regime. Our exact result
for the frequency of the lowest breathing mode obtained from
the BAE’s for interacting bosons and anyons are in reasonably
good agreement with experimental observation. This suggests
a statistical signature of the STG gas which may be viewed as
an anyon-like gas.
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