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Fermi gases confined in tight one-dimensional waveguides form two-particle bound states of atoms in

the presence of a strongly attractive interaction. Based on the exact solution of the one-dimensional

spin-1=2 interacting Fermi gas, we demonstrate that a stable excited state with no pairing between

attractive fermionic atoms can be realized by a sudden switch of interaction from the strongly repulsive

regime to strongly attractive regime. Such a state is an exact fermionic analog of the experimentally

observed super-Tonks-Girardeau state of bosonic Cesium atoms [Science 325, 1224 (2009)] and should be

possible to be observed by the experiment. The frequency of the lowest breathing mode of the fermionic

super-Tonks-Girardeau gas is calculated as a function of the interaction strength, which could be used as a

detectable signature for the experimental observation.
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Introduction.—Exploring new quantum phases and
understanding the striking consequences of correlation
in strongly interacting atomic gases are at the frontier of
current research in condensed matter physics and cold
atom physics [1,2]. In recent years, remarkable progress
has been made in the experimental realization of funda-
mental many-body model Hamiltonians, such as the
Hubbard model [3] and the Tonks-Girardeau (TG) gas
[4,5], with unprecedented tunability. In general, attentions
are devoted to the exotic properties of ground states and
low-excited states. A recent experimental breakthrough is
the realization of the super Tonks-Girardeau (STG) gas of
bosonic cesium atoms [6], which is a stable highly excited
state of interacting Bose gas [7–9]. In the experiment [6], a
one-dimensional (1D) Bose gas was initially prepared in
the strongly repulsive TG regime, and then the STG gas
was obtained by suddenly switching the interaction from
strongly repulsive to attractive regime. A striking feature of
the STG gas is its counterintuitive stability against collaps-
ing to its cluster ground state even in the presence of
strongly attractive interactions.

So far, the experimental study [6] and most of the theo-
retical works [7–12] on the STG gas have focused on the
bosonic system. In this work, we study the possible real-
ization of the Fermi super Tonks-Girardeau (FSTG) state in
a 1D Fermi gas. As the 1D Fermi gas with tunable interac-
tion strengths has already been experimentally realized
[13], it is promising to directly observe the STG state in
1D Fermi gases. Stimulated by the experiment of the Bose
STG gas, we first prepare a strongly repulsive spin-1=2
Fermi gas, and then suddenly switch the interaction to the
strongly attractive regime. By this way, we can access a
stable highly excited state of the attractive Fermi gas which
does not fall into its attractive ground state. In the strongly
attractive limit, atoms with different spins form tightly
bound fermion pairs [14–16]. It has been shown that the
ground state of a 1D attractive spin-balanced Fermi gas is

effectively described by the STG state of bosonic pairs of
fermions with attractive pair-pair interaction [16]. The
FSTG state being studied in the present work is essentially
the lowest gaslike excited state composed of unpaired
fermions which is totally different from the bosonic STG
state composed of tightly bound fermion pair proposed in
Ref. [16].
Interacting Fermi model.—We consider a system of

N ¼ N" þ N# spin-1=2 fermions in a tightly confined

waveguide described by the effective 1D Hamiltonian

H ¼ � @
2

2m

XN
i¼1

@2

@x2i
þ g1d

X
i<j

�ðxi � xjÞ; (1)

where g1d ¼ �2@2=ðma1dÞ ¼ @
2c=m is the effective 1D

interaction strength and a1D the effective 1D scattering
length [17]. Without loss of generality, we assume that
N# � N". The 1D interacting spin-1=2 Fermi gas is only

solvable for the homogenous case [14]. However, in the
infinitely repulsive limit, a generalization of Bose-Fermi
mapping [18] to the spin-1=2 Fermi system [19,20] allows
us to construct analytically exact solution of 1D Fermi
gases even in trap potentials. In this work, we focus on
the homogenous system which can be exactly solved by the
Bethe-ansatz (BA) method. The trapped system can be
studied in the scheme of the local density approximation
(LDA).
The model (1) is exactly solved by the BA method [14]

with the BA wave function

’ðx1; � � � ; xNÞ ¼
X
Q

X
P

�ðxQ1 � � � � � xQNÞ

� ½Q;P� exp
�
i
XN
j¼1

kPjxQj

�
; (2)

where ki represent quasimomenta, P and Q represent
permutations of ki and xi, respectively. For the
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eigenstate with the total spin S ¼ N=2�M (M ¼ N#), the
coefficient ½Q;P� can be explicitly expressed as ½Q;P� ¼
PCM

N

T¼1 �ðyT1
; yT2

; . . . yTM
;PÞQM

j¼1 �yTj ;#
Q

xi�yTj
�xi;", where

�xi;" (�yj;#) denotes the up (down)-spin, T is a combination

of M down-spins in N particles, fyTj
g are M elements

of Tfxig, and �ðyT1
; yT2

; � � �yTM
;PÞ ¼ P

RAðRÞ�Q
M
j¼1 FPð�Rj

; yTj
Þ with R being the permutations of �s,

AðRÞ ¼ �ðRÞQj<lð�Rj
��Rl

� icÞ, and FPð�Rj
; yTj

Þ ¼
QyTj�1

j¼1 ðkPj
� �Rj

þ ic=2ÞQN
l¼yTjþ1ðkPl

� �Rj
� ic=2Þ.

The parameters kj and �� are determined by the Bethe-

ansatz equations (BAEs) [14]:

kjL ¼ 2�Ij � 2
XM
�¼1

tan�1

�
kj ���

c=2

�
; (3)

XN
j¼1

2tan�1

�
�� � kj
c=2

�
¼ 2�J� þ 2

XM
�¼1

tan�1

�
�� ���

c

�
:

(4)

The eigenenergies are given by E ¼ @
2

2m

P
N
j k2j . Here both

kj and �� are real numbers if c > 0. The ground state

solution corresponds to Ij ¼ ðN þ 1Þ=2� j and J� ¼
ðMþ 1Þ=2� �. In the limit of cL � 1, �� are propor-
tional to c, but kj remain finite, therefore the quasimo-

menta can be given approximately

kjL ¼ 2�Ij � �
kj
jcj þOðjcj�3Þ (5)

with � ¼ P
M
�¼1

1
ð��=cÞ2þ1=4

. It follows that the ground

energy in the strongly repulsive limit reads

EFTG ¼ @
2

2m

�2

3L2
NðN2 � 1Þ

�
1þ �

Ljcj
��2 þOðjcj�3Þ; (6)

which is consistent with the result in Ref. [21] up to order
of c�1. In the limit of c ! 1, the ground energy is iden-
tical to that of a polarized N-fermion system.

FSTG state.—If the interaction is attractive, the ground
state is composed of N � 2M real ki and 2M complex
ones. In the limit �cL � 1, the complex solutions take
the 2-string form: k� � �� þ c

2 i, and kMþ� � �� � c
2 i.

Except the complex solutions, the BAEs also have real
solutions for c < 0, which, however, correspond to some
highly excited states of attractive Fermi systems. The
FSTG state corresponds to the lowest real solutions of
BAEs (3) and (4) with c < 0. In this case, �� go infinite
and kj remain finite with jcjL ! 1, thus the momenta are

given by

kjL ¼ 2�Ij þ �
kj
jcj þOðjcj�3Þ: (7)

Despite the � in Eq. (7) having the same form as in Eq. (5),
generally �ðcÞ � �ð�cÞ since the solutions �� of Eq. (4)
are not symmetric for c and �c. However, in the strong
coupling limit, up to order of c�1 Eq. (4) becomes

2Ntan�1ð��

c=2Þ ¼ 2�J� þ 2
P

M
�¼1 tan

�1ð�����

c Þ þ
Oðjcj�2Þ, which is invariant under the operation P: fc !
�c;�� ! ���g. Therefore, we have �ðcÞ ¼ �ð�cÞ up to
the order of c�2. The energy of the FSTG gas in the
strongly attractive limit is thus given by

EFSTG ¼ @
2

2m

�2

3L2
NðN2�1Þ

�
1� �

Ljcj
��2þOðjcj�3Þ: (8)

In the limit of jcj ! 1, we have EFSTG ¼ EFTG and
kj ¼ Ij2�=L for both the Fermi TG and the FSTG gas.

In Fig. 1(a), for an example system with N ¼ 10 and
M ¼ 5, we show the BAE solutions of kj for the repulsive

Fermi gas and the attractive FSTG gas with different values
of 	 ¼ c=
, where 
 ¼ N=L is the particle density. The
quasimomentum distributions for the repulsive Fermi gas
and the STG gas approach the same limit from different
sides when j	j goes infinite. Correspondingly, EFSTG and

EFTG also approach the same limitEinf ¼ @
2

2m
�2

3L2 NðN2 � 1Þ
as shown in Fig. 1(b).
The FSTG state can be achieved through a similar

sudden switch as in Ref. [6]. The system is first prepared
at the ground state in the strongly repulsive regime, i.e.,
j�ðt ¼ 0Þi ¼ j’0ðcÞi. After a sudden switch into the
strongly attractive regime with c0 < 0, the wave function
is given by j�ðtÞi ¼ e�iHtj’0ðcÞi ¼

P
ie

�iEit�ij’iðc0Þi,
where ’iðc0Þ is the ith eigenstate of the Hamiltonian with
parameter c0 and �i ¼ h’iðc0Þj’0ðcÞi. The probability for
the system staying in a state j’iðc0Þi is given by j�ij2 ¼
jh’iðc0Þj’0ðcÞij2. We note that the wave-functions’STGðc0Þ
and ’0ðcÞ are identical when c0 ¼ �1 and c ¼ 1, and
thus one can expect the probability of the system trans-
forming from the Fermi TG gas to STG phase to be close to
1 for large jc0j and jcj. In Fig. 2, we display transition

FIG. 1 (color online). (a) Quasimomentum distributions for the
ground state of the repulsive Fermi gas and the FSTG state of the
attractive Fermi gas with different values of 	. (b) The energies
EFTG (stars) and EFSTG (dots) vs 	.
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probabilities from the initial ground state with c > 0 to the
STG phase with c0 ¼ �c for different-size systems. Our
results show that the overlap of wave functions approaches
the limit of 1 for large j	j, although it decreases as the
system size increases. In the strongly interacting limit, the
transition probabilities can be approximately represented
as PðN;M;	Þ ¼ 1� aðN;MÞ=	2. The upper bound of the
parameter aðN;MÞ can be estimated as aðN;MÞ �
64�2NM2 through the expansion of wave functions to
order of 1=c. The transition probability for a larger system

is expected to approach 1 if j	j � MN1=2. However, the
calculation for a large system becomes a very time-
consuming task due to the calculation of multidimensional
integrals.

In thermodynamic limit where N, M, and L go infinite
but 
 ¼ N=L and m ¼ M=L remain finite, the BAEs can
be expressed in the form of the coupled integral equations

[14]. The energy per particle reads �ð	Þ ¼ @
2

2m

2eð	Þ. For

the case with m ¼ 
=2 ¼ R1
�1 �ð�Þd�, � can be calcu-

lated via the integral � ¼ R1
�1 dx4�ðxÞ=ðx2 þ 1Þ ¼ 2 ln2,

where �ðxÞ ¼ 1=½4 coshð�x=2Þ�. Therefore, we can obtain
the energy expansion eSTGð	Þ ¼ �2

3 ½1þ 4 ln2j	j�1 þ
12ðln2Þ2j	j�2� þOð	�3Þ for large j	j. The energy in
the whole area can be calculated by numerical solving
the coupled integral equations. Comparing the expansion
result with the exact numerical result, we find that they

agree very well in the regime of large 	, for example,
jeexpansion � enumj=jenumj< 10�3 for 	 ¼ 25. A charac-

teristic of the STG gas is that it has stronger correlations
than the TG gas. In the regime of j	j � 1, the local two-
particle correlation function g2ð	Þ ¼ 
2deð	Þ=d	 can be
directly derived from eð	Þ, which gives g2ð	ÞTG=
2 �
ð4�2=3Þð ln2j	j�2 � 6ðln2Þ2j	j�3Þ, and g2ð	ÞSTG=
2 �
ð4�2=3Þð ln2j	j�2 þ 6ðln2Þ2j	j�3Þ. Thus, we have
g2ð�j	jÞSTG > g2ðj	jÞTG as shown in Fig. 3.
In terms of terminologies of Tomonaga-Luttinger liquid

(TLL) theory [22], the strongly repulsive phase of the spin-
balanced Fermi gas corresponds to a TLL with the charge
TLL parameter Kc � ð1þ 4 ln2=j	jÞ=2> 1=2 [22]. The
FSTG phase corresponds to a highly excited gaslike state
where unpaired particles are strongly correlated. This
strongly collective behavior may be phenomenologically
described by Kc � ð1� 4 ln2=j	jÞ=2 in the strongly
interacting limit, which is smaller than 1=2. For both cases,
the spin TLL parameter K� ¼ 1 due to spin-rotational
invariance.
Degeneracy of the FSTG state.—In comparison to the

Bose system, the ground state of a spin-1=2 system is
highly degenerate in the TG limit due to the fact that states
with different total spins have the same energy [20].
However, for a large but finite interaction strength the
degeneracy is broken and the true ground state is the state
with the lowest S. For the spin-1=2 system described by (1),
one can understand this fact from the energy expression (6).
The term � is M dependent (M ¼ N=2� S) and we have
�ðM1Þ< �ðM2Þ if M1 <M2, which leads to EFTGðS2Þ<
EFTGðS1Þ for S2 < S1. This is consistent with the Lieb-
Mattis theorem [23]. The energy difference is proportional
to 1=c and vanishes as c ! 1. On the other hand, for the
FSTG state we have EFSTGðS2Þ> EFSTGðS1Þ for S2 < S1
according to Eq. (8), i.e., the FSTG state with the smaller S
has higher energy. To give an example, we calculate the
ground state energy and the energy of the FSTG state for a
system with N" ¼ N# ¼ 2. As shown in Fig. 4, energies for
states with different total spins approach the same limit of
the polarized Fermi gas as jcj ! 1.

FIG. 2 (color online). Transition probabilities from the Fermi
TG gas to FSTG phase for systems with N ¼ 3, 4, 5.

FIG. 3 (color online). Local correlation energy vs 	 for the
FSTG state and ground state of the repulsive Fermi gas.

FIG. 4 (color online). Energy vs 	 for states with different
total spin S.
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Experimental detection.—To realize the FSTG gas, one
can first tune the interaction of the 1D Fermi gas to the
strongly repulsive regime by the Feshbach resonance [13],
and then suddenly switch the interaction across the reso-
nance point. Similar to the bosonic case, one can measure
the frequency of the breath mode of the FSTG gas sub-
jected to a weak harmonic confinement along the axial
direction, which is sensitive to various regimes of interac-
tion. For the Fermi gas in a harmonic trap with Vext ¼
m!2

xx
2=2, we can determine the density distribution of the

STG gas within the LDA. According to the LDA, the
system is in local equilibrium at each point x in the external
trap. The density distribution of the FSTG gas is then
obtained via the local equation of state �0 ¼ �½
ðxÞ� þ
VextðxÞ [24–26]. Here �ð
Þ ¼ @
½
�ð
Þ� is the local

chemical potential with �ð
Þ the energy density of the
homogenous FSTG gas to be determined by numerically
solving integral BA equations, and �0 is determined by
the normalization condition

R
dx
ðxÞ ¼ N. Following

Refs. [25,26], we calculate the frequency of the lowest
breathing mode from the mean square radius of the trapped
FSTG gas via !2 ¼ �2hx2i=ðdhx2i=d!2

xÞ with hx2i ¼R

ðxÞx2dx=N. The solid line in Fig. 5 shows the frequency

of breathing mode of the attractive FSTG gas as a function
of the interaction strength Na21d=a

2
x with the harmonic

oscillator length ax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!x

p
. The frequency of the

breath mode for the FSTG gas exhibits a peak with a
maximum of !2=!2

x about 4.3. We also give results of
the repulsive Fermi TG gas (the dashed line) and the
ground state of the attractive Fermi gas (the dotted line)
for comparison. These results are essentially based on the
sum-rule approach and provide generally an upper bound
on the frequencies [25].

Summary.—In summary, we study the realization of the
FSTG phase in the interacting spin-1=2 Fermi gas. Starting

from the ground state of a strongly repulsive Fermi gas, the
FSTG state can be realized by a sudden switch of interac-
tion to the strongly attractive regime. It is shown that the
FSTG state is stable against forming pairing states even in
the presence of the strongly attractive interaction between
fermionic atoms with opposite spins. We also calculate the
lowest breathing mode frequency of the FSTG gas which
may be detected by the experiment.
We thank X.-W. Guan and X. Yin for helpful discussion.

This work has been supported by the NSF of China under
Grants No. 10974234 and No. 10821403, 973 grant and
National Program for Basic Research of MOST.
While this work was being prepared for submission, a

related manuscript appeared [27], in which the FSTG gas
in a harmonic trap is studied.

*schen@aphy.iphy.ac.cn
[1] I. Bloch et al., Rev. Mod. Phys. 80, 885 (2008).
[2] M. Lewenstein et al., Adv. Phys. 56, 243 (2007).
[3] M. Greiner et al., Nature (London) 415, 39 (2002).
[4] B. Paredes et al., Nature (London) 429, 277 (2004).
[5] T. Kinoshita et al., Science 305, 1125 (2004).
[6] E. Haller et al., Science 325, 1224 (2009).
[7] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S.

Giorgini, Phys. Rev. Lett. 95, 190407 (2005).
[8] G. E. Astrakharchik, D. Blume, S. Giorgini, and B. E.

Granger, Phys. Rev. Lett. 92, 030402 (2004).
[9] M. T. Batchelor, M. Bortz, X.W. Guan, N. Oelkers, J. Stat.

Mech. (2005) L10001.
[10] E. Tempfli et al., New J. Phys. 10, 103021 (2008).
[11] S. Chen et al., Phys. Rev. A 81, 031609(R) (2010).
[12] M.D. Girardeau and G. E. Astrakharchik, Phys. Rev. A 81,

061601(R) (2010).
[13] H. Moritz et al., Phys. Rev. Lett. 94, 210401 (2005).
[14] C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967).
[15] M. Gaudin, Phys. Lett. A 24, 55 (1967).
[16] S. Chen et al., Phys. Rev. A 81, 031608(R) (2010).
[17] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[18] M.D. Girardeau, J. Math. Phys. (N.Y.) 1, 516 (1960).
[19] M.D. Girardeau and A. Minguizzi, Phys. Rev. Lett. 99,

230402 (2007).
[20] L. Guan et al., Phys. Rev. Lett. 102, 160402 (2009).
[21] N. Oelkers, M. T. Batchelor, M. Bortz, and X.-W. Guan, J.

Phys. A 39, 1073 (2006).
[22] A. Recati, P. O. Fedichev, W. Zwerger, and P. Zoller, Phys.

Rev. Lett. 90, 020401 (2003); J. Opt. B 5, S55 (2003).
[23] E. H. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962).
[24] V. Dunjko, V. Lorent, and M. Olshanii, Phys. Rev. Lett. 86,

5413 (2001).
[25] C. Menotti and S. Stringari, Phys. Rev. A 66, 043610

(2002).
[26] G. E. Astrakharchik, D. Blume, S. Giorgini, and L. P.

Pitaevskii, Phys. Rev. Lett. 93, 050402 (2004).
[27] M.D. Girardeau, Phys. Rev. A 82 011607 (2010).

FIG. 5 (color online). Square of the lowest breathing mode
frequency vs the interaction strength Na21d=a

2
x for the FSTG gas

(solid line), the repulsive Fermi TG gas (dashed line) and the
ground state of the attractive Fermi gas (dotted line).

PRL 105, 175301 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

22 OCTOBER 2010

175301-4

http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1103/PhysRevLett.95.190407
http://dx.doi.org/10.1103/PhysRevLett.92.030402
http://dx.doi.org/10.1088/1742-5468/2005/10/L10001
http://dx.doi.org/10.1088/1742-5468/2005/10/L10001
http://dx.doi.org/10.1088/1367-2630/10/10/103021
http://dx.doi.org/10.1103/PhysRevA.81.031609
http://dx.doi.org/10.1103/PhysRevA.81.061601
http://dx.doi.org/10.1103/PhysRevA.81.061601
http://dx.doi.org/10.1103/PhysRevLett.94.210401
http://dx.doi.org/10.1103/PhysRevLett.19.1312
http://dx.doi.org/10.1016/0375-9601(67)90193-4
http://dx.doi.org/10.1103/PhysRevA.81.031608
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1103/PhysRevLett.99.230402
http://dx.doi.org/10.1103/PhysRevLett.99.230402
http://dx.doi.org/10.1103/PhysRevLett.102.160402
http://dx.doi.org/10.1088/0305-4470/39/5/005
http://dx.doi.org/10.1088/0305-4470/39/5/005
http://dx.doi.org/10.1103/PhysRevLett.90.020401
http://dx.doi.org/10.1103/PhysRevLett.90.020401
http://dx.doi.org/10.1088/1464-4266/5/2/359
http://dx.doi.org/10.1103/PhysRev.125.164
http://dx.doi.org/10.1103/PhysRevLett.86.5413
http://dx.doi.org/10.1103/PhysRevLett.86.5413
http://dx.doi.org/10.1103/PhysRevA.66.043610
http://dx.doi.org/10.1103/PhysRevA.66.043610
http://dx.doi.org/10.1103/PhysRevLett.93.050402
http://dx.doi.org/10.1103/PhysRevA.82.011607

