
On the correlation of Young’s modulus and the fracture strength
of metallic glasses

C. C. Yuan and X. K. Xia�

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

�Received 29 September 2010; accepted 9 December 2010; published online 8 February 2011�

It is generally believed that there is no simple relationship between ultimate fracture strength and
stiffness for an elastically isotropic material. By taking bulk metallic glasses �BMGs� as model
materials, the relation between ultimate fracture strength and elastic moduli was analyzed within
Griffith theory framework. The observed correlation between elastic moduli and fracture strength in
BMGs reveals the effects of BMG defects and plastic zone size on the crack resistance of these
model materials. © 2011 American Institute of Physics. �doi:10.1063/1.3544202�

Bulk metallic glasses �BMGs� are of great technological
and fundamental importance because of their high strength,
large elastic limit, high toughness, and because of other
unique properties.1 It is generally believed that there is no
simple relationship between ultimate tensile strength and
stiffness for an elastically isotropic material.2 The reason is
that when a conventional material fails under stress, defects
determine its strength while it is not the case for elastic
modulus which is a fundamental property. It is of importance
to know if BMGs without the complication of different crys-
tal structures,3 show clear relationship between strength and
elastic modulus. Extensive work on this issue has been done
by many researchers.4,5 A clear correlation between Young’s
modulus and fracture strength has been found in metallic
glasses,6,7 which was described by the fact that metallic
glasses have nearly the same elastic strain �2%. The under-
lying physics or how to understand this characteristic still
remains to be unclear.3,8 In this work, we show that the cor-
relation can be simply understood based on the extension of
Griffith theory.

Griffith initially considered a semi-infinite microcrack of
length “2c” in an ideal glass under mode I tensile loading
conditions. As the stress reaches a critical level, many of
these microcracks then intersect before the glass fails along a
shear zone. A constant energy per unit area, equal to 2�s of
forming two fresh fracture surfaces, is then released from the
elastic fields. The fracture strength of brittle materials can be
determined:9

� f = �2E�s/�c , �1�

where “c” is Griffith-like flaw size. Orowan and Irwin later
considered a local plastic zone of crack tip in quasi-brittle
materials and introduced plastic work energy. For quasibrittle
BMGs showing marginal plastic strain, fracture strength,10,11

� f =�E�2�s + �p�
�C

, �2�

where “C” refers to the plastic zone size instead of pre-crack
size in Orowan–Irwin’s equation;10 �p is the plastic work

energy mostly consumed in the vicinity of the crack tip, here
KC is fracture toughness which is defined as �E�2�s+�p� /�.
�p is much larger than �s and equal to �1000�s for qua-
sibrittle materials,10 so �E�p /���KC

2 .
However, from Eqs. �1� and �2�, the linear relation of

materials strength to Young’s modulus is not straightforward.
Fracture surface energy �s actually can be determined by
�s=kEd;12 here d is the lattice constant for crystalline mate-
rials while it is the statistical average of inter-atomic distance
on the first coordination shell for glasses, �2.6–3.0 Å; k is
a constant that depends on local stress-strain function se-
lected for the materials. Thus in brittle metallic glasses, we
get, �=�2kd /�cE by substitution of �s. “Griffith cracks”
refers to the largest cavities between solute centered clusters
resulting from the coalescence of excess free volumes.13,14

These cavities are akin to Bernal canonical holes in dense
random packing. The Griffith-crack size �2c� can be ex-
pected to be proportional to the average outer diameter of the
associated clusters since the coalescence of such Bernal
holes might be extremely limited in response to the shear
stress induced dilatation within shear bands. The average
outer diameter of these solute centered clusters has been
taken to be approximately three times the diameter of the
atoms of the base element in the glasses based on the effi-
cient dense random packing model.15 c can thus be thought
to be proportional to d in brittle metallic glass. For qua-
sibrittle BMGs, previous work shows that plastic zone size,
C is proportional to the dimplelike size �w� on the crack
surfaces for typical metallic glasses.16 Figure 1 shows that
KC

2 /E2 follows a linear relationship with “w” for typical
BMGs and the slope yields a constant, 0.013�0.001. This
means �p /w is proportional to E since KC

2 = �E�p /�� by as-
suming �p��s. Since C is proportional to w,16 then �p /C
should also be proportional to E. A linear relationship be-
tween fracture strength and Young’s modulus can thus be
expected in metallic glasses.

Figure 2 shows the relationship of Young’s modulus �E�
with fracture strength �� f� for �60 typical BMGs and other
materials for comparison. For the large variety of materials
under quasi-static loading conditions, the ratio � /E is about
1/10 for ideal materials without defects, �1 /50 for metallic
glasses, and �1 /100 for ductile crystalline metals. Young’sa�Electronic mail: xi@iphy.ac.cn.
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modulus �E� is obtained by ultrasonic measurement. Here,
ultimate compressive strength has been adopted instead of
ultimate tensile strength from the following considerations:
�1� the experimental data for the former quantity are plentiful
while the data for the latter are quite scarce;17,18 �2� Griffith
theory framework has been successfully applied to predict
the uniaxial compressive fracture stress of brittle materials;19

�3� little asymmetry of tensile/compressive strength have
been obtained and the ratio is within a narrow range of 0.8–
1.0 for various metallic glasses.7,20 This symmetry originates
from the characteristic shear banding deformation and frac-
ture mechanisms of these materials. The normal stress plays
a less significant role in comparison with shear stress,20,21

which can be corroborated by the observations that ultimate
fracture strength is insensitive to the applied hydrostatic
pressure. The data in Fig. 2 are collected from Refs. 18 and
22–30. The data of some typical glasses are listed in Table I.
From Fig. 2 and Table I, the relation of fracture strength of
BMGs with their Young’s moduli follows a similar scaling
behavior to crystalline metals and oxide glasses, that is, � f

=k�E but with a different coefficient, that is k�= �1 /50. This
��E /50 linear relationship clearly makes BMGs distinct
from other materials. From Fig. 2, the dimensionless con-
stant, k�= �1 /50 seems to be applicable for all metallic

glasses, which means metallic glasses follow a similar un-
derlying mechanism of deformation and fracture. A plausible
structural origin of this common mechanism of metallic
glasses might originate from their characteristic local atomic
structure and interatomic bonding character.

As shown above, � f = �E /50 can be applied for BMGs
in general. After close observation, however, there is some
small but observable nonlinearity or scatter. For brittle
BMGs, the measured fracture strength randomly distributed
around �=k�E, while the strength of tough BMGs showing
marginal plasticity tends to be smaller than that is expected
from � f =E /50. To understand this scattering, it is worth not-
ing here that fracture strength, � f, is a complex material pa-
rameter which could be influenced by both intrinsic param-
eters such as inter-atomic interaction, detailed structure such
as defects and their interactions, fracture and deformation
mode, and extrinsic factors such as preparation, loading con-
ditions, specimen size and aspect ratio geometry, and so on,
while it is not the case for Young’s modulus which is mainly
determined by pair interaction V�r� between ions in solids.31

We propose that these scattering can be classified as two
categories: one is random in nature which is due to the flaw
size distribution, while the other one is systematic in nature
which is caused by an enhanced fracture process zone size.

For brittle materials, the fracture stress and its fluctua-
tion can be described by the equation: � f

=��2E�s /��c+���, where 	�	 is the fluctuation of flaw size c
due to various preparation conditions. This effect of flaw size
fluctuation on fracture strength should be random in nature
and thereafter strength fluctuations can be described by
Weibull statistical distribution which agrees well with
experiments.32 When 	� /c	 is small, the fluctuation of
strength will be expected to be negligible. A recent study
clearly shows that the strength of a Zr-based BMG indeed
follows a Weibull statistical distribution with a small
fluctuation.32 If 	� /c	 is large, however, the fluctuation could
be huge and the measured materials fracture strength will
never reach its intrinsic value, which is also the case for
some other very brittle materials such as ceramic glass and
some oxide glass.

When large plastic work energy dissipation is involved
in the fracture of tough materials, according to Eq. �2�, these
tough materials become insensitive to flaw size c when C
�c. For crystalline solids, crack tip blunting will hinder
crack extension by emitting dislocations and/or branching.
These processes will dissipate most fracture energy. How-
ever, for amorphous alloys, stress concentration at crack tip
will be relieved through a different mechanism, such as
athermal shear transformation zone activation,33,34 which is
the carrier of plasticity and it will yield energy dissipation in
the vicinity of crack tip. The plastic deformation and fracture
events are thus controlled by this irreversible energy dissipa-
tion process.35,36 Since fracture energy is mostly dissipated
through plastic work, while �p= �KIC

2 /E�1−	2�� �Refs. 37
and 38� �under plane strain condition, where 	 is Poisson’s
ratio�, that means �p is proportional to plastic process zone
size �C�.39 Further, the size of characteristic dimple like vein
pattern obtained from scanning electron microscope �SEM�
fracture morphology has also been linked to fracture energy,
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FIG. 1. �Color online� A plot of Kc

2 /E2 against dimplelike structure size of w
on fracture surfaces of typical BMGs. The data are from Table I. The solid
line is linear least square root fitting. The slope is 0.013�0.001.
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FIG. 2. �Color online� The ultimate fracture strengths �� f� vs Young’s
modulus �E� of various BMGs tested under room temperature. The data of
conventional crystalline alloys and ceramics are also shown for comparison.
References are within the context. The solid line is linear least square root
fitting. The slope is 0.0213�0.0007.
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showing the size of dimplelike structure is proportional to C
in metallic glasses.16 That means �p dissipates in the vicinity
of crack tip of metallic glasses at different length scales, and
the total energy release rate is primarily controlled by the
ratio of �p /C. According to Eq. �2�, material fracture
strength from both �p and �s contributions will be � f

=�E�2�s+�p� /�C. C ranges from nanometer to micrometer

length scales for metallic glasses,16 while �s changes only a
factor of 1 to 2 for most metals when cracking. This means
the partial contribution from �s to strength is underweighted
since �s is a material property which is weakly dependent on
fracture process zone size when crack starts propagating.40

Above all, surface energy dissipation within plastic zone
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FIG. 3. �Color online� The ultimate fracture strengths �� f� vs square root of
Young’s modulus and surface energy ��E�s� for ten metallic glasses sys-
tems. The data are from Table I. The slope corresponds to the size of fracture
process zone.
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FIG. 4. �Color online� The fracture energy �Gf� �hole square� and ultimate
fracture strengths �� f� �solid circle� as a function of Sn concentration in
Zr61Cu18.3−xNi12.8Al7.9Snx �0
 =x
 =3.5� BMGs. The inset shows the
structural evolution of crack surfaces accompanying DBT with the addition
of Sn, �a� x=1.0; �b� x=2.0; �c� x=2.5.

TABLE I. Fracture strength �� f�, Young’s modulus �E�, calculated surface energy ��s�, and stress intensity
factor �KC� for typical metallic glasses. Crystalline alloys and ceramic are also listed for comparison.

Materials
� f

�GPa�
E

�GPa�
�s

a

�J m−2�
KC

b

�MPa m1/2�

BMGsc

Zr41.25Ti13.75Cu12.5Ni10Be22.5
d �295 K,1�10−4 s−1� 1.86 96 1.47 86

Zr41.25Ti13.75Cu12.5Ni10Be22.5
d �523 K,1�10−4 s−1� 1.68 96 1.47

Zr55Cu35Al10�298 K�e 1.74 83 1.36
Zr55Cu35Al10�77 K�e 2.02 83 1.36
Pd77.5Si16.5Cu6 1.55 92.9 1.38 51
Cu60Zr20Hf10Ti10 1.95 101 1.41 67
Ce70Al10Ni10Cu10 0.4 30.3 0.92 10
Mg65Cu25Tb10 0.8 51.3 0.76 2
Fe30Co30Ni15Si8B17

f 2.8 110 1.64
Co43Fe20Ta5.5B31.5 �as-cast�g 5.185 268 1.63
Co43Fe20Ta5.5B31.5 �annealed�g 5.334 268 1.63
Crystalline metalsh

Cast irons 0.350–1.000 165–180 22–54
High carbon steels 0.550–1.640 200–215 27–92
Stainless steels 0.480–2.240 189–210 62–280
Aluminum alloys 0.058–0.550 68–82 22–35
Titanium alloys 0.300–1.625 90–120 14–120
Ceramicsh

Borosilicate glass 0.264–0.384 61–64 0.5–0.7
Silica glass 1.100–2.300 68–74 0.6–0.8
Brick 0.050–0.140 10–50 1–2
Stone 0.034–0.248 6.9–21 0.7–1.5
Alumina 0.690–5.500 215–413 3.3–4.8

aReference 42.
bReference 38.
cReferences 22–24.
dReference 25.
eReferences 26 and 27.
fReference 28.
gReference 29.
hReference 30.
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plays a key role of the deviation from the linear scaling of
strength with respect to moduli data, which is manifested as
the deviation on the �−�E�s curve, as shown clearly in Fig.
3. Here, the abscissa E is replaced by square root of elastic
moduli and �s, which is calculated by atomic ratio mixing up
surface energy of pure elements.41,42 To avoid surface segre-
gation effects, the BMGs containing the elements Bi, C, and
P are not included.41

The above extension of Griffith model might provide
insights in designing BMG materials with tuned ultimate
fracture strength and plasticity. Zr61Cu18.3−xNi12.8Al7.9Snx �0

 =x
 =3.5� BMG system were selected to verify our
above analysis. This alloy system is interesting since it
shows ductile to brittle transition �DBT� upon minor Sn
alloying.43 It is well known that fractography has been used
with fracture mechanics to understand the causes of fracture
and also verify the theoretical predictions. The DBT occurs
in this system when Sn content is above 1%. Then this DBT
can be simply characterized by the evolution of fractography
and by the sharp change in fracture energy under three-point
bending experiments, as shown in Fig. 4. Typical SEM frac-
ture morphologies were also included in Fig. 4. Dimple size
w and fracture energy Gf are all listed in Table II. Cleary, the
dimple size increases upon Sn addition when Sn
1 at. %,
reaches maximum when Sn is around 1 at. %, while de-
crease sharply when Sn concentration is beyond 2.5 at. %.
From Fig. 4, it can be seen that fracture energy follows a
similar behavior to fracture morphologies upon Sn alloying,
indicating plastic process zone acts as a toughening mecha-
nism for this type of materials. Further, the ratio of � f /�E�s

correlates with plastic zone size and hence plasticity since
toughness enhances plasticity for all modes of loading,
which clearly illuminates the intrinsic connection of data de-
viation on the curve of � f −�E�s, see point A in Fig. 3. When
Sn concentration is beyond 2.5 at. %, the sharp drop of
strength indicate the material becomes brittle and sensitive to
the embedded cracks or flaws which are close or even larger
than the plastic zone size C. The correlation of � f /�E�s with
plastic zone size C and plasticity can also be found in other
BMGs. In ZrCuNiAlSn BMGs, from the stress-strain curves,
the decrease in � f /�E�s correlates well with plasticity44 and
vice versa, reminiscent of the well-known fact that improv-
ing plasticity while sacrificing strength in low temperature
tempering of martensitic steel. The correlation of � f /�E�s

with plasticity also exists in the BMG specimen measured at

different temperatures. For Zr41.25Ti13.75Cu12.5Ni10Be22.5

compressed at 523 K under quasistatic condition, the ratio of
� f /�E�s becomes smaller while plastic strain becomes larger
than room temperature25 �see point B in Fig. 3�. For
Zr55Cu35Al10 at low temperatures,26 the ratio becomes larger
while plastic strain becomes less, as shown at the point C in
Fig. 3. After annealing below Tg for a short time even if no
nanocrystal appear, Co43Fe20Ta5.5B31.5 BMGs becomes more
brittle and the above correlation still holds, showing less de-
viation after annealing treatment �see the point D in Fig. 3�.
Considering above analysis and experimental evidences, it
can be concluded that large plasticity could be obtained in
BMGs by decreasing fracture strength through microstruc-
ture engineering on different length scales.1,45,46

There are other relevant aspects of the fracture mechan-
ics and other models of the fracture energy dissipation.47,48

Our arguments on the role of plastic energy are not intended
to exclude these possibilities. We hope the above efforts to
understand the observation we report here will provide a test
of the various competing theoretical models of fracture
mechanism. For instance, Griffith approach ignores the spe-
cific features of failure processes in the zone near crack tip
but concentrates on the variation in energy during crack
growth, a rigorous explanation of the microfracture mecha-
nism responsible for the relevant fracture energy is worthy of
a focused separate study.

In conclusion, the ��E /50 scaling behavior of BMGs
can be illuminated in virtue of the extension of Griffith
theory. Furthermore, the recently addressed scattering18 can
also be explained within Griffith theory framework. This un-
derstanding also provides a new insight of recent experimen-
tal observations, including sample size effects on the plastic
flow and fracture behaviors of BMGs.
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