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T he normal state of conduction
electrons in metals at low tem-
peratures has been described in
terms of the standard theory of

a Fermi liquid introduced soon after the
advent of quantum mechanics and com-
pleted by Landau and others by the middle
of the 20th century (1). Fermi liquid the-
ory describes the nature of a quantum
liquid of interacting itinerant fermions
below a characteristic temperature TFL,
which can be far below the bare Fermi
temperature TF. The state above TFL, but
below TF, is itself a correlated quantum
liquid that can extend down to very low
temperatures close to a quantum critical
point (Fig. 1A) (2).
Yang and Pines (3) and Shirer et al. (4)

present a phenomenological description
of such a correlated quantum liquid known
as the Kondo liquid (5). In the simplest
case of the Anderson lattice model, a
Kondo liquid arises in a system of elec-
trons in a conduction band hybridized with
a half-filled and narrow f-band. The effect
of the Coulomb interaction is to suppress
double occupancy of the f-orbital on each
atomic site, leading to Mott localization
in the absence of hybridization. The effect
of hybridization is to dope the f-band with
holes in a way reminiscent of hole doping
of a narrow d-band in the copper oxide
superconductors via the effects of chem-
ical substitution or pressure (e.g., 5, 6).
The Yang and Pines model (3) of the

Kondo liquid has a particularly simple
form at the quantum critical point sepa-
rating the magnetic and nonmagnetic
state where TFL vanishes (Fig. 1A). In
the low temperature limit, the Kondo
liquid state is defined by an entropy S and
magnetic susceptibility χ of the follow-
ing form:

S∼Tχ∼T lnðθ=TÞ [1]

where θ is a scale that is defined here
later. This differs from the Fermi liquid
form expected for T < TFL by the loga-
rithmic correction factor ln(θ / T), which
is characteristic of a marginal Fermi
liquid state (7–11). If S/T is considered
a measure of the mass of fermionic
quasiparticle excitations, the Kondo liq-
uid can be viewed as a state with singu-
lar mass renormalization in the limit
T → 0 K.
Yang and Pines (3) go beyond this

marginal Fermi liquid limit by introducing
a two-fluid model to extend the descrip-
tion of the Kondo liquid away from the
quantum critical point and up to a tem-

perature scale T* above which hybridiza-
tion between the conduction and f-electron
states becomes ineffective. In practice, T*
is defined as the temperature at which the
entropy reaches R ln 2 per mole of f states
if kBT* is less than the relevant crystal-
field energy splitting.
In the two-fluid model, one fluid rep-

resents “heavy fermion carriers” of frac-

tion fh(T) and the other fluid represents
“local moments” of fraction

flðTÞ ¼ 1− fhðTÞ [2]

where fh(T) is taken to be of the follow-
ing form:

fh ¼ f0ð1−T=T*Þ3=2 [3]

The coefficient f0 is called the hybrid-
ization effectiveness and plays a crucial
role in the description of the Kondo liquid
state away from the quantum critical point
(Fig. 1). For f0 > 1, the local moment
fraction vanishes and the heavy carrier
fraction reaches unity at a finite tempera-
ture TL. Below a still lower temperature
TFL (Fig. 1A), the system condenses into
a Fermi liquid state characterized by fer-
mion quasiparticles of strongly enhanced
but nonsingular masses excited about a
Fermi surface importantly enclosing hy-
bridized f-electron and conduction elec-
tron states (e.g., 12). For f0 < 1, on the
contrary, the local moment fraction fails to
vanish at any temperature. Local moments
then coexist with heavy carriers that me-
diate a magnetic interaction analogous to
the Ruderman–Kittel–Kasuya–Yosida
(RKKY) interaction (5). This interaction
leads to antiferromagnetic order at finite
temperatures (below the Nèel tempera-
ture, TN, in Fig. 1A). Close to and above
TN, the local moment fraction deviates
from the above model as a result of
“relocalization,” i.e., a precursor to
magnetic order.
Thus, the two-fluid model describes the

Kondo liquid essentially in terms of two
universal exponents, namely a three-halves
exponent defining the temperature de-
pendence of the heavy carrier fraction
fh(T), and a marginally sublinear exponent
defining the temperature dependence of
the heavy carrier entropy and susceptibility
times temperature. The corresponding
contribution of local moments involves no
new universal functions and is given by
[1 − fh(T)] times R ln 2 for the molar en-
tropy and [1 − fh(T)] times the Curie
constant for the susceptibility times
temperature.
This remarkably simple two-fluid de-

scription has been used to correlate a large

Fig. 1. Two-fluid model of the Kondo lattice. (A)
Schematic temperature-vs.-hybridization effective-
ness phase diagram about a quantum critical point
(midpoint of lower horizontal axis). f0 can be tuned
in practice via hydrostatic pressure or chemical
substitution. TN is the Néel temperature and T* is
the hybridization crossover temperature. (B and
C ) the heavy carrier fraction fh(T) and local mo-
ment fraction fl(T), respectively, as functions of
temperature and hybridization effectiveness in
the two-fluid model. The quantum critical point
corresponds to a T of 0 and an f0 of 1. The heavy
carrier fraction saturates and the local moment
fraction vanishes below TL for f0 > 1. The Kondo
liquid tends to be unstable to superconductivity or
other subtle forms of quantum order. The tran-
sitions or crossovers into such states as well as the
relocalization temperature just above TN (and TN
itself in B and C ) are not indicated.
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body of data in 4f- and 5f-electron mate-
rials on the border of antiferromagnetism
at low temperatures (refs. 3 and 4 and
references therein). Besides the entropy
and magnetic susceptibility, the model has
also been used, for example, to describe
the temperature dependence of the NMR
Knight shift and, with the inclusion of the
RKKY interaction, the temperature de-
pendence of the NMR relaxation rate.
Interestingly, the magnetic susceptibility
and Knight shift are not expected to have
equivalent temperature dependences be-
cause the heavy carrier and local moments
couple in different ways to the nuclear
moments. This difference provides a way
of thinking about the experimentally ob-
served and puzzling deviations reported
between the behavior of the Knight shift
and the bulk susceptibility in a number of
4f and 5f systems.
The phenomenological two-fluid model

is also consistent with some microscopic
descriptions. In particular, the marginally
sublinear form of the heavy carrier entropy
at low temperatures has arisen in models
including effects of singular fermion in-
teractions associated with spin, gauge, or
hybridization field fluctuations (7–11).
These have led to local and nonlocal
marginal Fermi liquid descriptions, the

former being the more relevant to the low-
temperature limit of the two-fluid model
of Yang and Pines (3). Also, the extended
form of the heavy carrier density of states
defined via the ratio of the entropy to

The two-fluid model of
Yang and Pines and
Shirer et al. provides

a simple operational way
of thinking about a
complex cooperative

state of matter.

the temperature in the two-fluid model,
i.e., ln(θ / T)(1 – T / T*)3/2, with θ equal
to eT*, has been found to follow closely
that predicted by dynamical mean field
theory (13, 14).
The quantities fh(T) and fl(T) are, at

first sight, analogous to the normalized
superfluid and normal densities, respec-
tively, in the two-fluid model of liquid He
II (15). In contrast to the latter, however,

there is no change in symmetry and no
well-defined transition at T*. Apart from
TN, the temperature scales in Fig. 1A are
all crossover temperatures. Also, the
Kondo liquid state tends to be unstable to
the formation of superconductivity and
possibly other exotic forms of long-range
order or types of quantum liquids in the
low temperature limit. The effective
RKKY interaction introduced in the two-
fluid model would seem to operate only
in the presence of a finite local moment
fraction and hence only for f0 < 1 in the
zero temperature limit. Additional phe-
nomenological effective interactions (e.g.,
5, 16) would therefore need to be in-
troduced to describe instabilities for f0 ≥ 1
and hence to provide a more complete
picture of the Kondo liquid state.
The two-fluid model of Yang and Pines

(3) and Shirer et al. (4) provides a sim-
ple operational way of thinking about a
complex cooperative state of matter, the
Kondo liquid. As in the case of the two-
fluid model of He II (15), a microscopic
theory is needed to clarify unambiguously
the meaning of the two fluids and further
to understand the origins of the univer-
sal behavior of the Kondo liquid in the
wider context of quantum phase transi-
tions in d- and f-electron systems.
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