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We study the properties of dipolar fermions trapped in one-dimensional bichromatic optical lattices and

show the existence of fractional topological states in the presence of strong dipole-dipole interactions. We

find some interesting connections between fractional topological states in one-dimensional superlattices

and the fractional quantum Hall states: (i) the one-dimensional fractional topological states for systems at

filling factor � ¼ 1=p have p-fold degeneracy, (ii) the quasihole excitations fulfill the same counting rule

as that of fractional quantum Hall states, and (iii) the total Chern number of p-fold degenerate states is a

nonzero integer. The existence of crystalline order in our system is also consistent with the thin-torus limit

of the fractional quantum Hall state on a torus. The possible experimental realization in cold atomic

systems offers a new platform for the study of fractional topological phases in one-dimensional

superlattice systems.
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Introduction.—Fractional quantum Hall (FQH) effects
have attracted intensive studies in the past decades as an
important subject in condensed matter physics. The tradi-
tional FQH states were realized in two-dimensional (2D)
electron gases within a strong external magnetic field. In
addition to 2D electron gases, great effort has been made to
study quantum Hall effects in some other physical systems,
for example, lattice systems without a magnetic field and
cold atomic systems. Effective Landau levels can be real-
ized in cold atomic systems in the presence of a rapidly
rotating trap [1,2] or a laser-induced gauge field [3].
Because of the existence of long-range interaction, the
dipolar Fermi gas is a good candidate to realize FQH states.
The FQH effects in a 2D dipolar Fermi gas with either
isotropic [4] or anisotropic dipole-dipole interaction (DDI)
[5] have been studied recently.

As most of the previous studies on topological nontrivial
states focus on 2D systems [6–8], the one-dimensional
(1D) systems attracted less attention until very recently
[9–11]. Although 1D systems without any symmetry are
generally topologically trivial, the 1D superlattice model
was recently found to be topologically nontrivial [9,10] as
the periodic parameter in these superlattice models can be
considered as an additional dimension and thus the systems
may have a nontrivial Chern number in an effective 2D
parameter space. It has been shown that the 1D superlattice
system with subbands being filled is not a trivial band
insulator but a topological insulator with a nonzero
Chern number [9], which can be viewed as a correspon-
dence of the integer quantum Hall state of a 2D square
lattice [12,13] in the reduced 1D system. It is well known
that the FQH effect emerges from the integer quantum Hall
state in the presence of strong long-range interactions. It is
natural to ask whether a fractional topological state is

available for the 1D superlattice system when interactions
are included.
In this Letter, we explore the nontrivial topological

properties of dipolar fermions in 1D bichromatic optical
lattices, which can be realized in cold atom experiments by
loading the dipolar fermions into the lattice superposed by
two 1D optical lattices with different wavelengths [14,15].
The noninteracting part of our Hamiltonian is the recently
studied 1D superlattice model with topologically nontrivial
bands [9,10]. The presence of dipolar interactions breaks
down the band description within a noninteracting picture.
To characterize topological features of the interacting sys-
tem, we study the low-energy spectrum and the topological
Chern number of the dipolar system based on exact calcu-
lation of finite-size systems. The existence of nontrivial
topological states for the strongly interacting system at
fractional filling is demonstrated by the topological degen-
eracy and nontrivial Chern number of the low-energy
states. Particularly, recent progress in manipulating ultra-
cold polar molecules [16] offers the possibility of explor-
ing exotic quantum states of Fermi gases with strong
dipolar interactions in the topologically nontrivial optical
lattices.
Model Hamiltonian.—We consider a 1D Fermi gas with

DDIs in a bichromatic optical superlattice:

H¼�t
X

i

ðcyi ciþ1þH:c:ÞþX

i

�iniþV

2

X

i�j

ninj

ji�jj3 ; (1)

with

�i ¼ � cosð2��iþ �Þ; (2)

where cyi (ci) is the creation (annihilation) operator of

fermions, ni ¼ cyi ci the density operator, and t the hopping
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strength. Here �i is the periodic potential with � being the
modulation amplitude, � determining the modulation
period, and � being an arbitrary phase. The last term of
Eq. (1) is for DDIs which are long-range interactions
decayed with 1=r3 with V the strength of DDI. For conve-
nience, we shall set t ¼ 1 as the unit of energy and
choose � ¼ 1=q.

In the absence of interactions, it has been demonstrated
that the system with its subbands fully filled by fermions is
an insulator with a nontrivial topological Chern number in
a 2D parameter space spanned by momentum and the
phase of � [9]. If the subband is only partially filled, the
system is a topologically trivial conductor. In this Letter,
we shall study the case with the lowest band being partially
filled by fermions subjected to the long-range interaction.
Given that the number of fermions is N and the lattice size
is L, the filling factor is defined as � ¼ N=Ncell with
Ncell ¼ L=q being the number of primitive cells. While
� ¼ 1 corresponds to the lowest band being fully filled, in
this Letter we shall consider the system with a fractional
filling factor, for example, � ¼ 1=3 and � ¼ 1=5.

Low-energy spectrum and ground state degeneracy.—In
the presence of the long-range DDI term, we diagonalize
the Hamiltonian (1) in each momentum subspace with
k ¼ 2�m=Ncell under the periodic boundary condition
(PBC) [17], where m takes 0; 1; . . . ; Ncell � 1. For finite-
size systems with a given fractional filling, we study the
change of low-energy spectrum with the increase in the
interaction strength V. In Fig. 1, we display the low-energy
spectrum in momentum sectors for systems with t ¼ 1,
� ¼ 1=3, � ¼ 1:5, � ¼ 1=3, � ¼ 5�=4, and different V.
Various cases with particle numbers N ¼ 2, 3, 4 are shown
in the same figure. When V is small, it is hard to distinguish
the lowest states from the higher excited states by an
obvious gap. When V exceeds 50, the lowest three states

tend to form a ground-state (GS) manifold with an obvious
gap separating them from higher ones. As V increases
further, the gap becomes more obvious and the lowest three
states become nearly degenerate at V ¼ 500. The threefold
degeneracy does not depend on particle numbers, but is
only relevant to the filling factor � ¼ 1=3.
In the large V case, the lowest three states in the GS

manifold always appear at some determinate positions in
the momentum space. For cases of N ¼ 2, 4 (even), the
total momenta locate at K ¼ �=3, �, 5�=3, whereas for
N ¼ 3 (odd), at K ¼ 0, 2�=3, 4�=3. We observe that one
can make a connection between the momenta in our system
and the orbital momenta of the FQH system in the thin-
torus limit by settingN� ¼ Ncell withN� being the number

of the flux quanta. According to the exclusion rule known
from the thin-torus limit of the FQH system [18,19], the
total momenta of the p-fold degenerate GSs emerge
at K ¼ ð2�Þf½pNðN � 1Þ=2þ lN�modNcellg=Ncell, where
l ¼ 0; 1; . . . ; p� 1 for a system with � ¼ 1=p. We also
check the low-energy spectra for systems with t ¼ 1,
� ¼ 1=5, � ¼ 1:5, � ¼ 1=3, � ¼ 5�=4, and different V.
Similar to cases of � ¼ 1=3, both systems with N ¼ 2 and
N ¼ 3 show the fivefold degenerate GS manifold in the
large V limit and the positions of momenta fulfill the above
expression determined by the exclusion rule.
Quasihole excitation spectrum.—For FQH states, the

existence of quasihole excitations, which fulfill fractional
statistics [20,21], is an important characteristic feature of
the system. According to the general counting rule [18], the
number of quasiholes for the FQH system of � ¼ 1=3

reads as Nqh ¼ Ncell
ðNcell�2N�1Þ!
N!ðNcell�3NÞ! . Next we study the quasi-

hole excitations by removing a particle from our system
and check whether a similarity to the FQH system exists.
On the left part of Fig. 2, we show the quasihole excitation

FIG. 1 (color online). Low-energy spectrum in momentum
space with filling factor � ¼ 1=3, t ¼ 1, � ¼ 1:5, � ¼ 1=3, � ¼
5�=4, and different V under the PBC. (a)–(f) V takes 0, 1, 10,
50, 300, and 500, respectively.

FIG. 2 (color online). Quasihole excitation spectrum. The left
part is for the system with N ¼ 2, L ¼ 27, and V ¼ 1, 50, 500
from top to bottom. The right part is for N ¼ 3, L ¼ 36, and
V ¼ 1, 50, 500 from up to down.
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spectra for the system with N ¼ 2 and L ¼ 27 produced
by removing a particle from the system of � ¼ 1=3 with
N ¼ 3 and L ¼ 27, whereas the right part of Fig. 2 gives
spectra for N ¼ 3 and L ¼ 36 by removing a particle from
the system of � ¼ 1=3 with N ¼ 4 and L ¼ 36. For both
parts, from top to bottom V ¼ 1, 50, and 500, respectively.
In the regime of small V, the number of quasihole excita-
tions is much larger than that given according to the above
accounting rule of FQH systems. As V increases, the
low-energy parts are excited into the upper part. For
V ¼ 500, as shown in Fig. 2(c), below the gap, the number
of quasihole excitations is 18 with two states on each
momentum sector. In Fig. 2(f), the total number of states
under the dash line is 40 and for momentum sectors
½kNcell=ð2�Þ�mod3 ¼ 0, the number of states below the
gap is four while in the other parts is three, due to the
finite-size effect. For both cases with V ¼ 500, the total
number of states below the gap is consistent with the
number obtained by the counting rule for the � ¼ 1=3
FQH state.

Topological feature of ground-state manifold.—To char-
acterize the topological feature of the many-body states,
we introduce the twist boundary condition c ðrþ L; �Þ ¼
ei�c ðr; �Þ, where � is the introduced phase factor.
Under the twist boundary condition, the momentum k in
Brillouin zone gets a shift k ¼ ð2�mþ �Þ=Ncell with m ¼
0; 1; . . . ; Ncell � 1. Correspondingly, the energies vary con-
tinuously with the change of �. In Fig. 3, we show the low
energy spectra as a function of � (the spectrum flux) at a
fixed � ¼ 5�=4 for systems with N ¼ 2 [(a)–(c)] and
N ¼ 3 [(d)–(f)]. In the small V regime of V ¼ 1, the lower
energy levels overlap together with the change of �. For
V ¼ 50, the lowest three energy spectra flow into each
other but are already separated from the higher states.
For V ¼ 500, the lowest three states are nearly degenerate,

and the GS manifold is well separated from the higher
states by a gap. Similarly, if the phase � varies from 0 to
2�, the spectrum for a given � changes continuously with
the GS manifold well separated from the other states,
which indicates the robustness of GS manifold in the large
V regime. An example for � ¼ 0 corresponding to the PBC
is given in Fig. 4(a).
In the 2D parameter space of (�, �), the Chern number

of the many-body state is defined as an integral invariant

C ¼ 1
2�

R
d�d�Fð�; �Þ, where Fð�; �Þ ¼ Imðh@c@� j @c@�i �

h@c@� j @c@�iÞ is the Berry curvature [12,22]. Considering the

system with V ¼ 500 shown in Fig. 1(f), we calculate the
Chern numbers of the lowest three nearly degenerate states
in the GS manifold. For a system of N ¼ 2, the Chern
numbers of the three states are C1 ¼ 0:4036, C2 ¼ 0:1928,
and C3 ¼ 0:4036, respectively. For each state, the Chern
number is not an integer, but their sum is an integerP

3
i¼1 Ci ¼ 1. Similarly, for N ¼ 3, we have C1 ¼

0:2776, C2 ¼ 0:4448, and C3 ¼ 0:2776 with their summa-
tion being 1. The existence of a nonzero total Chern
number characterizes the system at fractional filling having
nontrivial topological properties. Effectively, the total
Chern number is shared by the q degenerate states, which
is similar to the FQH system with its q-fold GSs sharing an
integer total Chern number [23].
The emergence of edge states under the open boundary

condition (OBC) is generally characteristic of topologi-
cally nontrivial phases. In Fig. 4(b), we show the low-
energy spectra as a function of phase � under the OBC,
which is obtained by setting the hopping amplitude
between the first and Lth site as zero. In contrast to the
spectra under the PBC, inside the gap regime, there emerge

FIG. 3 (color online). Spectrum flux versus � for systems with
t ¼ 1, � ¼ 1=3, � ¼ 1:5, � ¼ 1=3, � ¼ 5�=4, and different V.
(a)–(c) N ¼ 2, V ¼ 1, 50, and 500, respectively. (d)–(f) N ¼ 3,
V ¼ 1, 50, and 500, respectively.

FIG. 4 (color online). The low energy spectrum as the function
of the phase � for the system with L ¼ 27, N ¼ 3, t ¼ 1, � ¼
1:5, � ¼ 1=3, V ¼ 500. Here E0 represents the GS energy of the
system. (a) is for the PBC; (b) is for the OBC; (c)–(f) is the
density distribution for the in-gap mode with � ¼ ��, �0:4�,
�0:3�, and 0:5�, respectively.
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edge modes which connect the GS and excitation branch of
the bulk spectrum as one varies phase �. As shown in
Figs. 4(c)–4(f), the state is adiabatically changed with �
varying from �� to �=2. The density distribution 	i

shows that the in-gap state with � ¼ �� is pinned down
on the right edge, whereas the state with � ¼ �=2 is pinned
down on the left edge.

The density distributions shown in Figs. 4(c)–4(f)
already display the signature of a crystallized phase. To
reveal the crystalline character of systems with the PBC,
we introduce the static structure factor SðkÞ defined as

SðkÞ ¼ 1

Ncell

X

i;j

eikði�jÞ½hnci ncji � hnci ihncji�; (3)

where nci ¼ nqi þ nqiþ1 þ � � � þ nqiþq�1 is the sum of the

particle number operators in the ith primitive cell and
i ¼ 0; 1; . . . ; Ncell � 1. Figure 5 shows the static structure
factor of the three lowest eigenstates versus momentum for
the system with N ¼ 4, L ¼ 36, and different V. In the
strong repulsive limit, peaks emerge at k ¼ 2�=3, 4�=3
for all the lowest three eigenstates. With the increase of V,
the height of the peaks increases and the central parts of the
SðkÞ decrease dramatically, which suggests that these states
are crystallized with a periodic structure in the large V
limit. The existence of topologically nontrivial crystallized
phase in our system is consistent with previous works on
the evolution of FQH states on a torus [24–26], which have
shown that the FQH state on a torus is adiabatically con-
nected to a crystallized phase as the 2D system is deformed
to the 1D thin-torus limit.

The emergence of fractional topological states is a con-
sequence of interplay of nontrivial topology of superlatti-
ces and long-range interactions, which is illustrated by the
shift of edge mode from one to the other edge driven by the
phase �. While the long-range interaction is responsible for

the formation of degenerate GS manifold, the nontrivial
topology of superlattices guarantees the existence of edge
states. Consequently, when the PBC is changed to the
OBC, the threefold degenerate GSs are lifted and one of
them develops into the edge mode as shown in Fig. 4(b).
This is quite different from the noninteracting case, for
which the GS is nondegenerate and nontrivial edge states
only appear at the integer filling. To see clearly the effect of
long-range interaction, we also check cases with the
Coulomb interaction and short-range interactions [17].
While our conclusions also hold true for the case with
Coulomb interaction, no degenerate GS manifold and frac-
tional topological states are found for the case with short-
range interactions even in the strongly interacting limit.
In summary, we demonstrate the existence of fractional

topological states for dipolar fermions in topologically
nontrivial 1D superlattices, which are characterized by
the GS degeneracy, nontrivial total Chern number of
GSs, and quasihole excitations fulfilling the same counting
rule as the FQH states. The existence of crystallized order
in the 1D fractional topological phases is also identified by
calculating the structure factor. Our study provides a way
of creating nontrivial fractional topological states by trap-
ping the dipolar fermions in 1D bichromatic optical lattices
which are realizable in current cold atomic experiments.
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