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Parity is a fundamental quantum number used to classify a state of matter. Materials rarely possess

ground states with odd parity. We show that the superconducting state in iron-based superconductors is

classified as an odd-parity s-wave spin-singlet pairing state in a single trilayer FeAs=Se, the building

block of the materials. In a low-energy effective model constructed on the Fe square bipartite lattice, the

superconducting order parameter in this state is a combination of an s-wave normal pairing between two

sublattices and an s-wave � pairing within the sublattices. The state has a fingerprint with a real-space

sign inversion between the top and bottom As=Se layers. The results suggest that iron-based super-

conductors are a new quantum state of matter, and the measurement of the odd parity can help to establish

high-temperature superconducting mechanisms.
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I. INTRODUCTION

Symmetry plays the central role in the search for beauty
in physics. It controls the structure of matter and allows us
to simplify a complicated problem. The gauge principle is
a fundamental principle in physics. Models formulated in
different gauge settings are equivalent. Symmetry and
gauge principles together provide the foundations of mod-
ern physics that allow us to solve complicated problems.

The recently discovered iron-based high-temperature
superconductors (high Tc) [1–3] are layered materials
with complicated electronic structures. Their complexity
causes a major difficulty in understanding pairing symme-
try, which arguably is the most important property and clue
to determine the pairing mechanism [4,5].

In a strongly correlated electron system, major physics is
determined locally in real space. Important properties, such
as pairing symmetry in a superconducting state, are ex-
pected to be robust against small variations of Fermi
surfaces in reciprocal space. Although the superconducting
mechanism related to high-temperature superconductors
(high Tc) has not yet been determined, the robust d-wave
pairing symmetry in cuprates [6] can be understood under
this principle.

Does this principle still hold for iron-based supercon-
ductors? Namely, do all iron-based superconductors pos-
sess one universal pairing state? Unlike cuprates, the
answer to this question is highly controversial because
different theoretical approaches have provided different
answers and no universal state has been identified [5].
Nevertheless, as local electronic structures in all families

of iron-based superconductors are almost identical and
phase diagrams are smooth against doping [4,5], it is
hard to argue that the materials can approach many differ-
ent superconducting ground states.
According to conventional wisdom, there are several

obvious requirements regarding electron pairing in super-
conducting states. First, pairing symmetry is known to be
classified according to lattice symmetry. Second, in a
uniform superconducting state, the total momentum for
the Cooper pairs (modulo a reciprocal lattice vector)
must vanish. Finally, for a central symmetric lattice with
a space-inversion center, the parity of superconducting
order parameters is normally even for a spin-singlet pairing
and odd for a spin-triplet pairing [7]. These requirements
are easily fulfilled in a system with a simple electronic
structure, such as cuprates. However, for iron-based super-
conductors, they are highly nontrivial.
The unit cell in iron-based superconductors is intrinsi-

cally a 2-Fe unit cell, while, for simplicity, most theoretical
models are effectively constructed based on a 1-Fe unit cell
[8–13]. Obviously, these effective models have different
lattice symmetry than the models defined on the original
lattice. The difference may cause serious problems. For
example, in the effective models, the pairings have been

limited to two electrons with opposite momentum ð ~k;� ~kÞ,
which we call normal pairing in this paper, where ~k is the
momentum defined with respect to the 1-Fe unit cell in an
iron-square lattice. The momentum vector Q ¼ ð�;�Þ is a
reciprocal lattice vector in the original lattice with a 2-Fe

unit cell. Thus, the pairings ð ~k;� ~kþQÞ, in principle, are
also allowed according to the second requirement above.
We will refer to this pairing channel as an extended �
pairing [14,15] and simply call it � pairing in this paper.
The possible existence of � pairing was discussed in
simplified models [16–18]. As order parameters are clas-
sified differently under different symmetry groups, we
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need to understand these orders under the original lattice
symmetry. Otherwise, conservation laws could be violated.

In this paper, we show that the superconducting state in
iron-based superconductors is a new state of matter that is
classified as an odd-parity s-wave spin-singlet pairing state
in a single trilayer FeAs=Se, which is the building block of
the materials. Provided that essential physics stems from
d-p hybridization, the superconducting states that were
proposed in the past based on the effective d-orbital models
of an iron-square lattice are not parity eigenstates. Namely,
parity conservation is violated. We show that the super-
conducting state that conserves parity includes both normal
pairing between two sublattices of the iron-square lattice
and � pairing within each sublattice. The states have a
fingerprint with a real-space sign inversion between the top
and bottom As=Se layers. Our derivation is based on
general symmetry and gauge requirements on the effective
models for iron-based superconductors.

In the following, we first provide a complete symmetry
analysis for pairing symmetries in iron-based supercon-
ductors. While the pairing symmetries can be classified
according to D2d-point groups at iron sites or C4v-point
groups at the center of an iron square, there are two types of
pairing symmetries for a spin-singlet pairing state because
of the intrinsic 2-Fe unit cell. They are distinguished from
each other by opposite parity numbers. Second, we discuss
the hidden symmetry properties of the effective models
under the original lattice symmetry. We show that the
effective hopping terms between two sublattices and within
each sublattice have different symmetry characters.
Third, we discuss a general gauge principle related to the
definition of pairing symmetries and conclude that parity
conservation was violated in the past. We provide the
mean-field Hamiltonian in the new superconducting state
and show that it can provide a unified description of all
families of iron-based superconductors, including both
iron-pnictides [4] and iron-chalcognides [19–22]. Fourth,
we discuss the smoking-gun experiments that can reveal
the parity of the superconducting state. Finally, we discuss
the fundamental impact on the high-Tc superconducting
mechanism, if it is confirmed.

Before we start the main part of this paper, we first
clarify the gauge setting for the effective models that
were constructed based on all five iron d orbitals [8–10].
In those effective models with a 1-Fe unit cell, a new gauge
setting is taken [8–10], which effectively changes the

momentum ~k to ~kþQ for dxz and dyz orbitals. In the

following, without further clarification, the momentum ~k

used in the definition of our normal pairing ð ~k;� ~kÞ and �

pairing ð ~k;� ~kþQÞ is the same momentum used in those
papers, rather than the momentum in a natural gauge
setting in which Wannier functions of each orbital at Fe
sites are translationally invariant with respect to 1-Fe unit
cells and have the same symmetry classification as atomic
d orbitals.

II. SYMMETRY OFA SINGLE
FE-AS(SE) TRILAYER

Iron-based superconductors are layered materials. The
essential electronic physics is controlled by a single tri-
layer Fe-As(Se) structure, which is the building block of
the superconductors. Although the coupling along the c
axis between the building blocks has many interesting
effects, the superconducting mechanism and the funda-
mental properties of the superconducting states, such as
pairing symmetries, are expected to be solely determined
within the single building block. The observation of super-
conductivity in a single FeSe layer grown by molecular
beam epitaxy has further justified this two-dimensional
nature [20–22]. Therefore, we first focus on the study of
a single Fe-As(Se) trilayer structure.
We start our analysis by understanding the lattice sym-

metry. As shown in Fig. 1, the structure has an inversion
center, the origin, located in the middle of each Fe-Fe link.
The unit cell with its origin at the center is marked by the
shadowed area, which includes two iron and two As=Se
atoms. We denote T as the translation group with respect to
the unit cell. The symmetry group is thus described by a
nonsymmorphic space groupG ¼ P4=nmm [23]. The quo-
tient group G=T is specified by 16 symmetry operations

that include a space inversion Î. It is easy to check that

these operations can be specified equivalently as C4v �
ÎC4v or D2d � ÎD2d, where C4v is the point group with
respect to the point in the middle of an iron square andD2d

is the point group defined at an iron site. It is important to
note that neither C4v nor D2d is defined with respect to the
inversion center. Therefore, some symmetry operations in

C4v or D2d are nonsymmorphic. For example, the Ĉ4

rotation operation in C4v is equivalent to ðĈ0
4; t̂2Þ, which

represents Ĉ0
4, a rotation

�
2 along the z axis at the inversion

center, followed by a translation operation t̂2 that translates

As 

Fe 

X 

Y 

x 

y 

dx 

dX 

dy 

dY 

C '2 x

C '2 y

FIG. 1. Sketch of the lattice structure of a trilayer Fe-As(Se)
unit. Notations used in this paper for axis directions, reflection
symmetries, and two sublattices are noted.
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ð12 ; 12 ; 0Þ in the coordinate of an iron-square lattice, which is
half of a unit lattice cell along the X direction in Fig. 1.

In summary, the full symmetry group can be written as

G=T ¼ Z2 �D2d ¼ Z2 � C4v; (1)

where Z2 ¼ ðÊ; ÎÞ. The group is a direct product of two
subgroups that are defined with respect to different opera-

tion centers. Î commutates with all symmetry operations in
D2d or C4v, in the sense that operations are considered to
be identical if they only differ by a lattice transition with
respect to the 2-Fe unit cell.

III. PARITYAND PAIRING SYMMETRY
CLASSIFICATION

The pairing symmetry of a translation-invariant super-
conducting state is classified by the irreducible representa-
tions (IRs) of G=T. If we ignore spin-orbital coupling, the
ground state is expected to be a parity eigenstate. Since
spin-singlet pairing is overwhelmingly supported experi-
mentally in iron-based superconductors [4,5], we focus on
spin-singlet pairing states.

Conventionally, for a spin-singlet pairing state, the par-
ity is even. However, because of the unit cell doubling, the
parity operation here essentially takes mapping between
two sublattices, A and B, in the iron-square lattice, as
shown in Fig. 1. Therefore, there is no parity constraint
for the pairing within each sublattice governed by D2d.
Thus, for each IR of D2d, there are two different pairing
states with opposite parities. The IRs of G=T are direct
products of the IRs of two subgroups.

The character table of theD2d group is shown in Table. I.
There are five different IRs, with four being one dimen-
sional (A and B) and one being two dimensional (E). Let us

consider the symmetry operation Ŝ24 ¼ Ŝ4 � Ŝ4 inD2d. It is
easy to show that

ÎŜ24 ¼ ð�̂h; t̂
0
2Þ; (2)

where �̂h is the reflection along the z axis and t̂02 is an in-
plane translation by (1, 0, 0), namely, one iron-iron lattice
distance. Equation (2) leads to an extremely important
conclusion: The parity is determined by the eigenvalues
of the operation ð�̂h; t̂

0
2Þ. It is equal or opposite to the

eigenvalues for one-dimensional (A and B) or two-

dimensional (E) IRs, respectively, because Ŝ24 ¼ 1 for

one-dimensional IRs and Ŝ24 ¼ �1 for two-dimensional

IRs. More specifically, this result leads to the conclusion
that the pairing is translationally invariant with respect to a
1-Fe unit cell in the A or B state when the parity is even and
in the E state when the parity is odd. The � pairing takes
place in the A or B state with odd parity and in the E state
with even parity.
The above classification is independent of the number of

orbitals and orbital characters as long as we have the gauge
setting specified for dxz and dyz as mentioned earlier.

It is also important to note that the classifications with
respect to D2d at iron sites or C4v at the center of iron
squares are equivalent, in the sense that they can be
mapped to each other. C4v has the same number and type
of IRs as D2d. We notice the following important relation,

Ŝ 3
4 ¼ ÎĈ4; (3)

where Ĉ4 is the �=2 rotation operation in C4v. For one-
dimensional IRs in D2d, the above equation reduces to

Ŝ4 ¼ ÎĈ4. Therefore, for parity-even pairing, namely, nor-
mal pairing, there is no difference whether states are clas-

sified according to D2d or C4v since Ŝ4 ¼ Ĉ4. Namely, a
normal pairing state has the same IRs with respect to both

C4v and D2d. For parity-odd � pairing, Ŝ4 ¼ �Ĉ4, which
implies that an s-wave state classified by A IRs inD2d must
become a d-wave state classified by B IRs in C4v. For
example, an �-pairing A1 s-wave state classified in D2d

belongs to the B2 d wave in C4v. Therefore, for an
�-pairing parity-odd state, the name of the state depends
on how it is classified. For the above example, one can
either name the �-pairing state as a B2u d wave or an A1u s
wave, depending on the classification point groups C4v or
D2d, respectively.
An odd-parity superconducting state must have a sign

change between the top and bottom As=Se layers.
However, this information is hidden in an effective model
with only d orbitals constructed on an iron-square lattice.
From the above symmetry analysis, we can track the parity
information simply by using �̂h. Although �̂h is not a
symmetry operation for a single Fe-As(Se) trilayer, the
�-pairing state can be viewed as a state with an internal

negative isospin defined by �̂h. For any normal pairing, �̂n

and �-pairing �̂� order parameters that belong to one-
dimensional IRs of D2d, we have

�̂ h�̂
n�̂h ¼ �̂n; (4)

�̂ h�̂
��̂h ¼ ��̂�: (5)

We can extend the above discussion for order parameters
in a bulk material. There are two different lattice structures
along the c axis in iron-based superconductors, the 11 type
[which includes 111(NaFeAs) and 1111(LaOFeAs) struc-
tures] and the 122 type, where the 11 type is translationally
invariant along the c axis while the 122 type is not.

TABLE I. Character table for D2d point group.

E 2S4 C2ðzÞ 2C0
2 2�d Linear, rotations Quadratic

A1 1 1 1 1 1 x2 þ y2, z2

A2 1 1 1 �1 �1 Rz

B1 1 �1 1 1 �1 x2 � y2

B2 1 �1 1 �1 1 z xy
E 2 0 �2 0 0 ðx; yÞ ðRx; RyÞ ðxz; yzÞ
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For the 11 type, we can simply extend the above analysis
to the nearest-neighbor (NN) interlayer pairing. For even-
parity order parameters, we have two possible terms:

ð ~k;� ~kÞ pairing, which is proportional to cosðkzÞ, and �

pairing ð ~k;� ~kþQÞ, which is proportional to isinðkzÞ. For
odd-parity order parameters, the two possible terms be-

come ð ~k;� ~kÞ pairing, which is proportional to isinðkzÞ, and
�,pairing ð ~k;� ~kþQÞ, which is proportional to cosðkzÞ.
Both terms can be in the same irreducible representations
of D2d.

For the 122 type, the situation is rather different because
the 122 structure has a symmorphic space group I4=mmm
with a point group D4h centered in the middle of two NN
Fe-As(Se) layers. The translation symmetry is specified by
(1, 1, 0), (0, 1, 1), and (0, 1, 1). The space inversion and �̂h

have identical characters in any one-dimensional IRs. A
state with odd parity that belongs to one-dimensional
IRs must have node lines on Fermi surfaces when
kz ¼ 0. Therefore, we are only allowed to construct
even-parity states. For the intralayer pairing, there are
two different even-parity order parameters: One is con-

structed by ð ~k;� ~kÞ pairing, and the other is constructed by

ð ~k;� ~kþQ3Þ pairing, where Q3 ¼ ð�;�;�Þ, namely, �
pairing. The difference between these two order parame-
ters is that the latter breaks (1, 0, 1) and (0, 1, 1) translation
symmetry. Now, if we consider the NN interlayer pairing,
we can have two terms that are parity even and keep the

translation symmetry: the normal pairing ð ~k;� ~kÞ, which is
proportional to cosðkzÞ, and ð ~k;� ~kþQÞ pairing, which is
proportional to isinðkzÞ. Here, we assume Q ¼ ð�;�; 0Þ.
For the ð ~k;� ~kþQ3Þ � pairing, there are also two terms in

the NN interlayer pairing: � pairing ð ~k;� ~kþQ3Þ propor-
tional to cosðkzÞ and ð ~k;� ~kþQÞ pairing proportional to
cosðkzÞ. Therefore, if the interlayer pairing is included, the
superconducting state generally breaks the translation
symmetry of the iron-square lattice.

IV. EFFECTIVE HAMILTONIAN AND
HIDDEN SYMMETRY

The above symmetry analysis is based on the original
lattice symmetry. As we mentioned above, an effective
model based on d orbitals appears to have a different
symmetry. In the past studies, we treated the model in a
1-Fe unit cell with a D4h point group at iron sites. The
treatment, in general, violated the basic spirit of the sym-
metry principle and might have resulted in fundamental
errors. To fully respect the symmetry principle, we must
understand the symmetry properties of the effective model
under the original lattice symmetry.

We consider a general Hamiltonian in a single trilayer
Fe-As(Se) structure coordinated by Fe and As(Se) atoms,

Ĥ ¼ Ĥdd þ Ĥdp þ Ĥpp þ ĤI; (6)

where Ĥdd, Hdp, and Ĥpp describe the direct hopping

between two d orbitals—the d� p hybridization between
Fe and As(Se) and the direct hopping between two p

orbitals, respectively. ĤI describes any standard interac-
tions. Here, we do not need to specify the parameter de-
tails. This Hamiltonian has a full symmetry defined by the
nonsymmorphic space group.
An effective Hamiltonian is obtained by integrating out

p orbitals, which can be written as

Ĥ eff ¼ Ĥdd;eff þ ĤI;eff : (7)

The effective band structure can be written as Ĥdd;eff ¼
Ĥdd þ Ĥdpd, where Ĥdpd is the effective hopping induced

through d-p hybridization. Ĥdd;eff has been obtained by

many groups [8–10,24,25]. The major effective hopping

terms in Ĥdpd can be divided into two parts: Ĥdpd;NN,

which describes NN hopping, and Ĥdpd;NNN, which de-

scribes NNN hopping in the iron-square lattice. If one
carefully checks the effective hopping parameters for t2g
orbitals in Ĥdpd;NN, one finds that they have the opposite

sign from what we normally expect in a natural gauge
setting, as shown in Figs. 2(a) and 2(b) where the dxy
orbital is illustrated as an example. We see that the hopping
parameter tdd must be negative. However, the effective
hopping parameter tdpd is positive and even larger than
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FIG. 2. The nearest-neighbor hopping parameters for intra-dxy
orbitals are shown in (a) and (b). tdd is the amplitude of the direct
hopping of dxy orbitals, while tdpd is the amplitude of the indirect

hopping through pz orbitals of As=Se atoms. The reason for the
sign change in tdpd between (a) and (b) is that the pz orbitals in

the top layer and the bottom layer form occupied bonding states
in (a) and empty antibonding states in (b). The difference is
illustrated by the filled and empty pz orbitals in (a) and (b). (c)
and (d) show the local p� d s-wave pairing pattern and a gauge
transformation between them, which is defined by adding a
minus sign to all pz orbitals on the top As(Se) layer but not to
those on the bottom layer.
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jtddj in [8–10,24,25]. In a tetragonal lattice, tdpd can only

be generated through dxy � pz hybridization. A positive

value of tdpd suggests that virtual hopping that generates

tdpd must go through an unoccupied pz state. As shown in

Figs. 2(a) and 2(b), a dxy equally couples to pz orbitals of

top and bottom As atoms. A high-energy pz state must be
an antibonding pz state between NNAs atoms. This analy-
sis is held for all t2g orbitals that play the dominant role in

low-energy physics. It is also easy to check that the effec-
tive NNN hoppings between t2g orbitals are dominated by

occupied p states, which are primarily bonding states of p

orbitals. Therefore, the NN effective hoppings are gener-
ated through d� pa hybridization, where pa represents an
antibonding p-orbital state and the NNN effective hop-
pings are generated through d� pb hybridization, where
pb is the bonding p state.
The above microscopic understanding is not surprising.

In fact, it is known in LDA calculations [24,26,27] that p
orbitals in As=Se are not fully occupied, and there is
significant overlap between p orbitals on the bottom and

top As=Se layers. Moreover, since Ĥdpd;NN and Ĥdpd;NNN

primarily affect hole pockets around � and electron pock-
ets at M, respectively, we can check the distribution of
antibonding p states and bonding p states in the band
structure to further confirm the analysis. In Fig. 3(a), we
plot the band structure of FeSe and the distribution of p
orbitals. The pz orbitals of Se are mainly at þ1:5 eV at �
and �3 eV at M. By analyzing the bands at � and M, as
shown in Figs. 3(b) and 3(c), we confirm that the pz

orbitals of Se at � and M belong to antibonding and
bonding states, respectively.
Knowing the above hidden microscopic origins in the

derivation of an effective Hamiltonian allows us to under-
stand the characters of the effective Hamiltonian in the
original lattice symmetry.
The d� pa hybridization is odd under �̂h, while the

d� pb hybridization is even under �̂h. Thus, the NN

hopping Ĥdpd;NN and NNN hopping Ĥdpd;NNN should be

classified as odd and even under �̂h, respectively. Namely,

�̂hĤdpd;NN�̂h ¼ �Ĥdpd;NN;

�̂hĤdpd;NNN�̂h ¼ Ĥdpd;NNN:
(8)

The above hidden symmetry property is different than the
main assumption taken in many weak-coupling ap-
proaches, which assume that the essential physics is driven
by the interplay between hole pockets at � and electron
pockets at M [5]. As indicated in Fig. 3(a), the interplay
between the hole and electron pockets must be minimal
because of their distinct microscopic origins.

V. GAUGE PRINCIPLE AND
PARITY CONSERVATION

The symmetry difference in Eq. (8) has a fundamental
impact on how we consider the parity of a superconducting
state if superconducting pairing is driven by local d-p
hybridization.
It has been shown that in a system where short-range

pairings in real space dominate, superconducting order
parameters are momentum dependent and a gauge princi-
ple must be satisfied because the phases of superconduct-
ing order parameters can be exchanged with those of the
local hopping parameters [16,28] by gauge transforma-
tions. As an example, a d-wave superconducting state in
cuprates can be mapped to an s-wave superconducting
state by a gauge mapping that changes the hopping terms
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FIG. 3. (a) The calculated band structure of FeSe with the
weight of p orbitals of Se. (b) The decomposed charge density
of the band at � marked by the letter B (antibonding states).
(c) The decomposed charge density of the band at M marked by
the letter C (bonding states).
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from s-type symmetry to d-type symmetry [29]. Therefore,
only the combined symmetry of hopping terms and their
associated pairing orders is gauge independent and can be
used to classify superconducting states. Namely, the sym-
metry of a superconducting state is characterized by

Symmetry sc ¼ ½Ĥhopping�½�̂�; (9)

where ½Â� indicates the symmetry of Â. This gauge prin-
ciple does not exist in a conventional BCS-type supercon-
ductor in which the information of pairing in real space is
irrelevant.

Nowwe apply the gauge principle and let �̂NN and �̂NNN

be superconducting order operators associated with

Ĥdpd;NN and Ĥdpd;NNN, respectively. In a superconducting

state that belongs to a pure IR of the original lattice
symmetry, we must have

½�̂NN�½Ĥdpd;NN� ¼ ½�̂NNN�½Ĥdpd;NNN�: (10)

If we consider a superconducting state that conserves
parity, following Eq. (8), we have

½�̂NN� ¼ �½�̂NNN� (11)

under �̂h. Therefore, based on the classification of pairing
symmetries in Eq. (5), a parity-conserved superconducting
state must be a combination of normal pairing and �

pairing. If �̂NN is a normal pairing, we immediately con-
clude that the state is parity odd, and the superconducting

order h�̂NNNi must be an � pairing.
The above analysis can be easily illustrated in real space.

As shown in Fig. 4, if superconducting pairing is driven
by local d-p hybridization, the superconducting order

is a pairing between d and p orbitals, �dp ¼ hd̂þp̂þi.

A uniform hd̂þp̂þ
a i is parity odd. The NN pairing h�̂NNi

in the effective model must originate from hd̂þp̂þ
a i and thus

is also parity odd. The gauge principle can be understood
as shown in Figs. 2(c) and 2(d). If we take a new gauge for
fermion operators of p orbitals, p̂ ! �p̂, in one of the two
As(Se) layers, the antibonding operator p̂a maps to the
bonding operator p̂b. This gauge mapping exactly transfers
the parity between hopping terms and superconducting
order parameters.

VI. MEAN-FIELD HAMILTONIAN FOR A
PARITY-CONSERVED S-WAVE STATE

The above analysis can be generalized to all effective
hoppings. The basic idea is to divide the iron-square lattice
into two sublattices. In an odd-parity state, the pairing
between two sublattices must be normal pairing, while
the pairing within sublattices must be � pairing. In an
even-parity state, the pairing between two sublattices
must be � pairing, while the pairing within sublattices
must be normal pairing. This means that the pairing be-
tween two sublattices must vanish in an even-parity state.
In all of themeasured samples of iron-based superconduc-

tors, no universal node along the ��M and ��X directions
on any of the Fermi surfaces was observed [30–39]. These
experimental facts require that the superconducting state be
in the A1 IR of D2d, namely, an s wave viewed at iron sites.
Then, the remaining question is about the parity of the state.
In an even-parity s-wave state, the normal pairing

between two sublattices must vanish. Therefore, the
mean-field Hamiltonian for an even-parity s-wave state is

He
mf ¼ Hdd;eff þ

X

�;�;k

ð�e
��;n�̂��;nð ~kÞ þ H:c:Þ; (12)

where �̂��;n ¼ d̂�"ð ~kÞd̂�#ð� ~kÞ � d�#ð ~kÞd̂�"ð� ~kÞ and �, �

label the orbital. In general, the normal pairing order
parameters must satisfy

�e
��;nð ~kÞ ¼ �e

��;nð ~kþQÞ: (13)

All superconducting states derived previously from weak-
coupling approaches were considered as even-parity states
[5,8,9,40–43]. However, as a normal pairing between two
sublattices is included, the parity is not conserved. In
strong-coupling models [44–47], the superconducting or-
der derived from an NNN antiferromagnetic exchange
coupling J2, which is a normal pairing within sublattices,
satisfies Eq. (13). Therefore, if superconductivity only
originates from J2, the proposed state is an even-parity
s-wave state, namely, the A1g s wave.

This state provides a good understanding of supercon-
ducting gaps in iron-based superconductors. However, it
cannot explain dual-symmetry characters with both the
s-wave and d-wave types observed in the superconducting
state, for example, the spin relaxation 1

T1T
measured by

nuclear magnetic resonance (NMR). A coherent peak
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FIG. 4. The NN and NNN p� d local pairing patterns with
odd parity are shown in (a) and (b) in the natural gauge. Note that
p orbitals of As=Se in (a) form the antibonding states, while
those in (b) form the bonding states. We distinguish the two
states with different filled green ovals in (a) and (b). The p� d
pairings can be projected into effective d� d pairings, as shown
in the bottom figures.
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around Tc is expected in a full-gap s-wave state even if it is
s� [5,48]. Experimentally, in an extremely clean sample
where the exponential temperature dependence was mea-
sured, no coherent peak was observed at Tc [49]. For iron-
chalcogenides [19–22], this state is highly questionable
because of the absence of a sign change on Fermi surfaces,
so it is hard to explain the possible sign-change evidence
from neutron scattering [50]. It is also worth mentioning
that many weak-coupling methods suggest that the super-
conducting state in iron-chalcogenides is a d wave with
normal pairing [18,51,52]. This state is not consistent
with experimental results showing the absence of
nodes on high-symmetry lines [37–39] and the presence
of strong ferromagnetic NN exchange coupling [53,54].
Nevertheless, this d-wave state should be considered as an
odd-parity state in the original lattice symmetry because it
only includes normal pairing between two sublattices.

A mean-field Hamiltonian to describe the odd-parity
s-wave state in a 1-Fe unit cell (A1u s wave) can be
generally written as

Ho
mf¼Hdd;effþ

X

�;�;k

ð�o
��;n�̂��;nð ~kÞþ�o

��;��̂��;�ð ~kÞþH:c:Þ;

(14)

where �̂��;�¼ d̂�"ð ~kÞd̂�#ð� ~kþQÞ�d̂�#ð ~kÞd̂�"ð� ~kþQÞ. In
general, the normal- and�-pairing order parameters satisfy

�o
��;nð ~kÞ ¼ ��o

��;nð ~kþQÞ; (15)

�o
��;�ð ~kÞ ¼ �o

��;�ð ~kþQÞ: (16)

These equations capture the sign change of superconduct-
ing order parameters in momentum space. The sign change
here is required by odd-parity symmetry.

While detailed studies will be carried out in the future,
the mean-field Hamiltonian captures superconducting
gaps in both iron-pnictides and iron-chalcogenides. As the
interorbital pairing can be ignored for s-wave pairing and
the pairing is dominated by NN and NNN pairings, the
important parameters are

�o
��;n / coskx þ cosky; �o

��;� / coskx cosky: (17)

Thus, the superconducting gaps on hole pockets are mainly
determined by �o

��;n, and those on electron pockets are

mainly determined by �o
��;�.

In the odd-parity s-wave state, there is no symmetry-
protected node. However, accidental nodes can easily ap-
pear. In Fig. 5, we plot numerical results for two cases.
Parameters are specified in the caption of the figure. The
superconducting gap in the first case is a full gap, while it
has gapless nodes on electron pockets in the second case.
This may provide an explanation as to why gapless exci-
tations were observed in some materials [5]. The detailed
studies will be reported in the future.

The odd-parity s-wave state also explains the dual-
symmetry character of both the s-wave and d-wave types

in iron-based superconductors. The�-pairing s-wave order
in D2d essentially is a d-wave type order according to C4v,
as shown in Fig. 4. For a d-wave pairing symmetry, the
vanishing of the coherence factor is required by symmetry.
Thus, current NMR results really support the odd-parity
state.
The Hamiltonian in Eq. (14) cannot be reduced to a

translationally invariant Hamiltonian in a 1-Fe unit cell.
The 2-Fe unit cell becomes intrinsic. Unique features
related to the 2-Fe unit cell should be observed and studied
[55]. A detailed study will be carried out in the future.
In summary, we provide the mean-field Hamiltonian for

parity-conserved superconducting states. Parity conserva-
tion was seriously violated in the past studies. Comparing
odd- and even-parity s-wave states, we show that the odd-
parity s-wave state can naturally explain many intriguing
properties of iron-based superconductors.

VII. SIGNATURE OF THE ODD-PARITY
SUPERCONDUCTING STATE

The fingerprint of the odd-parity state is the negative
isospin of �̂h, which indicates the sign change of order
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FIG. 5. The Fermi surfaces of a five-orbital model from [25]
are shown in (a) and (b). The forms of the hopping terms and
hopping parameters can be found in [25]. Here, we only add a
chemical potential to tune the Fermi level. We set � ¼ 0:1 and
�0:04 in (a) and (b). We define the order parameters in Eq. (16)
as �o

11;n ¼ 1
2 ð�N

11;x coskx þ�N
11;y coskyÞ, �o

22;n ¼ 1
2 ð�N

11;x cosky þ
�N

11;y coskxÞ, �o
44;n¼1

2�
N
44ðcoskxþcoskyÞ, �o

12;�¼�NN
12 sinkxsinky,

and �o
��;� ¼ �NN

�� coskx cosky. The high-symmetry points are

shown in (a), and the pairing channels connecting the points
on the Fermi surface are denoted by the black lines with arrows.
The quasiparticle spectra of the superconductive states for (a)
and (b) are shown in (c) and (d). We find that in (c) the spectrum
is fully gaped, and (d) has nodes at the electron pockets.
The superconducting order parameters are chosen as follows:
�N

11;x ¼ �N
11;y ¼ 0:05, �N

44 ¼ 0:05, �NN
11 ¼ 0:05, �NN

12 ¼ 0:05,

and �N
44 ¼ �0:1.
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parameters between the top and bottom As(Se) layers.
This property was first revealed in the recent constructed
effective S4 symmetry model based on the 2-Fe unit cell
[16,29,56]. However, as the S4 model is a simplified
effective model based on two effective orbitals, the parity
characters were not revealed.

The odd parity indicates that a superconducting single
Fe-As(As) trilayer is a � junction along the c axis, which
can be measured in a single-crystal material, as shown in
Fig. 6: A uniform superconducting state is characterized by
a sign change between the top and bottom surfaces along
the c axis in the 11-type structure, while in the 122-type
structure, the sign change is only present when the number
of layers is odd.

VIII. DISCUSSION

In the history of condensed-matter physics, a new quan-
tum state of condensed matter is not easily obtained by
solving a model. Here, we use fundamental principles to
show that an odd-parity state can naturally occur in iron-
based superconductors, and we suggest smoking-gun ex-
periments to detect or falsify this occurrence. With the
microscopic understanding proposed here, detection of
the odd-parity state can have a tremendous impact on
high-Tc mechanisms for iron-based superconductors and
other high-Tc superconductors.

In the past five years, much research based on effective
models suggests that pairing symmetries in iron-based
superconductors are very fragile. Those studies essentially
suggest that principles to understand the robustness of super-
conductivity and pairing symmetry are still missing in our
standard approach. The results in this paper demonstrate that
previous studies did not correctly take parity conservation
and hidden symmetry in effective models into account and
mishandled symmetry and gauge principles. In the past, the
effective Hamiltonian was viewed in the symmetry group
D4h at iron sites rather than the original lattice symmetryG.
We note that if �̂h is set to 1, G is equivalent to D4h.
However, because of the antibonding p-orbital states, the
effective Hamiltonian does not represent the correct sym-
metry of the original lattice in a natural gauge setting. It will

be interesting to see how the missing pieces can be properly
implemented in our standard methods.
Our results suggest that the gauge principle needs to be

properly implemented when we derive the effective
Hamiltonian in order to simplify a complex system. The
correct physics can only be understood after the hidden
gauge is revealed. For an order parameter that is momen-
tum dependent, this gauge information is critical. The
gauge principle becomes very important for us to search
for new physics in other complex electron systems.
The odd-parity state also suggests the importance of

correlated electron physics. It is believed that sign-change
superconducting order is inevitable in a superconducting
state of strongly correlated electron systems because of the
existence of strong repulsive interactions. This principle is
violated in a parity-even s-wave state. Ameasurement of the
parity-odd s-wave state can provide strong support for this
principle.
The odd-parity s-wave state closely resembles the

d-wave state in a Cu-O plane of cuprates. We expect that
there must be an identical mechanism to select sign-
changed superconducting order in both materials. From
Fig. 4(b), one can see that the �-pairing part in the odd-
parity state can be viewed as two d-wave states formed in
two sublattices, a direct analogy to the d wave in cuprates.
This study opens a promising new direction for the

research in iron-based superconductors and suggests that
the physics in these materials is deeper and much more
inspiring than what we realized before. This research
leaves us with many unanswered questions. Some clarifi-
cations are in order. First, what is the relationship between
magnetism and superconductivity? One can see that the
collinear antiferromagnetic (C-AFM) state [57] observed
in iron-pnictides has odd parity. This characteristic may
partially answer why superconductivity and C-AFM order
can coexist in the phase diagram. Second, what are the
other unique properties in an odd-parity s-wave state? It is
known that an odd-parity p-wave state displays many
unique properties. Third, what is the relationship between
nematism and superconductivity? Nematism breaks rota-
tional symmetry and is observed at high temperatures [58].
Fourth, how robust is an odd-parity state in response to
impurity? This study points out that there are three possible
scenarios related to parity in superconducting states: even,
odd, or broken. Experiments proposed here will finally nail
down the truth. All of the previous studies took even parity
for granted without knowing that the parity was actually
broken in the proposed states. However, a parity-breaking
superconducting state is also an interesting state to explore.
In summary, using symmetry and gauge principles, we

showed that iron-based superconductors are unified into an
odd-parity s-wave superconducting state. Provided that the
essential physics is through the d-p hybridization, we show
that in an effective model based on d orbitals, superconduct-
ing states studied in the past violate parity conservation. The
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existence of the odd-parity state can have a tremendous
impact on high-Tc superconducting mechanisms.
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