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Two-dimensional lattice models subjected to an external effective magnetic field can form nontrivial

band topologies characterized by nonzero integer band Chern numbers. In this Letter, we investigate such

a lattice model originating from the Hofstadter model and demonstrate that the band topology transitions

can be realized by simply introducing tunable longer-range hopping. The rich phase diagram of band

Chern numbers is obtained for the simple rational flux density and a classification of phases is presented.

In the presence of interactions, the existence of fractional quantum Hall states in both jCj ¼ 1 and jCj> 1

bands is confirmed, which can reflect the band topologies in different phases. In contrast, when our model

reduces to a one-dimensional lattice, the ground states are crucially different from fractional quantum Hall

states. Our results may provide insights into the study of new fractional quantum Hall states and

experimental realizations of various topological phases in optical lattices.
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Introduction.—Topologically ordered phases of matter
have been attracting a great deal of interest in modern
condensed matter physics. Among various topological
states, fractional quantum Hall (FQH) states provide the
most prominent examples [1,2]. They support fractionally
charged excitations that are essential resources for topo-
logical quantum computation [3]. Although FQH states
have only been observed in continuum solid state systems,
it is believed that the realization of these exotic states is
also feasible in lattice systems such as the optical lattice of
cold atoms [4–12].

The nontrivial band topology in the single-particle pic-
ture is an indispensable ingredient for FQH states in both
the continuum and lattices [13]. Therefore, the investiga-
tion of band topology is usually the starting point to under-
stand the rich FQH physics. The band topology has been
studied extensively for a square lattice with complex
nearest-neighbor hopping, i.e., the well-known Hofstadter
model [14,15]. Here, a question arises naturally: Can we
produce novel band topology by a simple design based on
the standard Hofstadter model so that new FQH physics
can be obtained?

In this Letter, we systematically visit this problem and
discover that tunable longer-range hopping added on the
conventional Hofstadter model can provide us new band
topologies. We numerically calculate the band Chern num-
bers for simple rational flux density � ¼ p=q, and estab-
lish various phases of band topology by tuning the
strengths of nearest-neighbor and next nearest-neighbor
hopping. The conventional Hofstadter model corresponds
to only one phase in our rich phase diagram, and the band
topologies in other phases are strikingly different from it.
A classification of phases can be given for p ¼ 1 case.

In order to identify the band topology in a many-body
level, we also consider FQH states that can be harbored
by topological nontrivial bands. By choosing appropriate
hopping parameters, we indeed find different FQH states
for different band topologies. These states are expected to
be similar to recently discovered fractional Chern insula-
tors (FCIs) [16–33] because of the adiabatic continuity
between Hofstadter and Chern insulator states [34–36].
Additionally, we study a one-dimensional lattice model
for which our generalized Hofstadter model can be
regarded as a two-dimensional ancestor. However, the
ground states there are crucially different from FQH states
at fractional filling factors [37,38].
Model and band topology.—Here we consider a

two-dimensional (2D) generalized Hofstadter model
on a square lattice with tunable nearest-neighbor
(NN) and next-nearest-neighbor (NNN) hopping (see
Refs. [11,39,40] for other generalizations of the conven-
tional Hofstadter model),

H2D ¼ �X

n;m

½tcyn;mcnþ1;m þ �odei2��ðnþð1=2ÞÞcyn;mcnþ1;mþ1

þ �ode�i2��ðnþð1=2ÞÞcyn;mcnþ1;m�1

þ �dei2��ncyn;mcn;mþ1 þ H:c:�; (1)

where (n, m) is the site coordinate, � is the magnetic flux
through each plaquette, and t, �od and �d are amplitudes
of the hopping in different directions (Fig. 1). We set t ¼ 1
as the energy unit. When� is a rational number p=q (p and
q are integers which are prime to each other), we can
choose q sites in the x direction as a unit cell, so there
are q Bloch bands. Because of the complex hopping terms,
the 2D lattice is pierced by a uniform perpendicular
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effective magnetic field which breaks the time-reversal
symmetry, enabling us to label the topological property
of an isolated band (without level crossings with other
bands) with eigenstate jki by its Chern number [13],
defined as C ¼ ð1=2�ÞRk2BZ fxyðkÞd2k, where fxyðkÞ ¼
@xay � @yax and ajðkÞ ¼ �ihkj@jjki, j ¼ x, y.

For the conventional Hofstadter model (�od ¼ 0), the
single-particle spectrum is the well-known Hofstadter but-
terfly with a fractal structure [14], and the Chern number of
each band can be described by a simple picture [15]. In the
case of p ¼ 1, the middle band has C ¼ �ðq� 1Þ and
other bands have C ¼ 1 for odd q, while the middle two
bands have the total C ¼ �ðq� 2Þ and other bands still
have C ¼ 1 for even q. In the case of p > 1, the bands are
grouped into Qþ 1 clusters by writing p=q ¼
1=ðQþ p0=q0Þ, and the statement above for p ¼ 1 is still
valid for the total Chern number in each cluster. However,
in the presence of the tunable �d and �od, we do not have
such a simple picture of the band topology. Instead, by
numerically calculating the Chern number of each band
[41], we establish a rich phase diagram of band topology.
We find that there are some critical values of �od and �d at
which the band touching occurs, and the Chern numbers of
some bands may change after crossing these critical values,
indicating a phase transition of band topology.

In Fig. 2(a), we take � ¼ 1=3 as an example to demon-
strate the rich phase diagram on the �d-�od plane. The
whole diagram is divided into several distinct phases that
are symmetric with respect to ð�d; �odÞ ¼ ð0; 0Þ. In each
phase, we can label the band topology by Chern numbers
of three bands from the bottom (with the lowest energy) to
the top (with the highest energy), i.e., (C1, C2, C3) satisfy-
ing

Pq
i¼1 Ci ¼ 0. The conventional Hofstadter model cor-

responds to the axis of �d (except the origin) in phase I,
where ðC1; C2; C3Þ ¼ ð1;�2; 1Þ is consistent with the con-
clusion of Ref. [15]. However, the band topologies in the
other three phases are strikingly different from that in
phase I. Chern numbers change due to the band touching
and a phase transition occurs on the boundary between two

neighboring phases. The sign effect of �d (�od) can be seen
clearly: changing the sign of �d (�od) induces a flip of
Chern numbers from (C1, C2, C3) to (C3, C2, C1). We can
classify all phases into two classes according to their Chern
numbers. In the first class (phase I, II, and III),
ðC1; C2; C3Þ ¼ P ð1;�2; 1Þ (P means permutation), and
in the second class (phase IV), ðC1; C2; C3Þ ¼ ð�2; 4;�2Þ.
For other values of � with larger q, similar but more

complicated phase diagrams can be observed. In Fig. 2(b),
we show the phase diagram for � ¼ 1=4. There are six
phases differentiated by Chern numbers of four bands from
the bottom to the top, i.e., (C1, C2, C3, C4), and the
conventional Hofstadter model is located on the boundary
between phase I and phase II. Similar to the� ¼ 1=3 case,
the diagram is symmetric with respect to ð�d; �odÞ ¼ ð0; 0Þ
and the Chern numbers are flipped by the sign change of �d

or �od. All phases can also be classified into two classes. In
the first class (phase I, II, V, and VI), ðC1; C2; C3; C4Þ ¼
P ð1; 1;�3; 1Þ, and in the second class (phase III and IV),
ðC1; C2; C3; C4Þ ¼ P ð1;�3; 5;�3Þ [the line under (� 3, 5,

� 3) means that they are grouped into a cluster and should
be moved as a whole in the permutation].
The symmetry and the classification of phases in

the phase diagram that we observe for � ¼ 1=3 and � ¼
1=4 are inherited by � ¼ 1=5 [42]. Therefore, we
expect that there are 2q� 2 phases which can be
classified into two classes (i) and (ii) for � ¼ 1=q. We
have ðC1;C2; . . . ;Cdq=2c;Cdq=2cþ1;Cdq=2cþ2; . . . ;Cq�1;CqÞ¼
P ð1;1; . . . ;1;1�q;1; . . . ;1;1Þ in class (i) with q phases,
while ðC1;C2; . . . ;Cdq=2c;Cdq=2cþ1;Cdq=2cþ2; . . . ;Cq�1;CqÞ¼
P ð1;1; . . . ;1�q;1þq;1�q; . . . ;1;1Þ in class (ii) with q�2

phases, where dxcmeans the integer part of x. For� ¼ p=q
with p > 1, the situation is much more complicated.
However, most of the (�d, �od) plane is occupied by phases

FIG. 2 (color online). The phase diagram in the �od-�d plane
for (a) � ¼ 1=3 and (b) � ¼ 1=4. (a) There are four phases with
different band Chern numbers: (I) ðC1; C2; C3Þ ¼ ð1;�2; 1Þ; (II)
ðC1; C2; C3Þ ¼ ð1; 1;�2Þ; (III) ðC1; C2; C3Þ ¼ ð�2; 1; 1Þ; (IV)
ðC1; C2; C3Þ ¼ ð�2; 4;�2Þ. (b) There are six phases with differ-
ent band Chern numbers: (I) ðC1; C2; C3; C4Þ ¼ ð1; 1;�3; 1Þ; (II)
ðC1; C2; C3; C4Þ ¼ ð1;�3; 1; 1Þ; (III) ðC1; C2; C3; C4Þ ¼
ð1;�3; 5;�3Þ; (IV) ðC1; C2; C3; C4Þ ¼ ð�3; 5;�3; 1Þ; (V)
ðC1; C2; C3; C4Þ ¼ ð1; 1; 1;�3Þ; (VI) ðC1; C2; C3; C4Þ ¼
ð�3; 1; 1; 1Þ. On the boundary between two regions, band touch-
ing occurs.

FIG. 1 (color online). An illustration of our square lattice
model with � ¼ 1=3. There are three sites (A, B, C) per unit
cell. The site coordinates and the hopping between sites are
indicated explicitly. After the Fourier transform into the momen-
tum space, the diagonal (off-diagonal) entries of the Hamiltonian
only depend on�d (�od), sowe use the superscripts ‘‘d’’ and ‘‘od’’.
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in which the band Chern numbers (C1; . . . ; Cq) can be

obtained by the permutation of that for the conventional
Hofstadter model [42].

Fractional quantum Hall states.—In order to further
characterize the band topologies of different phases dis-
covered in the last section, we consider interacting parti-
cles partially filled in one band. If the Chern number of this
occupied band changes due to a phase transition, the FQH
states that this band favors to harbor should also change.
Therefore, we can utilize FQH states to reflect the band
topology. In the following, we choose � ¼ 1=3 to study
the FQH states in various phases. These states are expected
to be similar to FCIs in topological flat bands, although the
net magnetic field is nonzero in our model (a gauge trans-
formation can be used to obtain a zero net magnetic field
[34]). We adopt some commonly used criteria, such as the
ground-state topological degeneracy, the spectral flow
under twisted boundary conditions, and the particle-cut
entanglement spectrum, to identify the ground states as
FQH states [19–31].

We first consider Ne fermions partially filled in the
middle bandwithNNandNNN repulsive interactionHint ¼
V1

P
hi;jininj þ V2

P
hhi;jiininj, with hi; ji and hhi; jii repre-

sentingNNandNNNsites, respectively. In order to focus on
the topological property of the band, we take the flat band
limit and diagonalize Hint projected to the flattened occu-
pied band [43] for a finite system on the torus withN1 � N2

unit cells. We choose three sites in the x direction as a unit
cell, so the actual lattice size is 3N1 � N2. The filling factor
� is defined asNe=ðN1N2Þ. Each energy level can be labeled
by the 2D total momentum (K1, K2).

In phase II, the Chern number of the middle band is
C2 ¼ 1, so the � ¼ 1=3 fermionic FQH state may be stabi-
lized for appropriate hopping parameters. By choosing
ð�d; �odÞ ¼ ð1; 0:5Þ, we indeed find three quasidegenerate
ground states at the bottom of the energy spectrum sepa-
rated by an energy gap from high excited levels [Fig. 3(a)].
The spectral flow under twisted boundary conditions also
confirms that the ground states are topologically nontrivial
[Fig. 3(b)]. When the boundary phase� changes from 0 to
3� 2�, the three ground states evolve into each other,
being always separated from excited states by a gap, and
finally return to the initial configuration. In order to discard
competing possibilities, such as charge density waves
(CDWs), we investigate the particle-cut entanglement spec-
trum (PES) [20,30,44,45], which can probe the excitation
structure of the ground states [Fig. 3(c)]. One can see a clear
entanglement gap in the spectrum, and the number of low-
lying levels below the gap exactly matches the quasihole
counting in the corresponding Abelian FQH states.
Combining all these evidences together, we are convinced
that the � ¼ 1=3 fermionic FQH state exists in the middle
band in phase II.

After the system evolves from phase II to phase I, the
Chern number of the middle band changes from C2 ¼ 1 to
C2 ¼ �2. Therefore, it is expected that we can observe the

� ¼ 1=5 instead of the � ¼ 1=3 fermionic FQH state for
appropriate hopping parameters [30]. Our numerical results
for ð�d; �odÞ ¼ ð0:75; 0Þ, including the energy spectrum,
the spectra flow, and the PES, provide convincing evidence
of the � ¼ 1=5 fermionic FQH state [Figs. 3(d)–3(f)] in the
C ¼ �2 band. Moreover, a � ¼ 1=3 state in the middle
band, like that appearing in phase II, is not found in phase I.
In this way, we characterize the different band topology
between phase I and phase II in a many-body level.
Now we turn our attention to Nb bosons partially filled in

the lowest band with on-site and NN repulsive interaction
Hint ¼ U

P
iniðni � 1Þ þ V

P
hi;jininj. Here we also flatten

the occupied band and projectHint to it. In phase IV, theChern
number of the lowest band isC1 ¼ �2, whichmayharbor the
unusual bosonic FQH state at � ¼ 1=3 with an odd denomi-
nator [29,30]. Our numerical results indeed support the exis-
tence of this state [Figs. 4(a)–4(c)]. Moreover, in phase II
where C1 changes to 1 from�2, we find that bosons form a
FQH state at � ¼ 1=2 instead of � ¼ 1=3 [Figs. 4(d)–4(f)].
Therefore, the different band topology between phase II and
phase IV is also confirmed in a many-body picture.
Interacting one-dimensional model.—Our 2D general-

ized Hofstadter model can be regarded as an ancestor of a
one-dimensional (1D) model with the NN hopping and the
on-site potential governed by a modulation of frequency�,

FIG. 3 (color online). Numerical results for fermionic � ¼ 1=3
[(a)–(c)] and � ¼ 1=5 [(d)–(f)] FQH states with V1 ¼ V2 ¼ 0:5.
ð�d; �odÞ ¼ ð1; 0:5Þ for (a)–(c) and ð�d; �odÞ ¼ ð0:75; 0Þ for
(d)–(f). (a) The low-energy spectra for Ne ¼ 6, 8, 10. (b) The
x-direction spectral flow for Ne ¼ 8. (c) The PES for Ne ¼ 9,
NA ¼ 4, and N1 � N2 ¼ 3� 9. The number of states below the
gap is 5508. (d) The low-energy spectra for Ne ¼ 5, 6, 7. (e) The
y-direction spectral flow for Ne ¼ 6. (f) The PES for Ne ¼ 7,
NA ¼ 3, and N1 � N2 ¼ 5� 7. The number of states below the
gap is 2695.
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H1Dð�Þ ¼ �X

n

f½1þ 2�od cosð2��nþ �þ ��Þ�cyncnþ1

þ H:c:þ 2�d cosð2��nþ �Þcyncng; (2)

where � is a phase factor that can be randomly chosen. In
the case of �od ¼ 0, the topological properties of this
model and its whole family fH1Dð�Þ; 0 � � < 2�g are
clarified [46]. After replacing cn with cn;� in Eq. (2), we

can return to our generalized 2D Hofstadter model by
H2D ¼ ð1=2�ÞR2�

0 H1Dð�Þd�.
Motivated by recent discoveries of gapped phases

of interacting particles in 1D flat bands at fractional fillings
[38,47,48], we consider the lattice model in Eq. (2)
under the periodic boundary condition partially filled
by Ne fermions with dipole-dipole interaction Hint ¼
ðV=2ÞPi�jðninj=ji� jj3Þ for � ¼ 1=3. The filling factor

� is defined as Ne=Ncell with Ncell the number of unit cells,
each of which contains three sites. In the large interaction
limit, we find that there is always an m-fold ground-state
degeneracy at � ¼ 1=m for �od ¼ 0 (Fig. 5), even for
the even m where fermionic Laughlin states do not exist.
Moreover, the number of states below the entanglement gap

in the PES ismuch smaller than the FQHcountingN NA

FQH ¼
mðNe=NAÞðmNe�ðm�1ÞNA�1

NA�1 Þ, but matches the CDW counting

N NA

CDW ¼ mðNe
NA
Þ [37,38]. Therefore, our results strongly

suggest that the many-body ground states of model (2) are
CDW states in real space rather than the 1D analogues of
lattice FQH states discussed in the last section.
Conclusions.—In summary, we discover different band

topologies from that in the conventional Hofstadter model
by simply considering a tunable longer-range hopping.
Rich phase diagrams of band topology are established on
the �d-�od plane for the rational flux density � ¼ p=q and
a classification of phases is discussed for p ¼ 1. The
many-body FQH states that can differentiate the band
topologies in various phases are also confirmed.
However, the situation is completely different in 1D, where
the many-body ground states have the CDW property.
There could be several future theoretical and experimen-

tal works based on our Letter, one of which may be to study
the new FQH physics near rational � [12]. Moreover, it
might be interesting to study band topology transitions in
other 2D and 3D lattice models [49]. Very recently, a
scheme of direct experimental measurement of topological
invariants in optical lattices was proposed, which might be
helpful to differentiate various band topologies in our
phase diagrams in experiments [50]. Considering the hop-
ping strength can be easily tuned in cold atom setups, our
work will provide guidance for the experimental realiza-
tion of various band topologies and exciting many-body
fractional topological phases.
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FIG. 4 (color online). Numerical results for bosonic � ¼ 1=3
[(a)–(c)] and � ¼ 1=2 [(d)–(f)] FQH states with U ¼ 2V1 ¼ 1:0.
ð�d; �odÞ ¼ ð�0:75; 5Þ for (a)–(c) and ð�d; �odÞ ¼ ð1; 0:5Þ for
(d)–(f). (a) The low-energy spectra for Nb ¼ 4, 6, 8. (b) The
x-direction spectral flow for Nb ¼ 5. (c) The PES for Nb ¼ 8,
N1 � N2 ¼ 3� 8 and NA ¼ 4. The number of states below the
gap is 2730. (d) The low-energy spectra for Nb ¼ 4, 6, 8. (e) The
y-direction spectral flow for Nb ¼ 6. (f) The PES for Nb ¼ 9,
N1 � N2 ¼ 3� 6 and NA ¼ 4. The number of states below the
gap is 1287.

FIG. 5 (color online). Numerical results for the 1D model in
Eq. (2) at � ¼ 1=2 [(a)–(b)] and � ¼ 1=3 [(c)–(d)], with � ¼
�=2, � ¼ 1=3, and ð�d; �odÞ ¼ ð0:75; 0Þ. The results are calcu-
lated without band projection in the large interaction limit.
(a) The low-energy spectrum at � ¼ 1=2. (b) The PES for Ne ¼
5, Ncell ¼ 10, and NA ¼ 2. The number of states below the gap is
20. (c) The low-energy spectrum at � ¼ 1=3. (d) The PES for
Ne ¼ 4, Ncell ¼ 12, and NA ¼ 2. The number of states below the
gap is 18.
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[10] G. Möller and N. R. Cooper, Phys. Rev. Lett. 103, 105303

(2009).
[11] E. Kapit and E. Mueller, Phys. Rev. Lett. 105, 215303

(2010).
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