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Borromean rings and Borromean binding, a class of intriguing phenomena as three objects are linked
(bound) together while any two of them are unlinked (unbound), widely exist in nature and have been
found in systems of biology, chemistry, and physics. Previous studies have suggested that the occurrence of
such a binding in physical systems typically relies on the microscopic details of pairwise interaction
potentials at short range and is, therefore, nonuniversal. Here, we report a new type of Borromean binding
in ultracold Fermi gases with Rashba spin-orbit coupling, which is universal against short-range interaction
details, with its binding energy only dependent on the s-wave scattering length and the spin-orbit-coupling
strength. We show that the occurrence of this universal Borromean binding is facilitated by the symmetry of
the single-particle dispersion under spin-orbit coupling and is, therefore, symmetry selective rather than
interaction selective. The state is robust over a wide range of mass ratios between composing fermions,
which are accessible by Li-Li, K-K, and K-Li mixtures in cold-atom experiments. Our results reveal the
importance of single- particle spectral symmetry in few-body physics and shed light on the emergence of
new quantum phases in a many-body system with exotic few-body correlations.
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I. INTRODUCTION

The fascinating topological structure of Borromean rings
has attracted much attention in biology [1] and chemistry
[2], while, in physics, their quantum mechanical analog,
the Borromean binding, has been reported in halo nuclei
6He and 11Li [3,4] and in ultracold atomic gases [5–14]
manifested as the Efimov effect [15,16]. Despite its wide
existence in nature, the Borromean phenomenon seems
quite intricate and peculiar, as it especially requires three
bodies being more favorably bound than two bodies.
Previous studies have shown that such a requirement can
be fulfilled by fine-tuning the pairwise short-range inter-
action potentials. For instance, in three dimensions (3D),
the coupling constant should vary with the specific shape of
the short-range potential [17,18], while in two dimensions
(2D), it is necessary for the potential to include a repulsive
barrier outside an attractive core [19–21]. Meanwhile, for
Efimov-type Borromean states, a short-range (three-body)
parameter is essential to uniquely determine the binding

energies as well as the locations of their emergence [16]. In
all these studies, the Borromean binding appears to be a
nonuniversal phenomenon that inevitably relies on the
short-range details of interaction potentials. This nonun-
iversality makes a unified understanding of the Borromean
binding conceptually difficult and renders its experimental
detection inconveniently system dependent.
To overcome these difficulties, we aim at engineering a

universal Borromean binding, where the short-range inter-
action details are completely irrelevant and its occurrence is
physically transparent. Motivated by a simple fact that few-
body physics also crucially depends on single-particle
properties, we realize that a potential route toward our
goal is through the modification of single-particle physics.
In ultracold atomic gases, an outstanding candidate
to achieve this modification is the synthetic spin-orbit
coupling (SOC) [22–32], with the form of SOC highly
tunable according to a number of proposals [33–39].
Indeed, the significant change of single-particle dispersion
by SOC has been shown to result in rich and exciting
physics in few- and many-body systems [40]. In particular,
it has been found that an isotropic SOC can support a dimer
for arbitrarily weak interactions [39,41–43] and can induce
a universal trimer in a wide parameter regime of interaction
strength and mass ratio [44]. These states are in distinct
contrast to the dimer and the Kartavtsev-Malykh trimer [45]

*xlcui@iphy.ac.cn
†wyiz@ustc.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 4, 031026 (2014)

2160-3308=14=4(3)=031026(6) 031026-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.4.031026
http://dx.doi.org/10.1103/PhysRevX.4.031026
http://dx.doi.org/10.1103/PhysRevX.4.031026
http://dx.doi.org/10.1103/PhysRevX.4.031026
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


in the absence of SOC. So far, however, no universal
Borromean binding has yet been identified.
In this work, we report the discovery of universal

Borromean bindings in ultracold Fermi-Fermi mixtures
with Rashba SOC. The three-body system can be denoted
as ~a- ~a-b, where ~a is a two-component fermion subject to
Rashba SOC, with one of its components tuned close to a
wide Feshbach resonance with the b atom [46]. The
mechanism for the Borromean binding in this system is
schematically shown in Fig. 1. Under Rashba SOC, the
single-particle ground state of ~a possesses a U(1) degen-
eracy [see Fig. 1(a)]. With such a spectral symmetry,
the two-body ( ~a-b) scattering within the lowest-energy
subspace is blocked due to total momentum conservation
[Fig. 1(b)], which effectively suppresses the dimer for-
mation. In contrast, the three-body scattering can take full
advantage of this U(1) degeneracy, where an initial state of
~a ~-a -b atoms at fk;−k; 0g can be scattered to a different
state at fk0;−k0; 0g with a conserved total momentum
[Fig. 1(c)]. Here, k and k0 both lie on the circle of the U(1)
degenerate manifold of ~a. This enhanced low-energy
scattering phase space strongly suggests that the trimer
formation is much easier than the dimer formation, which,
as we will show, would give rise to the Borromean binding.
As the emergence of this Borromean binding is symmetry
selective rather than interaction selective, its universality is
naturally guaranteed: The binding energy only relies on the

s-wave scattering length and the SOC strength. We identify
the existence of such bindings in a wide range of mass
ratios between composing fermions, which are readily
accessible by Li-Li, K-K, and K-Li mixtures in current
cold-atom experiments. The robustness of this Borromean
binding suggests the importance of the single-particle
spectral symmetry in few-body physics, which has rarely
been discussed before.

II. MODEL

The Hamiltonian of our system is written as

H ¼
X

k;α¼↑;↓

k2

2ma
a†k;αak;α þ

X
k

k2

2mb
b†kbk

þ λ

ma

X
k

½ðkx − ikyÞa†k;↑ak;↓ þ H:c:�

þU
V

X
k;k0;Q

a†k;↑b
†
Q−kbQ−k0ak0;↑; ð1Þ

where λ is the strength of the Rashba SOC between two
spin species (α ¼ ↑;↓) of the ~a atom; U is the bare inter-
action between a↑ and b and is related to the s-wave
scattering length as via 1=U ¼ μ=ð2πasÞ − ð1=VÞPk1=
ð2μk2Þ, with V the quantization volume and μ ¼
mamb=ðma þmbÞ the reduced mass. As Feshbach reso-
nances are state dependent and have a finite width, it is
reasonable to assume negligible interactions in other two-
body subsystems [46]. Note that we have taken ℏ ¼ 1 for
brevity.
Under SOC, the single-particle eigenstate of ~a in the

helicity basis is created by a†k;σ¼
P

αγ
α
k;σa

†
k;α, where

σ ¼ �, γ↑k;�¼�e�iϕk=2=
ffiffiffi
2

p
, γ↓k;�¼e�iϕk=2=

ffiffiffi
2

p
, and ϕk ¼

argðkx; kyÞ. The corresponding eigenenergy is ϵak;σ¼
½ðk⊥þσλÞ2þk2z �=ð2maÞþEth, with k⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. The

ground state has U(1) degeneracy in k space with k⊥ ¼ λ
and a threshold energy Eth ¼ −λ2=ð2maÞ. Given the single-
particle spectrum ϵbk ¼ k2=ð2mbÞ for the b atom, the two-
body ~a-b and the three-body ~a ~-a -b systems, respectively,
have threshold energies Eth and 2Eth.

III. DIMER STATE

We start by addressing the dimer state of the ~a-b system.
The dimer wave function with a center-of-mass momentum
Q can be written as

jΨð2Þi ¼
X
k;σ¼�

Ψð2ÞðQ − k;kσÞb†Q−ka
†
kσj0i: ð2Þ

The coefficient Ψð2Þ can be solved in a standard way based
on the Lippmann-Schwinger equation [47]:

FIG. 1. Illustration of the Borromean binding mechanism in the
~a ~-a -b system. (a) Under Rashba SOC, the single-particle ground
state of ~a has a U(1) degeneracy in the ðkx; kyÞ plane with radius
k⊥ ¼ λ. (b) The two-body ~a-b system cannot scatter within
the lowest-energy subspace due to the conservation of total
momentum. (c) In contrast, the scattering of the three-body
~a ~-a -b system is allowed within the lowest-energy subspace
through virtual scattering to states like fk0;−k;k − k0g or
fk;−k0;k0 − kg (dashed green arrows). The dramatic enhance-
ment of the low-energy scattering phase space in (c) gives rise to
the Borromean binding.
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Ψð2ÞðQ − k;kσÞ ∝ γ↑kσ
�

E2 þ Eth − ϵbQ−k − ϵak;σ
; ð3Þ

where E2 is the two-body binding energy determined by

1

U
¼ 1

V

X
k;σ

jγ↑kσj2
E2 þ Eth − ϵbQ−k − ϵak;σ

: ð4Þ

Among all Q sectors, the lowest bound state ðE2 < 0Þ is
found with Q ¼ 0. Different from previous two-body
solutions with Rashba SOC [41], to support a bound state
here, the interaction strength 1=ðλasÞmust be greater than a
finite critical value 1=ðλasÞc, which can be solved analyti-
cally as a function of mass ratio η ¼ ma=mb:

1

ðλasÞc
¼ x

�
1 − x

2
ln
1þ x
1 − x

�
; x ¼ 1

1þ η
: ð5Þ

The function of 1=ðλasÞc in terms of η is plotted in
Fig. 2(a). As η is increased from 0, 1=ðλasÞc first increases
from −∞ to a positive maximum value around η ∼ 1, then
decreases and finally approaches 0þ as η → ∞. This
behavior can be understood from the analysis of the
two-body scattering energy Eð2Þ

k;σ ¼ ϵb−k þ ϵak;σ − Eth,
whose low-energy property is crucial for the formation

of a shallow bound state. It is easy to see that the minimum
of Eð2Þ

k;σ, denoted as Emin, lies on a ring with radius
k⊥ ¼ λ=ð1þ ηÞ in the ðkx; kyÞ plane. As η increases from
0 to ∞, the radius evolves from λ to 0, indicating a
dimensional crossover from effectively 2D to 3D. This
effective dimensional crossover is also manifested in the
density of states ρ at Emin, which approaches 0 from a
finite value as η increases [see the inset of Fig. 2(a)].
Consequently, the critical 1=ðλasÞc changes from −∞ to 0,
corresponding to an effective dimensional crossover from
2D to 3D without SOC.
An important feature in Fig. 2(a) is that the two-body

threshold 1=ðasÞc is pushed from resonance to positive
values for a considerable range of mass ratio η ∈ ½0.44;∞Þ,
indicating the suppression of dimer formation by Rashba
SOC. The suppression of dimer is consistent with the
schematic picture in Fig. 1(b). For an initial ~a-b state in the
lowest-energy subspace (jQj ¼ λ), it cannot be scattered
into a different state among the U(1) degenerate ground
states due to the conservation of total momentum. Given
the blocked threshold scattering with jQj ¼ λ, the ground-
state dimer with E2 < 0 is found to be at Q ¼ 0, where the
U(1) symmetry is restored at the cost of higher threshold
energy (Emin > 0). In Figs. 2(b1) and 2(b2), we plot the
momentum distribution of such dimers for two different
mass ratios η ¼ 1 and 40=6, corresponding to the cases of
Li-Li (or K-K) and K-Li mixtures. For both cases, the
largest weight of the wave function lies on a ring with
radius k⊥ < λ and with Emin > 0.

IV. BORROMEAN BINDING

We are now in position to examine the three-
body problem. According to the analysis in Fig. 1(c),
the ground-state trimer is expected to have zero center-of-
mass momentum, for which the wave function can be
written as

jΨð3Þi ¼
X
kσ

X
qξ

Ψð3Þð−k − q;kσ;qξÞb†−k−qa†kσa†qξj0i:

ð6Þ

Following similar procedures as in solving the two-body
problem, we obtain the integral equations for the three-
body bound-state solution [47]:

1

U
FσðkÞ ¼

1

V

X
qξ

jγ↑qξj2FσðkÞ − jγ↑kσj2FξðqÞ
E3 þ 2Eth − ϵb−k−q − ϵak;σ − ϵaq;ξ

; ð7Þ

where FσðkÞ ¼ U
P

qξΨ
ð3Þð−k − q;kσ;qξÞγ↑kσγ↑qξ, and

the trimer binding energy E3 can be obtained by requiring
a nonzero solution of FσðkÞ. Under Rashba SOC, the F
function can be decoupled into sectors with different
magnetic angular momenta:
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FIG. 2. Dimer threshold and momentum distribution. (a) Criti-
cal interaction strength 1=ðλasÞc to support a bound state of an
~a-b system as a function of the mass ratio η ¼ ma=mb. Dashed
lines show the asymptotic fits 1 − 1=2 lnð4=ηÞ and η−1=2, re-
spectively, in the limits of η → 0 and ∞. The insets show the
minimum of the two-body scattering energy Emin [in units of
λ2=ð2maÞ] and the density of states ρ (in units of 4π2maλ) at Emin.
(b1),(b2) Probability distribution of a shallow dimer in the
ðkx; kyÞ plane jΨð2Þð−k;k;−Þj2 for two different mass ratios
η ¼ 1 and 40=6, respectively, at 1=ðλasÞ ¼ 0.3; 0.35.
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FσðkÞ ¼
X
m≥0

FðmÞ
σ ðk⊥; kzÞ cosðmϕk þ θmÞ; ð8Þ

where θm is an arbitrary phase shift that turns out to be
irrelevant to the final solution of E3. Note that due to
Fermi statistics, the ground state is in the m ¼ 1 sector.
Given FσðkÞ, the wave function Ψð3Þ can be obtained
accordingly [47].
In Fig. 3, we plot the ground-state trimer energy E3 for

the 40Kð ~aÞ-40Kð ~aÞ-6LiðbÞ case as a function of interaction
strength 1=ðλasÞ. As expected, when 1=ðλasÞ increases, the
trimer is found to emerge well before the dimer, which
leads to the occurrence of the Borromean binding. For the
40K-40K-6Li system, the Borromean state is stable within
the range of 1=ðλasÞ ∈ ½0.2; 0.31Þ, while the most tightly
bound Borromean occurs at the phase boundary against the
ordinary trimer, i.e., when the dimer starts to develop at
1=ðλasÞ ¼ 0.31. At this point, the Borromean binding
energy can be as large as ∼30% of the SOC energy
λ2=ð2maÞ. The ordinary trimer finally merges into the
atom-dimer threshold at a larger 1=ðλasÞ ¼ 0.76.
To gain further understanding of the binding mechanism,

we plot in Fig. 4(a) the momentum distribution of the
Borromean state at 1=ðλasÞ ¼ 0.3. In contrast to that of
dimers shown in Figs. 2(b1) and 2(b2), here, most of the
weight of the probability distribution jΨð3Þð0;k;−;−k;−Þj2
spreads along the U(1) circle in the lowest-energy subspace
for ~a atoms. Thus, scattering among these low-energy states
contributes the most to the bound-state formation, consistent
with the schematics in Fig. 1(c).

An outstanding feature of the Borromean binding in the
current system is its universality; i.e., the binding energy
does not rely on the short-range interaction details. The
universality can be shown by imposing different high-
momentum cutoffs Λ for the argument of the Fσ function in
Eq. (7): ðkc⊥; jkzjcÞ ¼ ð ffiffiffi

2
p

Λ;ΛÞ. In Fig. 4(b), we plot E3 as
a function of λ=Λ for the Borromean binding at
1=ðλasÞ ¼ 0.3. If the binding is universal, E3 should be
independent of the actual cutoff Λ, and all the points should
fall onto a straight line in the fλ=Λ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3=½Λ2=ð2maÞ�

p
g

plane, which is exactly the case in Fig. 4(b). The only
relevant length scales are then as and 1=λ. The universality
of the Borromean binding here distinguishes itself
from those in the previous studies where the short-range
(or high-energy) details of the interaction potential play
essential roles.
Furthermore, we find that the Borromean binding in the

current system is remarkably robust. As shown in the
ground-state phase diagram for the ~a ~-a -b system in Fig. 5,

AD

FIG. 3. Borromean binding of the 40Kð ~aÞ-40Kð ~aÞ-6LiðbÞ sys-
tem. The trimer binding energy E3 (solid black line) and atom-
dimer threshold EAD (dashed red line) are shown as functions of
1=ðλasÞ. Energies are in units of the SOC energy λ2=ð2maÞ. The
trimer with E3 < 0 and dimer with E2 < 0, respectively, emerge
at 1=ðλasÞ ¼ 0.2 and 0.31. The inset shows ΔE3, the relative
value of E3 compared to the scattering threshold or the atom-
dimer threshold. The dotted vertical line marks the boundary
between Borromean (B) and ordinary trimer (T) states.
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FIG. 4. Momentum distribution and universality of the
Borromean bound state. (a) Probability distribution
jΨð3Þð0;k;−;−k;−Þj2 for the Borromean binding at 1=ðλasÞ ¼
0.3 and η ¼ 40=6. The phase shift θm is chosen to be 0.
(b) Borromean binding energy E3 [in units of cutoff energy
Λ2=ð2maÞ] as a function of λ=Λ for four different cutoffs Λ.
Other parameters are the same as in (a).

FIG. 5. Phase diagram for trimer states. The boundaries are
shown in terms of 1=ðλasÞ and η ¼ ma=mb. The lower and upper
solid curves, respectively, show the threshold of Borromean (B)
binding and the boundary at which the ordinary trimer (T) merges
into the atom-dimer continuum (AD). The dashed blue curve is
the dimer threshold [see Fig. 2(a)], which also marks the
boundary between B and T for η ≥ 0.39.
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the Borromean binding can be stabilized over a wide range
of mass ratios with η ≥ 0.39, thus covering all Li-Li-Li,
K-K-K, and K-K-Li systems. We have checked that the
momentum distributions of these Borromean states for
different η all exhibit similar structures, as shown in
Fig. 4(a). Therefore, these Borromean states all share the
same binding mechanism, which is closely related to the
spectral symmetry in the low-energy manifold due to Rashba
SOC (see Fig. 1). This mechanism also ensures the robust-
ness of such a binding against changes in the spin depend-
ence of the interaction. Our results are thus not limited to the
spin-selective interaction considered in this work.

V. FINAL REMARK

The universal Borromean bindings demonstrated in our
work are expected to have dramatic effects on the many-
body system. With the Borromean binding energy on the
same order of the SOC energy, a dilute gas with strong SOC
is anticipated to be comprised of self-bound Borromean
clusters that function as composite fermions. Moreover, as
the emergence of such a binding is associated with the
three-body scattering resonance, a scattering system near
this resonance will exhibit strong three-body correlations
that dominate over the two-body ones. These prominent
three-body correlations would potentially lead to intriguing
collective phenomena in both the attractive and the scatter-
ing branches of the underlying fermion system.
Finally, we remark that the mechanism of universal

Borromean bindings established in this work can be
generalized to a vast class of systems, where the single-
particle spectral symmetry is modified by intrinsic or
external potentials. Our work thus paves the way for the
study of systems where the single-particle physics, instead
of interaction details, plays the dominant role in generating
exotic few-body correlations, which should lead to new
quantum phases in many-body systems.
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