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Employing large-scale quantum Monte Carlo simulations, we reveal the full phase diagram of the
extended Hubbard model of hard-core bosons on the pyrochlore lattice with partial fillings. When the
intersite repulsion is dominant, the system is in a cluster Mott insulator phase with an integer number of
bosons localized inside the tetrahedral units of the pyrochlore lattice. We show that the full phase diagram
contains three cluster Mott insulator phases with 1=4, 1=2, and 3=4 boson fillings, respectively. We further
demonstrate that all three cluster Mott insulators are Coulomb liquid phases and its low-energy property is
described by the emergent compact Uð1Þ quantum electrodynamics. In addition to measuring the specific
heat and entropy of the cluster Mott insulators, we investigate the correlation function of the emergent
electric field and verify it is consistent with the compact Uð1Þ quantum electrodynamics description. Our
result sheds light on the magnetic properties of various pyrochlore systems, as well as the charge physics of
the cluster magnets.
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Introduction.—Cluster Mott insulators (CMIs) and
related materials are a new class of physical system that
provides a new ground to look for emergent and exotic
phenomena [1–3]. Unlike in the conventional Mott insula-
tors, the electrons in CMIs are localized inside certain
cluster units rather than on the lattice sites. It is the intersite
electron interaction that leads to the unconventional elec-
tron localization in CMIs and causes the electron motion
inside neighboring clusters to be correlated. This correlated
electron motion allows the electron charges to fluctuate
quantum mechanically in the positional space at energies
below the Mott gap. Such a subgap charge fluctuation is
one of the key features of CMIs and is responsible for
various emergent phenomena [1]. For instance, in the
electron CMI on a pyrochlore lattice where the electrons
are localized on the tetrahedral clusters, it was shown [1]
that, due to the subgap charge fluctuation, the charge sector
is in a Coulomb liquid phase with an emergent gapless
Uð1Þ gauge photon and fractional charge excitation.
The existing proposals for CMIs focus on the electron

systems, as the real materials are electronic systems.
Because of the fermionic statistics, however, the relevant
theoretical models often suffer from a fermion sign problem
and are prohibited from controlled investigation via quan-
tum Monte Carlo (QMC) simulations. Furthermore, the
electron models are complicated by the presence of
the spin-carrying excitations. Nevertheless, the hallmark
of the CMIs—particles being localized on the cluster units

with subgap fluctuations—is independent of the particle
statistics. Therefore, in this Letter, we turn our attention to
bosons and study the hard-core boson models on a
pyrochlore lattice with partial fillings. We show that the
bosonic pyrochlore system supports the Coulomb liquid
phase with emergent Uð1Þ gauge structure in the bosonic
CMI. The emergent and exotic physics in the charge sector
of the electronic CMI is fully retained in the corresponding
bosonic CMI on the same lattice.
Model.—Our model is defined on the pyrochlore lattice

with the Hamiltonian,

H ¼
X
hi;ji

½−tðb†i bj þ H:c:Þ þ Vninj� − μ
X
i

ni; ð1Þ

where b† (b) is the hard-core boson creation (annihilation)
operator. By definition, we exclude the double occupation
of the bosons on a single lattice site. The nearest neighbor
boson hopping (repulsion) is t (V), and we set V ¼ 1 as the
energy unit throughout the paper.
We first clarify the nomenclatures associated with this

model and its ground state in the literature [4–6]. The
model in Eq. (1) was originally proposed as the spin-1=2
XXZ model on a pyrochlore lattice in Ref. [4], if the hard-
core boson variables are transformed into spin operators via
b†i ¼ Sxi þ iSyi and ni − 1=2 ¼ Szi . The hard-core boson
model at 1=2 boson filling gives a Coulomb liquid CMI
phase when the intersite repulsion V is strong enough to
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localize the bosons in the tetrahedra with two bosons per
tetrahedron [4–6]. This insulating Coulomb liquid phase at
1=2 filling is referred as “CMI-1=2” (see Fig. 2) in this
Letter. In the spin language, the “CMI-1=2” phase is the
well-known quantum spin ice phase, whose low-energy
property is described by the compact Uð1Þ gauge field
coupled with gapped bosonic “spinons” that carry the
quantum number Sz ¼ 1=2 [7–12]. The boson localization
condition with two bosons in each tetrahedron is essentially
the “two-up, two-down” spin ice rule [4].

In this Letter, we carry out a large-scale world-line QMC
simulation to investigate the full phase diagram of Eq. (1) in
a more general parameter space. We vary both t=V and μ=V
to access different interaction strengths, as well as the
boson fillings other than the 1=2 filling. We reveal two
more CMIs at 1=4 and 3=4 fillings [see the schematic plot
of the CMI at 1=4 filling in Fig. 1(a) and the phase diagram
in Fig. 2] and verify both of them are in Coulomb liquid
phase with emergent compact QED description of the low-
energy property.
Numerical methods.—We employ a large-scale worm-

type QMC technique to simulate the Hamiltonian in Eq. (1)
on the pyrochlore lattice. The simulations are performed in
grand canonical ensemble. The worm algorithm is based on
the path-integral formulation of the quantum many-body
action and works in continuous imaginary time without the
Trotter error [13–15]. In the simulation, we choose the
linear lattice size L in the range of 4 ≤ L ≤ 16, larger than
those in previous studies [5,6]. The inverse temperatures go
as large as β ¼ 100L, while simulations at even lower
temperatures were also performed for some cases.
To determine the phase boundary between the superfluid

and CMIs, we measure both the superfluid density ρS ¼
hW2

a1 þW2
a2 þW2

a3i=ð3tLβÞ and the boson particle density
ρ ¼ hNi=ð4L3Þ, where hNi is the expectation value of the
number of bosons andWai , with i ¼ 1; 2; 3, are the winding
numbers [16] along the three primitive vector directions
shown in Fig. 1(a).
Phase diagram.—The full phase diagram obtained from

our simulations is presented in Fig. 2. When t=V is small,
two CMIs at 1=4 and 3=4 boson fillings, in addition to the
known CMI at 1=2 filling, are found. Here, the “CMI-1=4”
(“CMI-3=4”) contains one (three) bosons in each tetrahe-
dral cluster. When t=V is large, superfluid phase is
obtained.
In Figs. 3(a) and 3(b), we depict the boson density ρ and

the superfluid density ρS as a function of interaction t=V for
a fixed chemical potential μ=V; i.e., the system is inside the
CMI-1=4 when t=V is small. One sees in the superfluid that
ρS is finite while ρ is strongly fluctuating. The phase
boundary of the superfluid is signalled by the vanishing of
ρS. In Figs. 3(c) and 3(d), we depict the boson density ρ and
the superfluid density ρS as a function of chemical potential
μ=V for a fixed interaction strength t=V ¼ 0.04; i.e., the
system is inside the CMI-1=4 and CMI-1=2 when μ=V is
within the Mott regime. In the Mott regime, the boson
density is fixed while the superfluid density is zero. A fixed
boson density implies that the compressibility ∂ρ=∂μ is
zero and the system is hence Mott insulating. The Mott
insulating phase is terminated at the places where the
compressibility is nonzero. In all the cases that we
simulated in Figs. 2 and 3, the phase boundary of the
Mott insulators coincides with the phase boundary of the
superfluid. Therefore, there is no other intermediate phase
between the superfluid and the Mott insulators.

FIG. 1 (color online). (a) Snapshot of the boson configuration
on the pyrochlore lattice at CMI-1=4, viewed on a kagome plane.
Removing one boson creates two defect tetrahedra (marked with
dashed circles). The intensity of the contour background stands
for the 1=r4 decay of the electric field correlation for the Coulomb
liquid phase, where the electric field component normal to the
kagome plane is chosen. The vectors a1;2;3 are the primitive
vectors of the fcc Bravais lattice. (b) The subgap boson density
fluctuations of the CMI-1=4, happening as the collective tunnel-
ing of three bosons around the perimeter of the elementary
hexagon.
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FIG. 2 (color online). Phase diagram of the hard-core boson
model on a pyrochlore lattice. CMIs are at 1=4, 1=2, and 3=4
boson fillings, respectively. Phase boundaries are determined in
QMC simulations with system sizes 4 × L3. The physical
properties along the (blue) dashed paths and at the (magenta)
solid dot are plotted in Figs. 3, 4, and 5.
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One can understand the phase diagram in Fig. 2 starting
from the limit t → 0. The superfluid extends down to the
t ¼ 0 at even integer values of μ=V, where there is no
energy cost to the addition or removal of one boson onto the
tetrahedral unit, and hence superfluidity occurs at arbitrar-
ily small hopping t. Notice that adding (removing) one
boson to the system creates two particlelike (holelike)
defect tetrahedra, as shown in Fig. 1(a) for the CMI-1=4.
Here the particlelike defect tetrahedron refers to the
tetrahedron that contains one more (less) boson than
the boson number demanded by the Mott localization.
The Mott lobe at the finite hopping t is understood as the
condensation of the mobile particlelike defect tetrahedra.
As t is increased from zero for a fixed chemical potential
inside the Mott regime, the kinetic energy gain of the
particlelike defect tetrahedra increases. When the kinetic
energy gain eventually balances the interaction energy cost,
the particlelike excitations would like to condense, giving
rise to superfluidity. Increasing t reduces the chemical
potential width of the Mott regime and leads to the lobelike
phase boundary in Fig. 2.
At first looking, our phase diagram and the Mott lobes

are quite similar to the ones in the conventional boson
Hubbard model [17], but there are key distinctions. In
conventional Mott insulators, the boson is at integer fillings
and the on-site Hubbard interaction freezes the boson
motion and localizes the bosons on the lattice sites. In
contrast, the CMIs in Fig. 2 are at fractional fillings and it is
the intersite repulsion that localizes them; moreover, the
bosons are localized inside the tetrahedral clusters of the
pyrochlore lattice. For the CMI-1=4 (CMI-3=4) in our
phase diagram, one boson (three bosons) is (are) localized
on each tetrahedral unit.
A more important difference between the conventional

Mott insulators and the CMIs in Fig. 2 lies in the

“low-energy density fluctuations.” In conventional Mott
insulators, the low-lying density fluctuation that conserves
the total boson number is the particle-hole excitation and
costs an energy of the order of the Mott gap. In the CMIs, in
addition to the similar type of particle-hole excitation as in
the conventional Mott insulators, there exist boson density
fluctuations far below the Mott gap. As shown in Fig. 1(b),
for the CMI-1=4, this subgap boson density fluctuation
arises from the collective tunneling of three bosons around
the perimeter of the elementary hexagon on the pyrochlore
lattice. This collective tunneling is a third order process of
the nearest neighbor hopping t in the Mott regime and costs
an energy of Oðt3=V2Þ. This process preserves “the center
of mass” of the three bosons and is hence below the Mott
gap. Like in the CMI-1=2 (or quantum spin ice in the spin
language) [4], it is the subgap density fluctuation that gives
rise to the Coulomb liquid phase with emergent compact
Uð1Þ QED description at low energies for both the
CMI-1=4 and the CMI-3=4 [1,18].
Coulomb liquid phase of the CMI-1=4.—Now we focus

on the CMI-1=4 and provide two numerical evidences, i.e.,
the correlation function of the emergent electric field, as
well as the temperature dependence of the heat capacity and
entropy, to support the compact Uð1Þ QED nature of the
Coulomb liquid phase.
In the compact QED description of the Coulomb liquid

phase [1,18], the emergent electric field operator is related
to the boson density operator as EðrÞ ¼ P

i∈rðni − 1=4Þei,
where the sum is over the four lattice sites on the
tetrahedron centered at r, and ei is the unit vector that
points inwards (outwards) from r if r belongs to the up-
pointing (down-pointing) tetrahedron. Using the compact
QED action appropriate for the low-energy properties of the
Coulomb liquid phase [4], it is straightforward to evaluate
the equal-time electric field correlation and obtain

hEμðk; τÞEνðk0; τÞi ¼ ðδμνk2 − kμkνÞδðkþ k0Þ

×
ð2πÞ4Kc

2vpjkj
coth

�
βvpjkj

2

�
; ð2Þ

where μ; ν ¼ x; y; z are the components of the electric field,
Kc is a proportionality parameter that is determined
numerically, vp is the speed of the emergent Uð1Þ gauge
photon, and β is the inverse temperature. In the zero
temperature limit (β → ∞), the above correlation turns
into the 1=r4 dipolarlike correlation in real space [4] [see
Fig. 1(a)].
In Fig. 4, we depict our numerical results for the electric

field correlation hEzðkÞEzð−kÞi along different momen-
tum cuts of Brillouin zone. We have chosen the path k ¼
ð½π=6�; q; ½π=6�Þ in Fig. 4(a) to fit our data against Eq. (2)
and obtain the photon velocity vp ¼ 0.0020ð5Þa, where a is
the fcc lattice constant. The curve in Fig. 4(b) is the plot of
Eq. (2) using the fitted parameters from Fig. 4(a), along the
path k ¼ ð0; q; 0Þ. The fits and data match perfectly in
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FIG. 3 (color online). (a) Boson density ρ and (b) superfluid
density ρs as a function of interaction t=V along the dashed
horizontal path in Fig. 2, with μ=V ¼ 1. (c) Boson density ρ and
(d) superfluid density ρs as a function of chemical potential μ=V
along the dashed vertical path in Fig. 2, with t=V ¼ 0.04.
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Figs. 4(a) and 4(b) and they provide an unbiased test of the
data as only one set of parameters is used to fit the data
along different momentum cuts.
Because of the gapless gauge photon with dispersion

ϵk ¼ vpjkj in the Coulomb liquid phase, we expect that the
heat capacity CðTÞ ≈ T3π2a3=ð15v3pÞ for the CMI-1=4 at
zero temperature limit, where a is the fcc lattice constant
and vp is the photon speed. As shown in Fig. 5(a), this T3

dependence of the low-temperature heat capacity is clearly
obtained for the CMI-1=4 for T < 0.002V, and we fit to the
theoretical prediction and obtain vp ¼ 0.0017ð4Þa. As
there is no continuous symmetry breaking and thus no
gapless Goldstone mode in the CMI-1=4, the T3 heat
capacity is a strong indication of the presence of linearly
dispersive gapless gauge photon [19]. Moreover, the
photon speed extracted from the heat capacity is consistent
with the one obtained previously from electric field

correlation. These can be served as two independent
evidences that the CMI-1=4 is indeed well described by
the compact Uð1Þ QED. In Fig. 5(b), we depict the finite
temperature behavior of the entropy for the CMI-1=4
phase [20].
Discussion.—All existing theoretical and numerical

works except Ref. [18] consider the CMI-1=2 state of
the hard-core boson model (or quantum spin ice in the spin
language) on the pyrochlore lattice. We have carried out the
first numerical study of the full phase diagram of the model
and provide the numerical evidence for the bosonic CMIs
in the phase diagram. Our numerical results of Coulomb
liquid phases of the bosonic CMIs are relevant to the charge
sector physics of electron CMIs in the pyrochlore materials
[1,3]. One future direction is to include disorders and to
understand if any intermediate Bose-glass-like phase
occurs between the CMIs and the superfluid. If such a
phase does exist for a disordered system, the physical
property might be very different from the Bose glass for the
conventional boson Hubbard model with disorders [17].
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