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We investigate the quantum phase transition in an S = 1/2 dimerized Heisenberg antiferromagnet in three
spatial dimensions. By performing large-scale quantum Monte Carlo simulations and detailed finite-size
scaling analyses, we obtain high-precision results for the quantum critical properties at the transition from
the magnetically disordered dimer-singlet phase to the antiferromagnetically ordered Néel phase. This transition
breaks O(N ) symmetry with N = 3 in D = 3 + 1 dimensions. This is the upper critical dimension, where
multiplicative logarithmic corrections to the leading mean-field critical properties are expected; we extract these
corrections, establishing their precise forms for both the zero-temperature staggered magnetization ms and the
Néel temperature TN . We present a scaling ansatz for TN , including logarithmic corrections, which agrees with our
data and indicates exact linearity with ms , implying a complete decoupling of quantum and thermal fluctuation
effects even arbitrarily close to the quantum critical point. We also demonstrate the predicted N -independent
leading and subleading logarithmic corrections in the size dependence of the staggered magnetic susceptibility.
These logarithmic scaling forms have not previously been identified or verified by unbiased numerical methods,
and we discuss their relevance to experimental studies of dimerized quantum antiferromagnets such as TlCuCl3.
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I. INTRODUCTION

Antiferromagnetic insulators exhibit a multitude of fun-
damental phenomena in the neighborhood of the phase
transitions separating their magnetically ordered ground states
from different types of quantum paramagnetic phase. These
quantum phase transitions (QPTs) occur at temperature T = 0
as a consequence of nonthermal parameters (examples include
magnetic fields, applied pressure, and dopant concentration)
that act to change the effect of quantum-mechanical fluc-
tuations [1,2]. At finite temperatures, a further dimension
is opened in the presence of both quantum and classical
(thermal) fluctuations, and the rich physics arising from their
interplay includes all the properties of the quantum critical
(QC) regime [3].

Experimentally, the material for which the most detailed
study of intertwined classical and quantum critical behavior
has been performed is TlCuCl3. This compound is composed
of antiferromagnetically coupled pairs of Cu2+ ions (S = 1/2),
which tend to form dimer singlets and have antiferromagnetic
interdimer couplings in all three spatial dimensions (d =
3) [4]. At ambient pressure and zero field, TlCuCl3 is a
nonmagnetic insulator with a gap of 0.63 meV to triplet spin
excitations. As a consequence of this small gap, an applied
magnetic field of 5.4 T is sufficient to drive the system to
an ordered antiferromagnetic state, through a QPT in the
Bose-Einstein universality class [5]. A relatively small applied
hydrostatic pressure, pc = 1.07 kbar, is also sufficient to create
an antiferromagnetically ordered state [6], through a QPT
in the three-dimensional (3D) O(3) universality class due to
spontaneous breaking of the SU(2) spin symmetry (which is
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further reduced in TlCuCl3 by a weak uniaxial anisotropy,
making the universality class 3D XY).

The elementary excitations on the ordered side of the
zero-field quantum critical point (QCP) are gapless spin waves,
the Goldstone modes associated with spontaneous breaking of
spin-rotational symmetry. On the disordered side, quantum
fluctuations, towards spin-singlet formation on the dimers,
suppress the long-range antiferromagnetic order, restoring the
symmetry and ensuring that all excitations are gapped. This
evolution of the excitation spectrum in TlCuCl3 has been
measured in Ref. [7]. At finite temperatures on the ordered
side, a classical phase transition occurs at the Néel temperature
TN , where the long-range magnetic order is “melted” not by
quantum fluctuations but by thermal fluctuations. At finite
temperatures around the QCP, the combination of quantum
and thermal fluctuations creates the QC regime, where the only
characteristic energy scale of the system is the temperature
itself and many universal properties emerge [3]. The phase
diagram of TlCuCl3 under pressure and the restoration of
classical critical scaling around TN were the subject of a recent
investigation [8].

QPTs in dimerized quantum spin models have been studied
numerically by a number of authors, primarily by quantum
Monte Carlo (QMC) simulations. Early investigations of
the bilayer square-lattice antiferromagnet [9] and other two-
dimensional geometries [10,11] have been followed more
recently by high-precision studies of a range of critical prop-
erties [12–16]. In three dimensions, the focus of investigations
has been on the field-induced transition [17], on the effects
of dimensionality [18,19], and on physical observables at the
coupling-induced QPT [20–22].

A minimal model of a dimerized quantum antiferromagnet
has only two coupling constants, J ′ on and J between
the dimer units, and therefore only one control parameter,
g = J ′/J . The geometry considered in the present study is
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FIG. 1. (Color online) (a) Dimerized lattice of S = 1/2 spins in
the 3D double cubic geometry. Sites of the red and blue cubic
lattices are connected pairwise by dimer bonds; J ′ and J are
antiferromagnetic Heisenberg interactions on and between the dimer
units, respectively, and their ratio, g = J ′/J , controls the QPT from
a Néel ordered phase (left) to a quantum disordered dimer-singlet
phase (right), with the QCP occurring at the critical ratio gc.
(b) Schematic quantum critical phase diagram for the Heisenberg
model on the double cubic lattice. On the ordered “renormalized
classical” side, g < gc, the Néel order is progressively weakened by
increasing quantum fluctuations as g approaches gc, causing both
the ordering (Néel) temperature TN (g) and the order parameter (the
staggered magnetization) ms(g) to go continuously to zero. On the
“quantum disordered” side, intradimer correlations dominate, and the
characteristic energy scale � is the gap to triplet excitations. Above
gc at T > 0 is the universal “quantum critical” (QC) region, whose
behavior is governed by the (3 + 1)-dimensional O(3) universality
class. Around TN (g), one expects a region of classical critical (CC)
behavior where thermal fluctuations are dominant.

the double cubic lattice shown in Fig. 1(a). In this system at
large g, intradimer singlet correlations dominate the physics,
and the ground state is magnetically disordered, while at small
g the interdimer correlations establish long-range magnetic
order. The order parameter of the Néel phase is the staggered
magnetization ms(g), and along with the ordering temperature
TN (g), it can be driven continuously to zero by increasing
g, as illustrated in Fig. 1(b). By standard arguments of
dimensionality and symmetry, the dynamical exponent of
this system is z = 1 [3,23], and the QCP belongs to the
D = 3 + 1 O(3) universality class, which is at the upper

critical dimension, Dc = 4, of all O(N ) models [3,24]. At
D = Dc, mean-field critical scaling behavior alone is not
sufficient to capture the physics of fluctuations around the
QCP, and multiplicative logarithmic corrections to the physical
quantities (thermodynamic functions) are expected.

The theoretical importance of multiplicative logarithmic
corrections to mean-field scaling behavior lies not only
in the statistical physics of condensed-matter systems but
also in high-energy physics [24,25]. The general problem
of a quantum field theory with an N -component field is
encapsulated by an “O(N ) φ4 theory,” a Lagrangian containing
a dynamic (quadratic gradient) term and a potential term with
quadratic (φ2) and quartic (φ4) contributions. On changing
the sign of the quadratic term, the system is driven through a
QPT separating a phase with 〈φ〉 = 0 from one with 〈φ〉 �= 0
(a “Mexican hat” potential). As noted above, the low-energy
properties of the 3D dimerized antiferromagnet of SU(2)
quantum spins with Heisenberg interactions correspond to a
field theory with N = 3 and D = 3 + 1 (including the time
dimension); N = 1 and 2 correspond respectively to Ising and
XY spin interactions.

Beyond the upper critical dimension (D > Dc), the scaling
behavior of the O(N ) φ4 theory is straightforward, with the
critical exponents being exactly those given by mean-field
theory [25–27], namely, α = 0, β = 1/2, γ = 1, δ = 3, and
ν = 1/2. As we discuss below, this may be taken as an expres-
sion of the independence of quantum and thermal fluctuations
when the phase space is sufficiently large. For D < Dc, the
situation is complex, and these exponents take anomalous
values. However, exactly at the upper critical dimension, D =
Dc = 4, the leading scaling behavior coincides with that of the
mean-field theory but modified by multiplicative logarithmic
corrections [24,28,29]. While the leading exponents are N

independent, a measure of N dependence resides in the
logarithmic corrections, and these must be taken into account
to establish the universality class of the transition [30]. Because
the established results for the form of these corrections
are based on perturbative techniques applied to low-energy
theories, it is desirable to verify them using unbiased numerical
methods applied directly to the lattice Hamiltonians, and this
is what we achieve here.

Despite the insight into general QPT phenomena obtained
from simulations using this type of minimal model for 3D
dimerized systems [10,17,19–21], the question of logarithmic
corrections has to date been addressed only briefly and incon-
clusively [22,31]. Experimentally, the feasibility of observing
logarithmic corrections in systems such as TlCuCl3 remains
a challenging open issue [8]. In this paper we provide a
systematic numerical study. We employ large-scale QMC
simulations to investigate the critical behavior of the order
parameter and Néel temperature on the double cubic lattice
[Fig. 1(a)] for small values of |g − gc| unattainable in all
previous studies. State-of-the-art QMC techniques and finite-
size-scaling analysis using very large systems (sizes exceeding
105 spins) allow us to detect and characterize the multiplicative
logarithmic corrections in the universal scaling relations for
the QC regime at the upper critical dimension, here for the
D = 3 + 1 O(3) QCP. In fact our results constitute hitherto
unavailable exact numerical verification of the logarithmic
forms predicted both by perturbative renormalization-group
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calculations [32–34] based on the N -component φ4 theory at
Dc and by additional considerations exploiting the zeros of the
partition function [25,28,29,35]. To the best of our knowledge,
no systematic numerical calculations have been performed
beyond N = 1 [28,36].

As will become clear, our numerical results demonstrate to
high precision the validity of the detailed theoretical predic-
tions for the expected universality class. Both size-dependent
scaling and the order parameter in the thermodynamic limit
show evident deviations from pure mean-field behavior, which
are accounted for by logarithmic corrections whose exponents
are in very close agreement with the predicted values where
available. In the case of the Néel temperature, we are not aware
of any previous scaling predictions including logarithms. Here
we test an ansatz based on the known scaling behavior for the
relevant energy scales [3,37] and the logarithmic corrections
in corresponding classical systems [25]. In addition to probing
the asymptotic behavior, our results also provide direct insight
into the range of validity of logarithmically modified critical
scaling forms as one moves away from the QCP, which
will be essential in evaluating the experimental relevance of
logarithmic corrections.

This paper is organized as follows. In Sec. II we introduce
the model and the numerical method, describing the mea-
surement of physical observables in our QMC simulations.
In Sec. III we begin the presentation of our numerical
results with the precise determination of gc, the position
of the QCP, using finite-size-scaling techniques. Section IV
discusses the observation of clear logarithmic corrections in
the staggered magnetic susceptibility χ (QAF,L) at the QCP
as a function of the system size L. We present our results for
the sublattice magnetization ms at T = 0 in Sec. V, discussing
in detail its extrapolation to the thermodynamic limit, where
we investigate the presence of logarithmic corrections to the
leading mean-field behavior. In Sec. VI we present a scaling
ansatz for the Néel temperature, apply finite-size scaling to
extract it as a function of g, and again investigate corrections
to mean-field behavior. We compute the characteristic velocity
c of spin excitations, demonstrate the precise linearity of TN

and ms , and discuss the physical interpretation of this behavior.
We summarize our results in Sec. VII and comment further on
their theoretical and experimental consequences.

II. MODEL AND METHODS

As a representative 3D dimerized lattice with an unfrus-
trated geometry, we choose to study the double cubic model
shown in Fig. 1(a). This system consists of two interpenetrating
cubic lattices with the same antiferromagnetic interaction
strength, J , connected pairwise by another antiferromagnetic
interaction, J ′. The QPT occurs when the coupling ratio
g = J ′/J is increased, changing the ground state from a
Néel-ordered phase of finite staggered magnetization to a
dimer-singlet (“quantum disordered”) phase, as illustrated in
Fig. 1(b). An advantage of this geometry over cases where
the dimerization is imposed within a single lattice, such as the
simple cubic lattice [20], is that all symmetries of the cubic
lattices are retained, facilitating the consideration of quantities
such as the spin stiffness or the velocity of spin excitations.

The Hamiltonian is given by

H =
∑
〈i,j〉

Jij
�Si · �Sj , (1)

where �Si is an S = 1/2 spin operator residing on a double cubic
lattice of N = 2L3 sites with periodic boundary conditions.
The sum is taken only over nearest-neighbor sites, where every
site has six neighbors on the same cubic lattice with coupling
strength Jij = J and one neighbor on the opposite cubic lattice
with Jij = J ′ [Fig. 1(a)]. We set J = 1 as the unit of energy
and use g = J ′/J as the control parameter.

To study this system, we use the stochastic series expansion
(SSE) QMC technique [15,38–40] to obtain unbiased results,
i.e., numerically exact within well-characterized statistical
errors, for physical quantities in systems of finite side length L.
Here we present results up to L = 48 at temperatures T = β−1

with β up to 2L. We then perform detailed analyses by finite-
size scaling [41] to extract information in the thermodynamic
limit both in the ordered state and at the QCP, as detailed in
the separate sections to follow. Here we define the physical
quantities of interest and discuss some technical aspects of
their calculation within the SSE QMC method.

Because spin-rotation symmetry is not broken in simula-
tions of finite-size systems, one may measure the squared order
parameter and take its square root as a postsimulation step. The
staggered magnetization is given by

ms =
√

1

N
S(QAF), (2)

where

S(q) = 1

N

N∑
i,j

e−iq·(ri−rj )〈�Si · �Sj 〉 (3)

is the magnetic structure factor, with ri denoting the real-space
position of the spin �Si on lattice site i, and QAF = (π,π,π,π )
is the wave vector of antiferromagnetic order, with the fourth
π denoting the phase factor between the two cubic lattices.
We consider only the z component of the magnetization and
average it over the time dimension of the QMC configura-
tions, computing the expectation value of the squared order
parameter in the form

m2
sz = 1

β

∫ β

0
dτm2

sz(τ ), (4)

where

msz(τ ) = 1

N

N∑
i=1

e−iQAF·ri Sz
i (τ ), (5)

with

Sz
i (τ ) = eτHSz

i e
−τH (6)

being the time-evolved spin operator at imaginary time τ .
In an SSE simulation, the integral in Eq. (4) is transformed
into a discrete sum with no approximations, and the relation
compensating for the rotational averaging of the single
measured component of the order parameter,

ms =
√

3
〈
m2

sz

〉
, (7)
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is applied postsimulation. The magnetic susceptibility is
defined as

χ (q) = 1

N

∑
ij

∫ β

0
dτ

〈
Sz

i (τ )Sz
j (0)

〉
e−iq·(ri−rj ). (8)

In the SSE approach, the squared order parameter [Eq. (4)] is
readily evaluated at any τ because the QMC configurations are
constructed in the Sz basis [15,42]. The dynamical spin-spin
correlation function contained in Eq. (8) can also be obtained
easily by applying an operator string connecting the Sz states
at different imaginary times, with the integral computed
analytically to give a direct, formally exact QMC estimator
not requiring postsimulation integration [15,39].

The Binder ratio [43] is the ratio of the fourth moment of a
quantity to the square of its second moment. For our purposes,
the relevant quantity is

R2 =
〈
m4

sz

〉
〈
m2

sz

〉2 , (9)

which is dimensionless and satisfies the crucial property of
being size independent at the QCP in the limit of large system
sizes. The spin stiffness, or helicity modulus, of the system is
defined as

ρα
s = 1

N

∂2F (φα)

∂2φα

∣∣∣∣
φα→0

, α = x,y,z, (10)

where F is the free energy and φα is the angle of a twist
imposed between all spins in planes perpendicular to the α

axis. In an SSE simulation, the most efficient way to extract
the spin stiffness is to take the derivative in Eq. (10) directly
in the QMC expression for F (φα) at φα = 0, giving

ρα
s = 3

〈
w2

α

〉
4β

, (11)

where

wα = 1

L
(N+

α − N−
α ) (12)

is the winding number [42,44] of the spin in spatial direction
α and N+

α and N−
α are the numbers of occurrences of the

operators S+
i S−

j and S−
i S+

j on bond 〈i,j 〉 in the α direction
within imaginary time [0,β]. As noted above, ρα

s is the same
in all three directions due to the symmetry of the double cubic
lattice, and the average may be taken over all of these. The
spin stiffness follows the scaling law ρs ∝ L2−d−z in d spatial
dimensions [15], and because the dynamic exponent is z = 1
here, the quantity ρsL

d−1, or, equivalently, ρsL
D−2, is also

size independent at the QCP, up to a logarithmic correction at
the upper critical dimension.

Finally, the spin-wave velocity c can be obtained reliably by
monitoring the fluctuations of the spatial and temporal winding
numbers [16,22,45,46]. For a fixed system size L, the inverse
temperature β is adjusted to the value β∗, where the system has
equal winding-number fluctuations in the spatial and temporal
directions, 〈

w2
α(β∗)

〉 = 〈
w2

τ (β∗)
〉
, α = x,y,z. (13)

The temporal winding number is the net magnetization
(number of up spins minus number of down spins) of the

system, wτ = Mz = ∑
i S

z
i , which is easily obtained in the Sz

basis [16]. When condition (13) is met, the spin-wave velocity
is given by the ratio

c = L

β∗(L)
. (14)

The isotropy of the lattice is an advantage also in this case.
For each value of g, an extrapolation L → ∞ is performed
to obtain c in the thermodynamic limit. For further details of
these procedures, we refer the reader to the recent extensive
tests of this method conducted in Ref. [16].

III. DETERMINATION OF THE QCP

The key to an accurate characterization of logarithmic
corrections is a high-precision determination of the location
gc of the QCP. For this we employ the Binder ratio R2 and
the appropriately scaled spin stiffness ρsL

D−2, which both
have scaling dimension zero and therefore should approach
constant values at gc when L → ∞, up to possible logarithmic
corrections. We stress that the scaling forms for the approach
of both quantities to the critical point are valid for a four-
dimensional (4D) theory, with the temperature (imaginary
time) providing the fourth dimension, and are applicable on a
“critical contour” where the inverse temperature T −1 = kL is
taken to infinity symmetrically with the spatial dimension of
the system. This form is appropriate for a system with dynamic
exponent z = 1 (in general, 1/T ∼ Lz). All values of k yield
the same results in the limit L → ∞, and in principle the
contour is optimal when k = 1/c; the spin-wave velocity c is a
number of order unity discussed in detail in Sec. VI, and here
we use k = 1.

Away from gc, R2 and ρsL
2 approach different constant

values with increasing system size. In the Néel state, R2 ap-
proaches 9/5 due to diminishing fluctuations in the magnitude
of the rotationally invariant order parameter, of which we
measure only the z component in Eq. (9). In the quantum
disordered phase, R2 approaches a higher value dictated by
Gaussian fluctuations, which from the symmetries of the
double cubic model is 3. The spin stiffness falls from nonzero
values in the Néel phase to zero in the disordered phase. When
calculated as functions of g, the curves R2(g,L) and ρs(g,L)L2

obtained for different system sizes should cross at the QCP,
up to corrections that are well understood from the theory of
finite-size scaling. We analyze these corrections to obtain an
unbiased value of the critical coupling gc in the thermodynamic
limit [15].

Figure 2(a) shows R2 as a function of g in the neigh-
borhood of the critical coupling ratio for various system
sizes. We have performed simulations for all even-length
sizes L = 6,8,10, . . . ,40, but here we present only the L =
30,32, . . . ,40 data for clarity. Analogous curves for the scaled
spin stiffness ρsL

2 are shown in Fig. 2(b), again only for system
sizes L = 30,32, . . . ,40. In both cases, the system sizes are
sufficiently large that the crossing points exhibit only a very
weak dependence on L on the scale used in the figure, and both
sets of data may be used independently to show that the QCP
is located at gc � 4.837(1). A detailed analysis is required to
obtain the most precise results attainable, free of any finite-size
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FIG. 2. (Color online) (a) Binder ratio R2 and (b) scaled spin
stiffness ρsL

2 as functions of the coupling ratio g for system sizes
L = 30,32, . . . ,40. Crossings of the curves for pairs of system sizes L

and L + 2 define finite-size estimates gR
c (L) and gρ

c (L) of the critical
point, which are fitted to the form of Eq. (16) in (c). Enforcing a
common value of gc in both fits gives the L → ∞ critical point as
gc = 4.83704(6) and the irrelevant exponent as ω = −0.31(5) for R2

and ω = 0.82(5) for ρsL
2.

effects, and we first discuss the general scaling behavior of gc

before presenting our numerical results.

A. Scaling forms for critical-point estimators

To describe the evolution of the crossing points with L,
we perform a systematic extrapolation of the finite-size data
to the thermodynamic limit by extracting the crossing points
between data sets for all pairs of system sizes, L and L + 2,
based on polynomial interpolations. Figure 2(c) shows the
crossing points gR

c (L) and g
ρ
c (L) obtained in this manner.

For any quantity probing a singularity in the thermodynamic
limit, one may define a size-dependent critical point g′

c(L).
In general, this quantity is expected to shift by an amount
proportional to L−1/ν with respect to the true infinite-size
critical point gc(∞) (hereafter denoted for simplicity by gc),
i.e., for large L,

gc(L) = gc + aL−1/ν, (15)

where ν is the standard correlation-length exponent. However,
with a definition based on crossing points of a dimensionless
quantity computed for two different sizes, the leading correc-
tions cancel, and the convergence is faster,

gc(L) = gc + aL−(1/ν+ω), (16)

where ω > 0 is the dominant irrelevant exponent. In practice,
with data fits to a rather limited range of available system sizes,
the corrections to Eq. (15) contained in Eq. (16) will have
exponents and prefactors that deviate from their asymptotic
values due to the neglected corrections of higher order in 1/L,
and therefore these should be considered “effective” quantities.

The above forms are applicable in the absence of logarith-
mic corrections, but such corrections are the primary focus of
our study and are expected at D = Dc. Kenna has derived
the modified form of Eq. (15) for classical systems with
logarithmic corrections [25,47],

gc(L) = gc + aL−1/ν lnλ̂ L, (17)

where the exponent of the logarithm for the 4D O(3) univer-
sality class is λ̂ = −1/22. For the crossing points, Eq. (16) is
modified to

gc(L) = gc + aL−(1/ν+ω) lnĉ L, (18)

as shown in the Appendix, where ĉ = λ̂ if the subleading term
L−ω has no multiplicative logarithmic correction but is altered
by an unknown amount if it does. Under the circumstances,
with a number of unknowns and with simulation data only for
a restricted range of system sizes, we fit our data using not
Eq. (18) but instead the purely algebraic form of Eq. (16) with
ν = 1/2 and ω, the effective value of the subleading exponent
over the fitting range, treated as a different fitting parameter
for the separate quantities R2 and ρsL

2.

B. Numerical determination of gc

We take both pairs of fitting parameters a and ω in Eq. (16)
to be independently free for the two data sets gR

c (L) and g
ρ
c (L)

but impose the constraint that the curves have the same gc.
As shown in Figs. 2(a) and 2(b), we obtain good fits to both
functions, meaning with a reduced χ2 (per degree of freedom,
hereafter denoted χ2

r ) close to 1, to the data for all system sizes
(L � 6). These allow us to conclude that gc = 4.83704(6),
where the numbers in parentheses denote the expected errors
(one standard deviation) in the preceding digit; that is, the
relative error on gc is approximately one part in 105. If we
allow independent parameters gR

c and g
ρ
c in the fits to the two

data sets, both estimates of the critical point are statistically
consistent with this gc, albeit with somewhat larger error bars.

We note here that the values we find for the subleading
exponent, ω = −0.31(5) for the R2 data and ω = 0.82(5)
for the ρsL

2 data, lie far from a common asymptotic
value. Thus, indeed, ω should be considered an effective
exponent accounting for crossover effects in system size,
neglected higher-order irrelevant fields, and the expected weak
logarithmic corrections. However, the good match obtained
between the two extrapolated gc estimators, especially when
approaching the infinite-size value from different directions,
would not be expected in the presence of any corrections not
taken sufficiently into account by the fitting functions. Thus
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we believe the error bar on gc quoted above is completely
representative of all statistical and systematic uncertainties in
the sense that any remaining systematic errors due to the fitting
form should be smaller than the statistical errors. The tests we
perform on the critical scaling behavior around the QCP in the
subsequent sections also support this statement.

IV. SIZE-DEPENDENT LOGARITHMIC CORRECTIONS
AT THE QCP

The critical O(N ) φ4 theory, by which it is meant the
theory at the upper critical dimension and at the critical
point, obeys many fundamental and universal properties, some
of which depend on N , while others are N independent.
In Ref. [35] it was shown that the zeros of the partition
function (Lee-Yang zeros) [48], and hence the thermodynamic
functions, obey a finite-size scaling theory, which was de-
rived by renormalization-group methods. These perturbative
arguments demonstrate that there are multiplicative logarith-
mic corrections in the system-size dependence of derivable
thermodynamic functions, which are closely linked to those
of the Lee-Yang zeros and furthermore are independent of
N for odd N . This leads to the key practical observation that
size-dependent logarithmic corrections in physical observables
such as the magnetic susceptibility and the specific heat at the
critical point follow a universal, N -independent form when
N = 3. Here we provide a nonperturbative calculation of
the magnetic susceptibility χ (QAF,L) [Eq. (8)] for systems
of finite L at the QCP, gc, of the (3 + 1)-dimensional O(3)
transition to test the predicted logarithmic corrections.

The universal form of the magnetic susceptibility at the
critical point in a finite-size system is given by [35]

χ (QAF,L) = aL2[ln L]1/2

[
1 + b

ln(ln L)

ln L

]
, (19)

with nonuniversal but L-independent parameters a and b. We
used this expression with a fixed value g = 4.837, which is
within the standard deviation of the gc value found in Sec. III,
to investigate the logarithmic corrections to the L dependence
of χ (QAF,L). We calculate the susceptibility at the ordering
wave vector, QAF = (π,π,π,π ), for systems of all even sizes
from L = 6 to 40. As in Sec. III, the scaling predictions under
test are valid for a 4D theory, and again we use the critical
contour T −1 = kL, with k = 1.

Figure 3(a) shows our results for the critical magnetic
susceptibility normalized by L2. In the absence of logarithmic
corrections, χ (QAF,L)/L2 would be constant, and the curve
would be a flat line. Instead, we observe that a reasonable
account of the data for our larger system sizes (L � 30)
requires a fit of the form χ (QAF,L)/L2 = a(ln L)1/2, as
anticipated in Ref. [35]. However, for a more quantitative fit
over the full size range available, we find [Fig. 3(a)] that it
is necessary to include the predicted subleading logarithmic
correction in Eq. (19).

To examine the sensitivity of these results to the exponent
1/2 of the multiplicative logarithm in Eq. (19), we replace
this predicted exponent by a variable η̂. We determine this
exponent by calculating the goodness of fit χ2

r as a function of
η̂. As Fig. 3(b) makes clear, the best fits are indeed obtained
close to η̂ = 0.5, completely consistent with Eq. (19).
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FIG. 3. (Color online) (a) QMC data for χ (QAF,L)/L2 obtained
at g = 4.837 for all even system sizes from L = 6 to 40. Solid
lines are fits to a(ln L)1/2 (green) and to Eq. (19) (blue). We apply
the square-root fit only for system sizes L � 30, and the optimal
value of the fitting parameter is a = 0.274. The two-parameter fit
is made to the data for all system sizes L � 14 and yields optimal
parameters a = 0.522, b = −1.317. (b) Reduced χ 2 values obtained
by fitting χ (QAF,L)/L2, for 14 � L � 40, to the form (19), but with
the exponent 1/2 replaced by a parameter η̂. The optimal χ 2

r value is
obtained at η̂ � 0.5, consistent with the prediction of Ref. [35].

Because our exact numerical data confirm not only the
leading but also the subleading corrections to scaling, we
conclude that obvious logarithmic corrections can be observed
in the size dependence of the thermodynamic functions at the
QCP. This result also demonstrates that our determination of gc

is sufficiently precise to study logarithmic corrections without
significant distortions arising from uncertainties in its value.

V. SUBLATTICE MAGNETIZATION

Physical condensed-matter systems at continuous QPTs
are generally in the thermodynamic limit, and size-scaling
measurements of the type easily performed in QMC sim-
ulations (Sec. IV) are not a realistic experimental option.
However, as discussed in Sec. I, multiplicative logarithmic
corrections are expected in a range of physical quantities
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FIG. 4. (Color online) Staggered magnetization, defined for each
system size as ms(L) = [3〈m2

2z(L)〉]1/2, shown as a function of 1/L2

for a range of coupling ratios g near gc. Polynomial fits of cubic
order were used to extrapolate ms(L) to the thermodynamic limit; the
temperature in all cases was T = 1/L. Error bars on all points are
smaller than the symbol sizes.

close to the QCP. The primary physical observables in the
quantum antiferromagnet are the zero-temperature staggered
magnetization ms(gc − g) and the Néel temperature TN (gc −
g). Calculating these quantities in the thermodynamic limit is
significantly more challenging than studies of size dependence,
as careful extrapolations of finite-size data are required. Here
and in Sec. VII we describe and then implement appropriate
measures for extrapolating to infinite system size and, for
ms , to zero temperature, thereby revealing the logarithmic
corrections to both ms and TN .

We compute the staggered magnetization according to
Eq. (7) for coupling ratios as close to gc � 4.837 as g = 4.834.
For a given value of g, we calculate the squared quantity
〈m2

sz(g,L)〉 over a range of system sizes. As shown in Fig. 4,
the staggered magnetization clearly decreases with increasing
L and converges towards a fixed limit, suggesting a controlled
extrapolation very close to the QCP. Definitive extrapolation
to the thermodynamic limit in this regime is a complex issue,
and a discussion of several technical points is in order before
we analyze our results.

A. Extrapolation scheme

First, most of the simulations in this section are performed
at a temperature T = 1/L, such that the extrapolation L →
∞ includes both system size and temperature. Because the
system is ordered for sufficiently low T and the order
parameter converges quickly to a nonzero value below the
ordering temperature, one may use the form T = aL−b with
arbitrary prefactor a > 0 and exponent b > 0 to study the
T → 0 magnetization as a function of L. These conditions
for obtaining a (T → 0,L → ∞) extrapolation of the order
parameter for g < gc contrast with the need to follow the
contour T = aL−1 (a = 1/k; b = 1 when z = 1) in Secs. III
and IV for studies of the QCP. Although large values of
a and b should improve the convergence, in practice one

must consider the balance between computation time and
convergence rate, and the choice a = 1, b = 1 works well in
most cases. However, for coupling ratios very close to the QCP,
the temperature may be a significant fraction of TN , and thus
ms(g,L) could be far from its zero-temperature value. We have
therefore performed additional simulations at T = 1/(2L) to
verify that the extrapolation does remain well controlled and
fully representative of the thermodynamic limit in temperature
as well as in system size.

Second, in contrast to Sec. III, where we used the nontrivial
power-law scaling forms (16) known to be appropriate for
extrapolating the location of a critical point, the ground-state
order parameter inside the Néel phase can be extrapolated
by using simple polynomial fits. To obtain ms , one may
extrapolate the squared quantity and then take its root
afterwards or take the square root for each system size
before extrapolating (the procedure followed in Fig. 4); the
corresponding polynomials are

m2
sz(g,L) = a(g) + b(g)L−2 + c(g)L−3 + · · · , (20)√

m2
sz(g,L) = a′(g) + b′(g)L−2 + c′(g)L−3 + · · · . (21)

Here the leading L dependence in the extrapolation of a
nonvanishing order parameter at fixed g inside the ordered
phase is known [49] to be L2−d−z due to the dimension-
dependent power-law decay of the transverse correlation
function. Here d + z = d + 1 = D = Dc = 4, and the result-
ing leading 1/L2 dependence is shown clearly in Fig. 4.
Because these procedures use a polynomial of finite order
to approximate physical behavior containing, in principle, an
infinite number of corrections, the extrapolated value of ms

obtained with the forms (20) and (21) will not be exactly the
same, but for reliable fits they should agree within statistical
errors.

We stress that no logarithmic corrections are expected in
this case, meaning that on grounds of principle they should not
be present in the asymptotic large-L corrections to a non-zero-
valued order parameter. This noncritical behavior contrasts
with the case of the shift in the critical point discussed in
Sec. III, where logarithmic corrections should, in principle,
be present, although we concluded that their effects are not
detectable in practice.

Finally, however, nontrivial corrections may still be ex-
pected in the L dependence of 〈m2

sz(g,L)〉 for g close to
the QCP, where the order parameter is small, in the form of
crossover behavior from near critical at small system sizes to
asymptotic ordered-state scaling at large L. Quite generally,
no analytic functional forms are available for describing such
crossovers, and great care is required to ensure that the
asymptotic region, where Eqs. (20) and (21) are valid, has been
reached. As g → gc, successively larger systems are required
for this, and here we find that reliable extrapolations are no
longer possible beyond g = 4.834 because of the limits on
system size set by the available computer resources.

In fits to the forms (20) and (21), it is necessary to select
the order P of the polynomial and the range of system sizes to
include. The size of the error bars on the QMC data points has a
significant influence here because deviations from the leading
L−2 correction are easier to detect with smaller error bars. We
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have performed a systematic study using fits of orders P = 3
to 6, including different system-size ranges. We characterize
the quality of the fits using the standard reduced χ2 measure,
and for a “good” fit we require that the optimal value must fall
within three standard deviations of its mean, i.e., we demand
that

χ2
r − 1 = χ2

nL − np

− 1 � 3

√
2

nL − np

, (22)

where nL is the number of data points (system sizes) and
np = P + 1 is the number of fitting parameters. For a given
P and largest system size L, we use all available system sizes
down to the smallest size Lmin for which the above condition
is still satisfied. We then study the behavior as a function of L

for different P and compare the values of ms obtained from
extrapolations based on Eqs. (20) and (21). To estimate the
error bars on the extrapolated ms(g), we performed additional
polynomial fits with Gaussian noise (whose standard deviation
is equal to the corresponding QMC error bars) added to the
finite-size data. The standard deviation of the distribution of
extrapolated ms(g) values defines the statistical error.

Figure 5 shows results for several values of g approaching
the QCP, with cases where the fits are relatively straightforward
(further from gc) shown in Figs. 5(a) and 5(b) and more
challenging cases (closer to gc) shown in Figs. 5(c) and 5(d).
Figures 5(a) and 5(c) correspond to the square root being taken
after the extrapolation [Eq. (20)], while Figs. 5(b) and 5(d)
correspond to fitting the square root for each system size
[Eq. (21)]. In Figs. 5(a) and 5(b), the extrapolated values are
observed to be very stable with respect to the range of system
sizes and the order of the polynomial, whereas Figs. 5(c)
and 5(d) manifest some of the crossover behavior expected
close to gc, showing considerable variation as the maximum
system size is increased. There are also significant differences
between the two fitting procedures up to the largest system
sizes, where the extrapolations stabilize; we take the fact
that the two types of fits give consistent results for these
largest systems at all values of g as an indication that the
extrapolations are reliable. We have not been able to achieve
good convergence based on system sizes up to L = 48 for g

values closer to gc than those shown in Figs. 5(c) and 5(d). In
these most challenging cases, our results show that it is better
to use the fitting form of Eq. (21), extrapolating the square root
of the staggered magnetization for each system. Regarding the
quality of the fits obtained by varying the polynomial order
P in Fig. 5, we find that extra terms in the fit scarcely justify
the additional degrees of freedom lost in the determination
of χ2

r . All of the results presented below were obtained by
extrapolating

√
m2

s with polynomials of order P = 4.

B. Thermodynamic limit

With all of the above considerations, we are able to obtain
reliable and high-precision extrapolations of the staggered
magnetization in the thermodynamic limit for values of g as
close to the QCP as |g − gc| � 0.003. In Fig. 6 we show
all of our data for ms(|g − gc|) on logarithmic axes. If these
data satisfied mean-field scaling alone, with no discernible
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FIG. 5. (Color online) Extrapolated values of the sublattice mag-
netization as a function of the largest system size included in the fit
for values g near the QCP (gc � 4.837). (a) and (b) include values
of g for which the extrapolations are stable for relatively small L;
(c) and (d) show g values very close to gc, where the extrapolations
require large sizes to stabilize. Results for different orders P of the
fitting polynomial are compared. The smallest system size included
was determined using the χ 2

r criterion of Eq. (22). (a) and (c) and (b)
and (d) show, respectively, the results of extrapolations of 〈m2

sz(g,L)〉
and 〈m2

sz(g,L)〉1/2, with the square root taken after the extrapolation
in the former case.

logarithmic corrections, one would expect a curve of the form

ms(g) = a|g − gc|1/2, (23)

but this (green line in Fig. 6) is manifestly unable to
describe the data. For the zero-temperature order parameter,
perturbative renormalization-group considerations applied to
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FIG. 6. (Color online) Extrapolated staggered magnetization ms

at T = 0 as a function of the distance from the QCP, using the value
gc = 4.83704 determined in Sec. III. Error bars on the calculated
data points are similar to or smaller than the symbol size. The closest
point to gc is g = 4.834. Lines show both the best fit by a pure
square-root function [Eq. (23), green] and including the logarithmic
correction factor predicted in Ref. [35] [Eq. (24), blue]. The fitting
parameters of the logarithmic correction curve are a = 0.266(2) and
b = 4.8(3). The yellow shading represents the approximate extent
of the QC regime and is determined by including all data points
described adequately (within a deviation of approximately 4%, see
text) by the functional form of the logarithmic correction curve. The
inset shows ms(g) and the QC regime on linear axes.

the O(N ) φ4 field theory at the upper critical dimension predict
the form

ms(g) = a|g − gc|β | ln(|g − gc|/b)|β̂ , (24)

where β = 1/2 is the mean-field exponent and the exponent
of the multiplicative logarithmic correction is given by β̂ =
3/(N + 8) [35]. A fit to this form, using β̂ = 3/11 for N = 3
(blue curve in Fig. 6), yields excellent agreement with the
data all the way to our smallest values of |g − gc|; the fitting
parameters are a = 0.266 ± 0.002 and b = 4.8 ± 0.3. We note
that the fit is very insensitive to the precise value of b, and for
further analysis we fix this to b = gc.

To test the predicted exponent β̂ = 3/11 in Eq. (24), we
treat it as a free parameter and fit our data using different
numbers of g values, including all points closest to gc and
studying the behavior as points farther away from gc are
added one by one. Figure 7 shows χ2

r and β̂ as functions
of the number of data points fitted. With the exception of
cases including the two points the farthest away from gc,
all the fits appear reasonable, with χ2

r < 2. However, by the
properties of the χ2 distribution, a fit should be considered
statistically acceptable only if a criterion analogous to Eq. (22)
is satisfied; that is, the largest number of data points for which
χ2

r − 1 remains less than three times its standard deviation
(3σ ) marks the boundary between good and poor fits. At this
point we obtain β̂ = 0.268 ± 0.008, which lies well within
one standard deviation of the predicted value 3/11 ≈ 0.2727.
If more points are excluded, the fitted exponent evolves slowly
[Fig. 7(b)] while remaining statistically very compatible with
the predicted value. Because the fitting error increases, less
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FIG. 7. (Color online) Statistical analysis of the exponent of the
logarithmic correction in Eq. (24). (a) Reduced χ 2 value of the fit,
normalized to the standard deviation, and (b) optimal value of the
exponent shown as functions of the number of data points (g values)
used, beginning from the point closest to gc in Fig. 6. The vertical
dashed line indicates the number of points, Ng = 23, for which a
3σ criterion for χ 2

r [see Eq. (22)] is satisfied, as indicated by the
horizontal line in (a). In (b), the error bars were computed by repeating
the fits multiple times with Gaussian noise added to the ms data points.
The horizontal line marks the predicted value β̂ = 3/11.

weight should be placed on results including less data, and
taking an error-weighted average over all the points below the
cutoff line, Ng = 23, in Fig. 7 yields β̂ = 0.279 ± 0.011. We
take this as complete confirmation of the predicted value.

As important as finding clear logarithmic corrections to
scaling is the fact that we have demonstrated their presence
over a significant region around the QCP; indeed, most of
the points we have computed are well described by Eq. (24).
Including the multiplicative logarithmic correction converts an
inadequate description of the data into an excellent one (Fig. 6)
as far inside the Néel phase as |g − gc|/gc ≈ 0.2, where the
order parameter is already at 60% of its maximum possible
value (ms = 1/2, at which point no quantum fluctuation effects
remain). This improvement is clearer still in the inset in Fig. 6,
which shows the results on linear axes. Under the assumption
that data points at large |g − gc| no longer fall on the fitted
curve because they lie outside the region controlled by the
QCP, we can determine the size of the critical region based
on a threshold maximum deviation of the data from the curve.
Although the choice of threshold value is somewhat arbitrary,
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the |g − gc|/gc � 0.2 region indicated by the yellow shading
in Fig. 4 reflects a threshold of approximately 4%, which
lies well above achievable experimental uncertainties. We
comment in Sec. VII on the utility of our results for the case
of TlCuCl3.

VI. NÉEL TEMPERATURE

We turn next to the scaling form of the Néel temperature
TN (g) near the QCP. Unlike the T = 0 order parameter, as
far as we are aware there is no prediction from perturbative
field-theoretical calculations including logarithmic corrections
for the scaling form of finite-T critical points at the upper
critical dimension. Close to a QCP, the general power-law
form without logarithmic corrections is discussed in Ref. [3],
but one may also expect a multiplicative logarithmic term
as in the other quantities we have discussed. We first derive
the exponent of the logarithm for the O(3) transition in 3+1
dimensions based on the known scaling properties of related
quantities. We then present our QMC calculations of TN for
the Heisenberg model on the double cubic lattice and test our
prediction.

A. Scaling hypothesis

In a path-integral construction in imaginary time, the size of
the system in the time dimension is proportional to the inverse
temperature, β = 1/T . This can be considered a length Lτ

on a parallel with spatial lengths L of a (d + 1)-dimensional
system. If the spatial lengths are taken to infinity in all direc-
tions, what remains is a single finite length Lτ for the effective
system, and finite-size scaling in this length corresponds to
finite-T scaling in the original quantum system [23].

Without logarithmic corrections, by analogy with the finite-
L shift of the critical point discussed in Sec. III A, the same
type of shift as in Eq. (15) can be expected because z = 1.
Thus

gc(T ) − gc(0) ∼ L−1/ν
τ , (25)

as a consequence of the finite temporal size, and the scaling
behavior is TN ∼ (gc − g)ν , as discussed in detail in Ref. [3].
In the case of spatial finite-size scaling, with all lengths
being finite, the shifted critical point (sometimes called the
pseudocritical point) is not a singular point, but the singularity
develops as L → ∞. By contrast, in the finite-T case in d = 3
spatial dimensions, the shifted point is a true (classical) phase
transition, although from a scaling perspective this difference
is not relevant.

In order to discuss logarithmic corrections, it is useful to
first express TN using a macroscopic, zero-temperature energy
scale of the system that vanishes as g → gc [3]. For the spin
system considered here, the only such energy scale is the spin
stiffness ρs . According to Ref. [37], the scaling form of this
quantity in the ordered phase when z = 1 is

ρs ∼ (gc − g)ν(d−1). (26)

Consistency with the result TN ∼ (gc − g)ν then gives the
scaling of the critical temperature for d = 3,

T 2
N ∼ ρs, (27)

where the mismatch in units is compensated by a power of
the nonsingular spin-wave velocity [3] (Sec. VI C), which
can be neglected here. Our basic hypothesis is that this
proportionality, which is the singular part of a relationship
based on matching scaling dimensions, applies in all respects
at the upper spatial critical dimension (d = 3 for z = 1), such
that logarithmic corrections to TN arise solely due to the
logarithmic corrections intrinsic to ρs .

Fisher et al. [37] have shown that the critical spin stiffness
can be expressed as ρs ∼ ξ 2f , where ξ is the correlation length
and f is the free-energy density. The logarithmic corrections
to both ξ and f , presented by Kenna in Ref. [25], are

ξ ∼ |g − gc|−ν lnν̂(|g − gc|), (28)

with ν̂ = 5/22 for the relevant universality class, and

f ∼ |g − gc|4ν lnα̂(|g − gc|), (29)

with α̂ = 1/11. The logarithmic correction to ρs is therefore
given by

ρs ∼ |g − gc|2ν̂ ln2ν̂+α̂(|g − gc|), (30)

and by combining these results with Eq. (27) we obtain

TN ∼ |g − gc|ν lnτ̂ (|g − gc|), (31)

where τ̂ = ν̂ + α̂/2. From the values of ν̂ and α̂ given
above [25], we obtain the prediction τ̂ = 3/11, which is
remarkable in that the exponent in the logarithmic correction
to TN should be the same as the one in the sublattice
magnetization, τ̂ = β̂ (24).

Because the zero-temperature order parameter is a conse-
quence purely of quantum fluctuations, whereas the classical
ordering temperature is a consequence primarily of thermal
fluctuations, there is a priori no reason to expect that the
two should have the same form. Exact numerical calculations
are therefore uniquely positioned to provide qualitatively new
information in this case. We note that this equality applies to the
phase transitions of O(N ) models for all values of N ; because
ν̂ = (N + 2)/[2(N + 8)] and α̂ = (4 − N )/(N + 8) [25], we
obtain τ̂ = 3/(N + 8), the same value as the exponent β̂ in
Eq. (24). Thus we predict that, in the neighborhood of gc, TN (g)
will be proportional to ms(g,T = 0), with no multiplicative
logarithmic factors, for all values of N ; this result was reported
for the N = 3 case in a previous QMC study [20], which
we now extend sufficiently close to the QCP to observe the
cancellation of logarithmic terms.

B. QMC calculations

Calculating TN (g) within our QMC simulations is similar to
obtaining gc in Sec. III, but with some important differences
of detail. The calculations in Sec. III were performed for a
genuinely 4D system, with the imaginary-time axis treated
on the same footing as the spatial dimensions. At finite
temperatures, this symmetry is broken, and the system is
3D with a separate temperature variable, which determines
the finite thickness of the time dimension even when L →
∞. Both the Binder ratio [Eq. (9)] and the spin stiffness
[Eq. (11)] are size-independent quantities at the thermal phase
transition and hence remain valuable indicators, although the
appropriately scaled spin stiffness for the 3D transition is
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FIG. 8. (Color online) Procedures used to extract the Néel tem-
perature TN (g), illustrated for the case g = 4.71. (a) Binder ratio R2

as a function of T for system sizes L = 10,12, . . . ,30. (b) Scaled spin
stiffness ρsL as a function of T for the same values of L. Error bars are
smaller than the symbol sizes. Crossings of these lines are extracted
using polynomial fits, and the results are used to obtain finite-size
estimates for quantities T R

N (L) and T
ρ

N (L). (c) Fits to data for systems
of all sizes (L � 6) of the two size-dependent crossing estimators
using functions of the form TN (L) = TN (∞) + a/L1/ν+ω. Enforcing
the same constant TN (∞) ≡ TN for the R2 and ρsL crossings gives
TN = 0.5363(13) with irrelevant exponents ω ≈ 0.8(2) for R2 and
1.1(3) for ρsL (1/ν ≈ 1.42 for the relevant 3D universality class).

now ρsL (instead of ρsL
2, used for analyzing the 4D T = 0

transition in Sec. III) [20].
For each value of the coupling ratio g within the Néel phase

(g < gc), we compute R2 and ρsL for a range of system sizes
and perform finite-size-scaling extrapolations to deduce the
Néel temperature TN (g) in the thermodynamic limit. Similar
to Sec. III, we first obtain the crossings of the R2(T ) and
ρsL(T ) data for different system sizes using polynomial fits, as
shown in Figs. 8(a) and 8(b) for g = 4.71. The crossing points
of both quantities for each successive pair of system sizes,
TN (g,L) and TN (g,L + 2), are used to extrapolate towards the
value TN (g,L → ∞) from above and below, using power-law

forms analogous to Eq. (16). We note that, as in the analysis
leading to gc (Sec. III B), the data points obtained for R2(L,T )
and ρsL(L,T ) using systems of all sizes (L � 10) fall within
a 3σ criterion analogous to Eq. (22) for this type of fit.
The extrapolation of TN (g,L → ∞) ≡ TN (g) = 0.5363(13)
for g = 4.71 is shown in Fig. 8(c).

We comment here that our determination of TN (g) for g

close to gc is rather less precise than our determination of
ms(g). The fundamental difference in character of the two
quantities, and hence of their calculation, causes the estimators
for TN (g) [the approximate crossings in Figs. 8(a) and 8(b)] to
have larger error bars and finite-size effects. Further, the error
bars of the crossing points grow rapidly as g → gc, while the
decrease in TN leads to longer simulation times (because the
space-time volume is proportional to L3/T ). After detailed
error control, the closest reliable data point to the QCP is
g = 4.831, for which |g − gc| is twice as large as for the
closest ms(g) point (Sec. V). We have nevertheless obtained
19 reliable data points, within the QC regime determined from
ms(g) (Fig. 6) and down to unprecedentedly low temperatures,
which are fully sufficient to test for evidence of logarithmic
corrections to TN (g).

The Néel temperature has units of energy and clearly
depends on the overall energy scale of the system. Ideally, it
should be normalized by an intrinsic energy scale of the system
to give a dimensionless quantity. In Ref. [20] it was shown that
TN (|g − gc|) normalized to the microscopic energy scale Js ,
given by the sum of all couplings of a spin to its neighbors,
yields a remarkably system-independent result for Heisenberg
antiferromagnets with three different dimerization patterns; for
the double cubic lattice, Js = J (6 + g). Other authors [21,22]
have suggested that the appropriate normalization is given by
a macroscopic quantity, the spatially averaged spin-wave ve-
locity

√
cxcycz (which, it should be noted, does not have units

of energy and requires an unknown dimensionful constant).
We begin by taking the former approach and address the latter
below.

The relationship between TN/Js and |g − gc| is presented
in Fig. 9. Once again, we show a mean-field scaling line for
comparison, and once again, it cannot provide an adequate
fit, suggesting that logarithmic corrections are indeed present.
However, a fit to our predicted form, given by Eq. (31) with
τ̂ = 3/11, describes the data very well, even at the limits of
the region classified as QC based on the ms(gc − g) fit in
Fig. 5.

For a fully quantitative test of the exponent we predict for
the multiplicative logarithmic term in Eq. (31), we substitute
a free exponent τ̂ for the fixed value 3/11 and optimize it
using fits with different windows of g values. This analysis is
precisely analogous to that performed for ms in Fig. 7. The
behavior of χ2

r and of the optimized exponent, with error bars
again estimated using the method of numerical Gaussian noise
propagation, is presented in Fig. 10. By taking the inverse-
variance-weighted average over all results for which χ2

r is
acceptable, we obtain τ̂ = 0.275(2), in excellent agreement
with the prediction τ̂ = 3/11 � 0.2727. We conclude that the
multiplicative logarithmic correction to TN (g) is, to within our
error bars and in agreement with a straightforward scaling
argument based on the spin stiffness (Sec. VI A), identical to
the ms(g) correction in Eq. (24).
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FIG. 9. (Color online) Normalized Néel temperature TN/Js as a
function of the distance from criticality |g − gc|. The closest point to
gc ≈ 4.837 is g = 4.831. Lines show both the best fit by a pure square-
root function (green) and using a logarithmic correction factor with
exponent τ̂ = 3/11 [Eq. (31), blue]. The yellow shading represents
the QC regime and is determined from Fig. 5. The inset shows TN (g)
on linear axes.

C. Spin-wave velocity

The spin-wave velocity c is uniform in the primary
axial directions on the double cubic lattice. As discussed
in Sec. II, it can be calculated most straightforwardly and
most accurately in the SSE framework from the spatial and
temporal winding-number fluctuations in Eq. (13) to define the
space-time-isotropic criterion of Eq. (14), which contains the
velocity [16,22,45,46]. This technique remains well defined
throughout the critical regime and is expected not to be affected
by logarithmic corrections; it was shown in Ref. [16], which we
follow for technical details, that the winding-number approach
produces the correct result for c in the Heisenberg chain,
a system known to have strong logarithmic corrections to
scaling.

In Fig. 11(a) we show the results for c(g,L) of calculations
on finite systems of even sizes up to L = 26, which we
extrapolate to the thermodynamic limit using the relation

c(g,L) = c(g) + a(g)/L2 + b(g)/L3. (32)

This form is found empirically [16] to provide a very good
reproduction of the data, and numerical errors due to finite-size
effects in the critical regime are clearly small. Figure 11(b)
shows the results for the extrapolated spin-wave velocities
c(g) of the infinite system by comparing the macroscopic scale
c3/2 with the microscopic quantity 6 + g discussed above. The
almost perfect linearity demonstrates that the two effective
energy scales are very closely related, which can be expected
from the fact that the velocity of a spin excitation depends
directly on the net interaction of a single spin, and both
are perfectly valid choices for the normalization of TN . A
graph completely analogous to Fig. 9, showing a logarithmic
correction with the same exponent τ̂ = 3/11, is obtained if
c3/2 is used to normalize TN (g).
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−

1|/
σ

χ
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(a)
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Number of Points

0.24
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0.31

0.32

τ̂
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FIG. 10. (Color online) Statistical analysis of the exponent of
the logarithmic correction in Eq. (31), performed by replacing the
predicted value 3/11 with a fitting parameter τ̂ . (a) Reduced χ2 value
of the fit, normalized to the standard deviation, and (b) optimal value
of the exponent, both shown as functions of the number of data points
(g values) used, beginning from the point closest to gc in Fig. 9. The
vertical dashed line indicates the number of points, Ng = 16, included
in the fit below which χ 2

r satisfies a 3σ criterion analogous to Eq. (22),
as indicated by the horizontal line in (a). In (b), the error bars were
computed by repeating the fits multiple times with Gaussian noise
added to the TN data points. The horizontal line marks the predicted
value τ̂ = 3/11.

D. Relation between TN and ms

In experiment it is often difficult to relate an external
control parameter to the microscopic coupling constants of
a model Hamiltonian. In a quantum antiferromagnet, some
aspects of this problem can be circumvented by studying
the relationship between TN and ms(T = 0) directly, without
reference to the control parameter g. A universal relationship
between these macroscopic and measurable quantities would
be of considerable experimental utility in characterizing the
nature of critical phenomena without recourse to detailed
microscopic knowledge of the system parameters (such as the
pressure dependence of the exchange couplings in TlCuCl3).
Although an experimental test [8] of the linear relationship
between TN and ms [20] indicated satisfactory agreement close
to the QCP, the issue of how best to normalize TN was not
addressed. We use our systematic data spanning the entire QC
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FIG. 11. (Color online) Calculation of the spin-wave velocity. (a)
Velocities c(L) obtained for systems of sizes from L = 6 to 26 at
different values of the coupling g and extrapolated using Eq. (32). (b)
Extrapolated velocities c(g) as a function of the microscopic energy
scale 6 + g. Error bars are mostly hidden inside the symbols. The
solid line is a linear fit, and the inset magnifies the region close to gc.

regime to test the limits of linear proportionality and discuss
the normalization of TN .

In Ref. [20], where a universal linear relation was found
in three different models, the authors articulate a mean-field
argument based on semiclassical considerations for a direct
proportionality of TN to the effective spin order gauged by
ms at T = 0. In Ref. [21], these arguments were elucidated
in a field-theory context, where it was stated that logarithmic
corrections should be negligible for linear proportionality to
emerge. In fact these arguments can be reduced to the statement
that it should be possible to treat quantum and thermal
fluctuations independently, with no mutual interference of their
effects [20]. If one considers that mean-field exponents are
valid in high-dimensional systems (D > Dc) because thermal
fluctuations become independent of quantum fluctuations
when the phase space is sufficiently large, then it appears
that weak logarithmic corrections could enter the relationship
of TN to ms at D = Dc. This possibility, also motivated by
the (then) unknown form of the logarithmic corrections to
TN , was investigated directly by QMC simulations for the
cubic lattice [22], but the results were not conclusive (claims
concerning the observation of logarithmic corrections are not
justified by the available data range). Here we have presented
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FIG. 12. (Color online) Relationship between TN and ms , using
different normalizations of TN : in (a) by the intracube coupling J = 1,
in (b) by the sum of couplings Js = 6 + g, and in (c) by the spin-wave
velocity in the form

√
12/5c3/2. The lines are linear (proportionality)

fits to the small-ms points, and the yellow shaded areas denote the
QC regime determined from ms(g) in Fig. 5.

scaling arguments (Sec. VI A) and numerical data (Sec. VI B)
demonstrating that the logarithmic corrections to ms and TN

have precisely the same form, setting their linear relationship
in this class of system on a far firmer foundation.

Our data from Secs. V and VI can be used to probe the
TN (ms) relation in detail and confirm that linearity extends
much closer to the QCP than previous studies could show.
Because our results are for a single type of dimerized model,
we are not able to address the question of a universal
prefactor [20]. However, we are able to make a definite
statement regarding logarithmic corrections in the relationship
between TN and ms . Figure 12 shows our data, taken from
Figs. 6 and 9, in the form TN (ms), with the implicit control
parameter g effectively eliminated. In Fig. 12(a), TN is simply
normalized by the energy scale, the interdimer coupling J = 1;
in Fig. 12(b), we have normalized TN by the composite scale
Js = 6 + g (where g can be considered a function of ms), as
in Fig. 9, and in Fig. 12(c), we have normalized TN using the
correctly scaled spin-wave velocity c3/2. The shaded regions
again signify our definition of the critical region based on the
strict critical scaling of ms(g) in Fig. 5.
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As shown in Ref. [20], we find in Fig. 12(b) that the linearity
of ms and TN/Js extends well beyond the QC regime; although
our data were not selected to focus on this region, we do
find complete agreement with previous calculations where the
data overlap. Here we demonstrate that the essentially perfect
linearity also extends much closer to ms = 0 = TN (g → gc),
and in particular that it remains valid throughout a regime with
explicit logarithmic corrections in the individual quantities.
Although we cannot show that the linear relationship extends
all the way to the QCP, our data certainly suggest that this
is the case, i.e., that it can also be considered a universal
property of the QC regime. To the extent that linearity of
ms and TN is a consequence of the decoupling of thermal
and quantum fluctuations, this independence appears to ex-
tend from strongly ordered systems, where no logarithmic
corrections are expected, to the most strongly fluctuating QC
systems. The linear relationship we have demonstrated verifies
in full our scaling prediction that the logarithmic corrections to
TN (g) have the same exponent, τ̂ = β̂ = 3/11, as ms(g). We
also note that the normalization of TN has no effect (beyond
the prefactor) on the linear relationship in the QC regime but
that deviations from linearity clearly differ at higher ms .

We close by considering in more detail the case where TN

is normalized by c3/2 [Fig. 12(c)], with a view to making
quantitative comparisons with field-theory predictions [21].
The explicit relationship is

TN = γ c3/2

√
12

5
ms, (33)

where γ = 〈φ〉/ms is the dimensionful prefactor relating
the expectation value of the un-normalized field φ in the
action to the order parameter ms of the lattice model. In the
dimensionless units of our work (J = 1,� = 1, ...), we obtain
γ = 0.6998 ± 0.0016, thereby providing a bridge between the
quantum field theory and the microscopic lattice Hamiltonian.
We suggest that this calculation should be repeated for other
dimerized geometries to test the universality of γ . It is worth
repeating in this context the advantages of the double cubic
lattice in making the spin-wave velocity equal in all three
primary axial directions. The winding-number method used
to extract c in Sec. VI C can be generalized to anisotropic
systems [50] but incurs the significant complication of altering
the aspect ratio of the spatial lattice. Different techniques
for computing the velocities, such as those based on the
hydrodynamic relationship among c, the spin stiffness, and
the magnetic susceptibility [16], may then be more convenient
in practice.

E. Width of the classical critical region

A key question raised by the experiments on TlCuCl3 [8]
concerns the width of the region close to TN where classical
critical scaling applies. It was found that this width, W �
0.2TN , is essentially constant when normalized by TN . We
employ scaling arguments to show that the normalized width,
W̃ = W/TN , should indeed be a constant with only a weak
logarithmic correction in 3+1 dimensions.

For fixed temperature T , we consider the correlation
length, defined in terms of the approach of the spin-spin
correlation function to its asymptotic long-range value, m2

s ,

when approaching the critical coupling ratio g(T ) from the
ordered side. This quantity has an initial divergence governed
by the 4D QCP,

ξ (T ) = ξ4(T ) ∼ [gc(T = 0) − g(T )]−ν4 , (34)

with mean-field exponent ν4 = 1/2, because the temporal
thickness Lτ far exceeds ξ and the system cannot sense its
finite temporal extent, behaving as at T = 0. At the point
where ξ reaches Lτ , the behavior crosses over to a 3D scaling
form,

ξ (T ) = ξ3(T ) ∼ [gc(T ) − g(T )]−ν3 , (35)

where ν3 ≈ 0.70 is the 3D O(3) exponent. Without logarithmic
corrections, the temporal length is simply Lτ ∝ 1/T (more
precisely, Lτ = L/c), but at the upper critical dimension this
relationship is modified by a logarithmic factor,

Lτ ∼ | ln(T )|q̂ /T , (36)

which is obtained by generalizing the classical result of
Kenna [25]. For the 4D O(3) universality class, q̂ =
1/4 [25,47], and the correlation length itself also has a
logarithmic correction,

ξ4 ∼ (gc − g)−ν4 | ln(gc − g)|ν̂ , (37)

with ν̂ = 5/22. The quantum-classical crossover taking place
when ξ ≈ Lτ therefore corresponds to

| ln(T )|q̂ /T ∼ [gc − g)]−ν4 | ln(gc − g)|ν̂ , (38)

which, by converting to a temperature dependence and keeping
only the leading logarithm, yields the crossover temperature

T ∗(g) ∼ (gc − g)1/2| ln(gc − g)|q̂−ν̂ . (39)

Using our result for TN (g) [Eq. (31)], the width of the classical
critical region on the ordered side of the transition is therefore

W̃ (g) = TN (g) − T ∗(g)

TN (g)
∼ 1 − a| ln(gc − g)|(q̂−ν̂)/τ̂ , (40)

with a constant a, whose calculation requires further consid-
erations, and a small exponent

q̂ − ν̂

τ̂
= 1/4 − 5/22

3/11
= 1/12 (41)

on the logarithm. This very weak dependence explains the
near-constant behavior found for TlCuCl3 [8]. On general
grounds we expect the width of the classical critical regime on
the other side of the transition to scale in the same way.

VII. SUMMARY

We have provided a direct and nonperturbative verification
of the existence and nature of multiplicative logarithmic
corrections to scaling at the quantum phase transition for three-
dimensional dimerized quantum Heisenberg antiferromagnets.
These systems correspond to the φ4 field theory of an O(3)
quantum field in 3 + 1 dimensions, which is the upper critical
dimension (Dc = 4) for all models with O(N ) universality.
With the exception of the Ising model (N = 1) [51], no
such demonstration exists to date, despite a significant body
of analytical and numerical work on quantum criticality in
dimerized quantum antiferromagnets.
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Our results are obtained from large-scale quantum Monte
Carlo calculations based on state-of-the-art simulation tech-
niques and detailed finite-size-scaling analysis. These enabled
us to extract the precise logarithmic corrections to the leading
critical properties at the quantum phase transition from a
nonmagnetic state of dominant dimer correlations to a Néel-
ordered antiferromagnetic state. Specifically, we have obtained
the multiplicative logarithmic corrections to the mean-field be-
havior of the order parameter, the zero-temperature staggered
magnetization ms , on the control parameter, the coupling ratio
g. We have verified that these are governed by an exponent
β̂ = 3/11, a value we specify with numerical (statistical)
precision under 3%, matching precisely the prediction of
perturbative renormalization-group calculations [24,25].

No prediction was previously available for the analogous
logarithmic correction to the Néel temperature TN . We have
implemented a scaling ansatz exploiting the known logarith-
mic corrections of other physical quantities to obtain its form.
Our prediction is that TN has exactly the same exponent in its
logarithmic correction, τ̂ = 3/11, as the order parameter, and
our numerical results for TN (g) are in excellent agreement.
We have thereby established an exact linearity between TN

and ms throughout the quantum critical regime. We have also
demonstrated a different kind of logarithmic correction in the
size dependence of the staggered magnetic susceptibility at
the four-dimensional quantum critical point, where we verify
the predicted N -independent scaling form [35].

The numerical task of finding logarithmic corrections is
not a straightforward one. We have established that the
appropriate scaling regime is |g − gc|/gc � 0.2. Within this
region, obtaining reliable evidence for logarithmic corrections
is critically dependent on having many high-precision data
points at very small values of |g − gc|, which mandates
accurate calculations at large system sizes. After establishing
the location of the critical point to approximately one part in
105, gc = 4.83704(6), we were able to obtain highly accurate
extrapolations of the physical observables for coupling ratios
as close to gc as 4.834, i.e., with |g − gc|/gc � 0.0006. This
required working with linear system sizes as large as L = 48,
meaning a system containing N = 2L3 = 221184 interacting
spins, and at temperatures as low as T = 1/(2L) = 1/96.
From this perspective, it becomes obvious why previous
studies [20,22,31] with only a handful of data points in the
quantum critical regime (none closer than |g − gc|/gc = 0.02)
were not able to find any meaningful evidence for logarithmic
corrections.

Our results are directly relevant to the pressure-induced
quantum phase transition in TlCuCl3 [6–8]. Detailed ex-
periments on this material by elastic and inelastic neutron
scattering have measured the staggered magnetization, the
Néel temperature, the gap of the quantum disordered phase,
and the magnetic excitation spectrum on both sides of the
transition. On the assumption that the leading dependence of
the control parameter (the ratio of antiferromagnetic superex-
change parameters) is linear in the applied pressure, both ms

and TN show good mean-field exponents and a close linear
relation over much of the accessible pressure range [8]. On
the grounds that the available data follow mean-field scaling
around the quantum critical point, it cannot be argued that they
provide any evidence for logarithmic corrections, although the

size of the experimental errors and the shortage of data very
close to the QCP certainly mean they cannot be excluded.

It has been argued very recently [52], based on a field-
theoretic treatment, that the apparent suppression of ms and
TN visible in the experimental data for TlCuCl3 rather far from
the QCP (at pressures two to four times the critical pressure)
arises due to logarithmic scaling of the coupling constant.
In Ref. [8] it was assumed that these effects are in fact a
consequence of departures from the quantum critical scaling
regime, evident also in the violation of linearity between ms

and TN beyond the point where the order parameter is 60%
of the classical moment. Although a direct comparison with
our results is not possible without a microscopic treatment of
the relationship between the applied pressure and the control
parameter, a similar downturn is visible and better described
by including the multiplicative logarithmic corrections beyond
|g − gc|/gc ≈ 0.05 in our Figs. 4 and 9. It is also tempting to
relate the TN (ms) curve of TlCuCl3 [8] to our Fig. 12(b), where
the extended linear regime is followed by an upturn deep inside
the Néel phase, which was interpreted [20] as the breakdown
of the quantum-thermal decoupling (see below) due to a large
density of thermally excited magnons when TN is high. Finally,
we have also provided a theoretical explanation for the shape
of the classical critical scaling “fan” around TN (p) observed
in TlCuCl3 [8] by showing that its width scales linearly with
TN , modified by a logarithmic correction with a very small
exponent of 1/12, which would vary extremely weakly over
the experimental pressure window.

Although many dimerized S = 1/2 systems with antifer-
romagnetic interactions are known and many field-induced
quantum phase transitions have been studied, few have yet
been found to be close to quantum critical points at zero field
under pressure. Our results shed light on the experimental
challenges inherent in finding logarithmic corrections but also
provide evidence that their detection is actually possible. While
important theoretical questions remain to be addressed in lower
dimensions, logarithmic corrections are of little relevance
away from Dc. Another challenge for both experiment and
numerical simulation would be to investigate the exponents
and corrections for different N , meaning for systems of Ising
and XY spins. A related experimental possibility would be to
realize the N = 2 situation in a gas of ultracold bosons on
an optical lattice. The unfrustrated dimerized antiferromagnet
is a bipartite lattice and thus can be treated exactly as a
system of hard-core dimer bosons, with the dimerized phase
corresponding to the Mott insulator and the antiferromagnet
to the superfluid (a state of long-range intersite coherence);
the symmetry broken is U(1), which is equivalent to XY.
Although these experiments have not yet been realized in
sufficiently large three-dimensional gases of cold bosons, the
very fine parameter control possible in cold-atom systems
offers another candidate route for the experimental observation
of logarithmic corrections to scaling.

One of the points made in Ref. [8] was that, although
quantum critical phenomena are universal, obeying scaling
forms determined only by macroscopic properties of the
system such as the dimensionality and the symmetry of
the order parameter, their experimental observation depends
crucially on nonuniversal prefactors. For quantum critical
excitations, this is the ratio of the width of an excitation to its
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energy and is a quantity determined entirely by microscopic
details. For both static and dynamic properties, the key figure
of merit is the width of the quantum critical regime, and for
this we have obtained a quantitative result not previously
available by any other technique, |g − gc|/gc � 0.2. In as
much as one may generalize from the dimensionality and
geometry of the double cubic lattice, this 20% criterion dictates
the necessary proximity to the quantum critical point for
the observation of strict quantum critical scaling, including
logarithmic corrections.

Our demonstration of linearity between ms and TN in the
(3 + 1)-dimensional Heisenberg antiferromagnet lies beyond
any results previously predicted by analytical methods. What
we have demonstrated explicitly for several quantities is the
presence of expected logarithmic corrections, but their can-
cellation between ms and TN was not anticipated. However, in
parallel to our scaling argument for the logarithmic corrections
to TN , Scammell and Sushkov have recently arrived at the
same conclusion from a different starting point [52]. A key
outstanding question is whether the linearity of TN (ms) is,
in fact, a more fundamental property of the system than
arguments made at the semiclassical and mean-field levels
suggest. Qualitatively, the origin of linearity is thought [20]
to lie in the effective decoupling of the classical and quantum
fluctuations, which is applicable for all coupling ratios both
outside and inside the QC regime. Its observation here
implies the enduring independence of quantum and thermal
fluctuations at the O(N ) transition with D = Dc for any N .
Efforts to study the relationship between the T = 0 order
parameter and the critical temperature in systems with different
universality classes would shed light on this matter.
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APPENDIX: CROSSING-POINT SCALING IN THE
PRESENCE OF LOGARITHMIC CORRECTIONS

According to the general hypothesis of finite-size scaling
(FSS), verified by renormalization-group techniques (for a
review see Ref. [53]), the dependence on system size of a
physical quantity in the neighborhood of a critical point can
be described by the function

Q(t,L) = Lκ/ν[f (ξ/L) + O(L−ω,ξ−ω)], (A1)

where t is the distance to the critical point, i.e., t = |T − Tc|
for a classical phase transition or t = |g − gc| for a quantum
phase transition. κ is the critical exponent for the quantity in

question in the thermodynamic limit, Q(t) ∼ |t |−κ , and the
subleading exponent ω originates from an irrelevant scaling
field. In a fully rigorous treatment, L in f (ξ/L) should be
replaced by ξL(0), which is the finite-size correlation length at
the critical point (t = 0) and thus the relevant length scale for
FSS. In the absence of logarithmic corrections, ξL(0) ∼ L.

The leading term in Eq. (A1) is the asymptotic FSS, and
the second term expresses the correction to scaling. For the
Binder ratio, Q(g,L) = R2(g,L), which is a dimensionless
“invariant,” the asymptotic scaling has exponent κ = 0. Cor-
rection terms remain present, and at the crossing point t∗ for
two system sizes L1 and L2 one has

R2(t∗,L1) = R2(t∗,L2). (A2)

Without logarithmic corrections,

f (ξ/L) = h(tL1/ν), (A3)

and hence

R2(t,L) = a + btL1/ν + cL−ω + · · · . (A4)

The crossing point t∗ can be determined for (L1, L2) as

t∗ ∼ 1 − s−ω

s1/ν − 1
L

−ω−1/ν

1 , (A5)

where s = L2/L1, and is either constant (L2 = aL1 with a >

0) or approaches unity (L2 = L1 + 2) as the system size goes
to infinity.

If the logarithmic correction to the correlation length is
taken into consideration,

ξ ∼ t−ν | ln t |ν̂ , (A6)

and according to Refs. [25,47],

ξL(0) ∼ L lnq̂ L (A7)

is now the relevant FSS length scale. On substituting Eq. (A7)
into both the asymptotic FSS term f (ξ/L) and the subleading
term L−ω, Eq. (A5) becomes

t∗ lnν̂/ν t∗ ∼ 1 − s ′−ω

s ′1/ν − 1
ξ

−ω−1/ν

L1
(0), (A8)

where

s ′ = ξL2 (0)

ξL1 (0)
= L2 lnq̂(L2)

L1 lnq̂(L1)
, (A9)

which also approaches a constant as L1,L2 → ∞.
There is no straightforward inversion of Eq. (A8) to obtain

an exact expression for t∗. However, for the leading logarithmic
correction it is sufficient to substitute Eq. (A5) into the
logarithmic part of (A8), which yields

ln t∗ ∼ c + ln

(
1 − s−ω

s1/ν − 1

)
− (ω + 1/ν) ln L, (A10)

a quantity approximately proportional to ln L when L is
large [consider s = (L + 2)/L = 1 + 2/L]. The leading scal-
ing behavior, obtained on replacing ln t∗ in Eq. (A8) with
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ln L, is

t∗ ∼ 1 − s ′−ω

s ′1/ν − 1
L−ω−1/ν ln−q̂ω−q̂/ν L lnν̂/ν L

∼ 1 − s ′−ω

s ′1/ν − 1
L−ω−1/ν lnĉ L, (A11)

where the exponent ĉ is given by

ĉ = ν̂ − q̂

ν
− q̂ω. (A12)

Replacing t by g − gc and taking the large-L limit such that
s ′ → 1, Eq. (A11) yields

gc(L) = gc + aL−(1/ν+ω) lnĉ L, (A13)

which is Eq. (18) in Sec. III A. However, if there is no
logarithmic correction to the subleading term L−ω, the second
term in Eq. (A12) is absent, and

ĉ = λ̂ = ν̂ − q̂

ν
. (A14)
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