# Scaling relation between anomalous Nernst and Hall effect in [Pt/Co]<sub>n</sub> multilayers

C. Fang, C. H. Wan,<sup>\*</sup> Z. H. Yuan, L. Huang, X. Zhang, H. Wu, Q. T. Zhang, and X. F. Han<sup>†</sup>

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 16 December 2015; published 23 February 2016)

The anomalous Nernst coefficient, anomalous Hall angle, and Seebeck coefficient have been measured in the same series of  $[Pt/Co]_n$  superlattices in which spin-orbit coupling is dominated by interfaces. With an increase in the number of interfaces from 1 to 15, the anomalous Nernst coefficient and anomalous Hall angle simultaneously increase, by 350% and 430%, respectively. Furthermore, they even scale linearly with each other, while the Seebeck coefficient and magnetization of the superlattices vary a little. Based on the linear scaling relation, a physical scenario behind the anomalous Nernst effect, as well as a formula relating the Nernst coefficient, the Hall angle, and the Seebeck coefficient, is proposed. The work not only demonstrates an effective way to enhance the anomalous Nernst effect in ferromagnetic conductors but also can bring about deeper insight into the anomalous Nernst effect.

DOI: 10.1103/PhysRevB.93.054420

# I. INTRODUCTION

Spin caloritronics, focusing on the interplay of spin current or spin accumulation with a thermal gradient, has emerged rapidly as an important spintronics branch due to its potential prospects in waste heat recycling in today's microelectronics since the discovery of the spin Seebeck effect (SSE) [1–12], spin-dependent Seebeck effect (SDSE) in magnetic tunnel junctions [13–15], SDSE in giant magnetoresistance devices [16–18], and spin-dependent Peltier effect [19,20]. Studies on the anomalous Nernst effect (ANE) in which a temperature gradient  $\partial T/\partial x$  can produce an electric field  $\partial V_N/\partial y$  in a ferromagnetic conductor with magnetization along the *z* axis have been revived as well because of its ability to generate electricity from thermal energy. The  $V_N$  is the so-called anomalous Nernst voltage, which, though discovered more than one century ago, is not thoroughly understood [21].

Recently, Ramos et al. [21] and Pu et al. [22] researched the temperature (T) dependence of  $V_N$ , the Seebeck coefficient (S), and the Hall angle ( $\theta_H$ ) in thick Fe<sub>3</sub>O<sub>4</sub> and Ga<sub>1-x</sub>Mn<sub>x</sub>As films, respectively, and found that  $V_N$  and S both satisfy the Mott relation. Hasegawa et al. researched the T dependence of  $V_N$ , S, and the anisotropy energy in some perpendicular systems such as FePt, FePd, D022 Mn2Ga, L10 MnGa, and Co/Ni thick films [23]. Their results show a positive correlation between  $V_N$  and the anisotropy energy. Uchida *et al.* [24] researched  $V_N$  in  $[Fe/Pt]_n$ ,  $[Au/Fe]_n$ , and  $[Cu/Fe]_n$  stacks and found an enhancement of the ANE in stacks with heavier elements. These pioneering works have indicated a strong correlation among  $V_N$ , S, and the spin-orbit coupling (SOC) strength. However, an experimental work directly relating  $V_N$ , S, and  $\theta_H$  in the same material system with variable SOC strengths is still lacking. A clear physical picture behind the ANE is still to be revealed.

In this research, we have systematically measured the  $V_N$ , S, and  $\theta_H$  of  $[Pt/Co]_n$  superlattices in which the SOC strength can be monotonically modulated by the number of interfaces. A positive correlation, especially, a linear scaling

2469-9950/2016/93(5)/054420(7)

relation between  $V_N$  and  $\theta_H$ , has been clearly observed with a relatively stable *S* and saturated magnetization ( $M_0$ ). Based on this relation, we propose a physical picture behind the ANE, which may lead to a more comprehensive understanding of this long-mysterious effect.

### **II. SAMPLES AND EXPERIMENTS**

[Co(t nm)/Pt(t nm)]<sub>n</sub>(n = 1-8, t = 12/n) stacks were deposited on Si(500  $\mu$ m)/SiO<sub>2</sub>(500 nm) substrates with a base pressure of  $1.0 \times 10^{-6}$  Pa at room temperature with a TMR R&D Sputtering System (ULVAC). The number of Co/Pt interfaces increases as (2n - 1), while their total thickness is kept at 12 nm to maintain the transport properties of the bulk region as stable as possible. A magnetic field of 200 Oe around the sample holder is equipped in the sputtering system to induce an easy axis. Co (12 nm), Pt (12 nm), and X (20 nm)/Pt (2 nm) ( $X = Ni_{80}Fe_{20}$ , Co<sub>40</sub>Fe<sub>40</sub>B<sub>20</sub>, Co) films were fabricated for comparison.

Films were then patterned via one-step ultraviolet lithography and the following argon etching process. For anomalous Hall effect (AHE) and resistivity measurement, films were patterned as a Hall bar as shown in Fig. 1(a) with the easy axis along the x axis. In this case, current (I) is applied between pad G and pad H, and voltmeters pick up  $V_{PO}$  and  $V_{PL}$ for measuring  $R_{xx} = V_{PQ}/I$  and  $R_{xy} = V_{PL}/I$ , respectively. For ANE measurement, films were patterned as shown in Fig. 1(b) with points E and F along the easy axis. During ANE measurement, heating current (I) is applied between pad A and pad B, generating a temperature gradient in the transverse direction along the x axis  $(\partial T/\partial x)$ . The magnitude of  $\partial T/\partial x$  is controlled by the heating power  $\omega$  ( $\omega = I^2 R_{AB}$ , with  $R_{AB}$  being the resistance between pad A and pad B). In the x direction, no net current flows between point E and pad F because the circuit for measuring ANE was isolated from the heating bar by a fixed distance D of 7  $\mu$ m. Pads C and D are used to detect Nernst voltages. It is noteworthy that the anomalous Nernst voltage measured in this setup can be free of contamination from the SSE and planary Nernst effect (PNE) induced by  $\partial T/\partial x$  or  $\partial T/\partial z$  (if it exists) if magnetization is fully saturated along the  $\pm z$  axis. The absence of the SSE is due to the collinear alignment of spin polarization of the spin current driven by the SSE (parallel to magnetization) with the

<sup>\*</sup>wancaihua@iphy.ac.cn

<sup>&</sup>lt;sup>†</sup>xfhan@iphy.ac.cn



FIG. 1. Patterns for measuring (a) the resistance and Hall resistance and (b) the anomalous Nernst effect. Point E and pad F are along the easy axis and also along the x axis. (c) Schematic of the experimental setup for measuring the Seebeck coefficient of a thin film. Tungsten probes with a spacing of d are used to pick up the Seebeck voltage. The temperature gradient between point K and point Q in a silicon strip, after the geometry factor  $\xi$  is taken into account, is used to estimate the counterpart in a sample on the top of the strip. A thin layer of thermal grease has to be used between the sample and the strip to improve the interfacial thermal conductivity and obtain a high signal-to-noise ratio of the Seebeck voltage.

film normal. The absence of the PNE is due to the fact that the PNE is similar to the planary Hall effect and is proportional to  $\cos \theta \sin \theta$ , with  $\theta$  being the angle between magnetization and temperature gradient. Dimensions of different measurement setups are also shown in Figs. 1(a) and 1(b).  $H_z$  was provided by a Physical Property Measurement System (PPMS-9T; Quantum Design). The Keithley 2400 and Keithley 2182 were applied to source samples and measure voltages, respectively.

It is also worth mentioning that the increase in resistivity of the superlattices would lead to a decrease in their thermal conductivity according to the Wiedemann-Franz law [25] by about 1 time. Nevertheless, the decrease in thermal conductivity of a thin film from 30 W/(m · K) [25] to even 1 W/(m · K) would lead to an increase of only about 10% in  $\partial T/\partial x$  around point E according to finite-element modeling because the thermal conductance of the substrate is several orders of magnitude higher than that of the thin film, and the heat flow as well as the temperature distribution is thus determined by the substrate instead of the film. Here the thermal conductivity of SiO<sub>2</sub> and Si is selected to be 1.4 W/(m  $\cdot$  K) and 148 W/(m  $\cdot$  K) [26] in the finite-element modeling. Evidently, our Nernst measurement setup can well separate electrotransport in the film and heat transport in the substrate.

Seebeck coefficients of samples were measured in a homemade facility equipped with two Peltier heaters, two temperature controllers, and a three-dimensional magnet  $(\pm 300 \text{ Oe in three directions realized by Helmholtz coils})$ [Fig. 1(c)]. Two copper blocks were fixed on a PCB board to aid heat dissipation. The Peltier heaters were placed on top of the copper blocks with a spacing of 40 mm. A silicon strip of 70 mm  $\times$  12 mm  $\times$  500  $\mu$ m connected the top sides of the two heaters. Then a temperature gradient was built along the strip after one heater was turned on. To estimate the temperature gradient along the strip, we placed two temperature sensors at points K and Q on the top of the strip, with their spacing L being 38 mm. The sensors are connected to the temperature controllers for PID control. Samples with a width of 5 mm and a length l of 8.5 mm were placed on the center of the strip to feel the temperature gradient. Either the easy or the hard axis of the samples was parallel to the x axis. There was no observable difference between these two cases. After about 5 min of stabilization, the Seebeck voltage  $V_S$  was picked up by the Keithley 2182 via two tungsten probes whose absolute Seebeck coefficient was about 2.5  $\mu$ V/K at 300 K. The distance d between the two probes was about 8 mm. Thus a temperature difference,  $\Delta T = \xi \Delta T_{KQ} d/L$ , was estimated to be built between the probes along a sample. Here  $\xi$ , a geometry factor, had to be introduced due to the influence of the sample on the local temperature distribution, and it was about 0.56 determined by finite-element calculation with real dimensions. In order to improve the interfacial thermal conductivity, a thin layer of thermal grease was used between the heaters and the strip and also between the strip and the substrate of samples. The geometry factor  $\xi$  is insensitive to the thickness of the thermal grease as long as the thickness of the thermal grease is much smaller than that of the silicon strip.

# **III. ANOMALOUS HALL EFFECT**

Figure 2(a) shows the  $H_7$  dependence of the Hall resistivity  $(\rho_{xy})$  of the samples (SPn; n = 1-8) at 300 K. The  $\rho_{xy}$ and resistivity  $\rho_{xx}$  both increase monotonically with (2n - 1)[Fig. 2(a); inset], hinting at a remarkable effect of interface scattering. A similar phenomenon was reported by Canedy et al. [27] and Zhao et al. [28]. As  $n \leq 5$ ,  $\theta_H \equiv \rho_{xy}/\rho_{xx} =$ 0.0049 + 0.0027(2n - 1) [Fig. 2(b)]. It is reasonable that the intercept 0.0049 is just about half the  $\theta_H$  of pure Co, which is 0.011, considering that  $\sigma_{\rm Pt}/\sigma_{\rm Co} \approx 1.1$ . This part results from bulk Co. The rest, linearly depending on (2n - 1), is attributed to interface scattering. It is noteworthy that the interfacial part contributes more than the bulk part to  $\theta_H$  as  $n \ge 2$ . The scaling law  $\rho_{xy} \propto \rho_{xx}^{\beta}$  is measured by varying T [Fig. 2(c)]. If an intrinsic or side-jump mechanism dominates the AHE,  $\beta$  is close to 2. Otherwise, it is close to 1 if skew scattering dominates [29]. Here the  $\beta$  of Co



FIG. 2. (a)  $H_z$  dependence of  $\rho_{xy}$  of SPn at 300 K. Inset: Dependence of  $\rho_{xx}$  on (2n - 1) at 300 K. (b) Dependence of  $\theta_H$ at 300 K on (2n - 1) and its linear fitting as  $n \leq 5$ . (c) Scaling law between  $\rho_{xy}$  and  $\rho_{xx}$  with varying *T*. Inset: Scaling exponent  $\beta$ . (d)  $H_z$  dependence of the anisotropic magnetoresistance of Co and some superlattices.

and SP1 is 1.8 and 2, respectively, while the  $\beta$  of the rest samples is reduced to  $1.3 \pm 0.1$  [Fig. 2(c); inset]. The sudden drop in  $\beta$  at n = 2 also indicates the dominating role of interface skew scattering as  $n \ge 2$ . We have also measured the anisotropic magnetoresistance (AMR) of Co and some superlattices [Fig. 2(d)] as H is applied along the z axis. They are all within 1%. The  $H_z$  dependence of the AMR seems to be composed of two parts: one within 3 kOe and the other saturated within about 15 kOe. The first one shows  $\rho_{\parallel} \ge \rho_{\perp}$  always, which is ordinary and unchanged in the superlattices.  $\rho_{\parallel}$  and  $\rho_{\perp}$  is the resistivity with magnetization parallel and normal to the current density, respectively. The second one shows  $\rho_{\parallel} \ge \rho_{\perp}$  for Co and SP1. However,  $\rho_{\parallel} \le \rho_{\perp}$ for the other superlattices. A similar AMR where  $\rho_{\parallel} \leq \rho_{\perp}$  has also been reported at the Au/YIG interface [4]. Though it is abnormal, the origin of this AMR is beyond the scope of this article and will be discussed elsewhere.

### **IV. ANOMALOUS NERNST EFFECT**

We also measured the ANE of different samples. In our Nernst measurement setup, though the heating bar is also



FIG. 3. (a) Field dependence of the  $V_N$  of SP8 under opposite  $\partial T/\partial x$  and  $\omega = 587$  mW. Inset: Positions of corresponding pads. (b) Field dependence of the  $V_N$  of SP8 under different  $\gamma$  at  $\omega = 250$  mW. Inset: Definition of the angle  $\gamma$ . (c) Field dependence of the  $V_N$  of SP8 under elevated powers. Inset: Linear dependence of saturated  $V_N$  on  $\omega$ . The solid red line shows the linear fitting result. (d) Dependence of  $v_N = dV_N/d\omega$  (left axis) and  $v_N/\theta_H$  (right axis) on the number of interfaces. Inset: Scaling relation between  $v_N$  and  $\theta_H$  of the superlattices. Solid red and blue lines show linear fitting results as  $n \leq 5$  and  $n \geq 5$ , respectively.

made of the superlattices, the AMR of the heating bar will only introduce uncertainly of the Nernst voltage within 1%. The anomalous Nernst voltage  $V_N$  evolves with  $H_z$  in a very similar way as  $\rho_{xy}$  does. As a typical feature of the ANE, the sign of  $V_N$  is reversed with reversing  $\partial T/\partial x$  [Fig. 3(a) and its inset]. As *H* is rotated from out-of-plane to in-plane [ $\gamma$ , defined in the inset to Fig. 3(b), becomes 0° or 180°],  $V_N$  becomes gradually negligible [Fig. 3(b)]. This observation also supports a physical picture of the ANE which requires orthogonality among M,  $\nabla T$ , and  $\nabla V_N$ . The ordinary Nernst effect which depends linearly on  $H_z$  is negligible, compared with the ANE [Fig. 3(a)]. Besides, a small planary Nernst effect only appears around zero fields, while it disappears after saturation of M.  $V_N$  increases linearly with the heating power  $\omega$  as expected [Fig. 3(c) and its inset] and  $v_N \equiv dV_N/d\omega$  is thus defined to indirectly characterize the ANE coefficient  $(\eta)$  in this study. Figure 3(d) shows that the  $v_N$  of SP1 is about half the  $v_N$  of pure Co due to the shielding effect of Pt. Besides, similarly to  $\theta_H$ , the  $\nu_N$  of the superlattices also monotonically increases with (2n - 1), by 350% from n = 1 to n = 8, indicating that interfacial contact with Pt is a highly effective way to enhance the ANE in superlattice systems. Meanwhile,  $\theta_H$  increases by 430% from n = 1 to n = 8. The coefficient of correlation defined as  $\sum_{i=1}^{8} (\nu_{\text{Ni}}\theta_{\text{Hi}}) / [(\sum_{i=1}^{8} \nu_{\text{Ni}}^2)^{1/2} (\sum_{i=1}^{8} \theta_{\text{Hi}}^2)^{1/2}]$  reaches 0.997. More importantly,  $v_N$  linearly scales with  $\theta_H$  as  $n \leq 5$ and  $n \ge 5$  with a slope  $d\nu_N / d\theta_H$  of (0.33  $\pm$  0.02) mV/W and  $(0.80 \pm 0.06)$  mV/W [Fig. 3(d); inset], respectively. The ratio of  $v_N/\theta_H$  was also checked [Fig. 3(d); right]. The  $v_N/\theta_H$  in Co is 0.96 mV/W, while the average  $v_N/\theta_H$  over the eight superlattices is  $(0.49 \pm 0.07)$  mV/W. The positive correlation and, especially, the linear relation between  $v_N$  and  $\theta_H$  observed in the same material system strongly imply that the same microscopic origin is responsible for the ANE and AHE, which is discussed below.

## V. SCALING RELATION BETWEEN THE AHE AND THE ANE

The positive correlation between  $\eta$  and SOC strength in different perpendicular ferromagnetic materials was also suggested recently in Ref. [23]. Here the linear scaling relation between  $\eta$  and  $\theta_H$  observed in the same series of  $[Co/Pt)]_n$  stacks further indicates a strong correlation between them. In order to understand this relation, let us turn to the linear response theory below as proposed in Ref. [2]. For a ferromagnetic conductor, according to this theory, the density of the charge current  $J_c$ , spin current  $J_s$ , and heat flow Qare driven by the gradient of the electrochemical potential  $\nabla \mu_c$ , spin potential  $\nabla \mu_s$ , and temperature  $\nabla T$ , respectively, via Eq. (1):

$$\begin{bmatrix} J_c \\ J_s \\ Q \end{bmatrix} = \sigma \begin{bmatrix} 1 & P & ST \\ P & 1 & P_T ST \\ ST & P_T ST & \kappa T/\sigma \end{bmatrix} \begin{bmatrix} \nabla \mu_c/e \\ \nabla \mu_s/2e \\ -\nabla T/T \end{bmatrix}$$
(1)

Here  $J_{c/s} = J_{\uparrow} \pm J_{\downarrow}$ .  $J_{\uparrow}$  and  $J_{\downarrow}$  are the current density in spin-up and spin-down channels.  $\mu_{\rm c} = (\mu_{\uparrow} + \mu_{\downarrow})/2$  and  $\mu_{\rm s} = (\mu_{\uparrow} - \mu_{\downarrow})$ , with  $\mu_{\uparrow}$  and  $\mu_{\downarrow}$  being the electrochemical potential of spin-up and spin-down electrons. S,  $\sigma$ , and  $\kappa$  are the Seebeck coefficient, conductivity, and thermal conductivity, respectively.  $\sigma S$  is the thermoelectric conductivity.  $S = (S_{\uparrow}\sigma_{\uparrow} + S_{\downarrow}\sigma_{\downarrow})/(\sigma_{\uparrow} + \sigma_{\downarrow})$  and  $\sigma = \sigma_{\uparrow} + \sigma_{\downarrow}$ .  $P \equiv$  $(\sigma_{\uparrow} - \sigma_{\downarrow})/(\sigma_{\uparrow} + \sigma_{\downarrow})$ .  $\sigma_{\uparrow/\downarrow}$  and  $S_{\uparrow/\downarrow}$  are the spin-dependent conductivity and Seebeck coefficient, respectively.  $P_T \equiv$  $[\partial(P\sigma)/\partial\epsilon|_{\epsilon_F}]/[\partial\sigma/\partial\epsilon|_{\epsilon_F}]$ . Actually,  $P_T$  can be reduced as  $(\sigma_{\uparrow}S_{\uparrow} - \sigma_{\downarrow}S_{\downarrow})/(\sigma_{\uparrow}S_{\uparrow} + \sigma_{\downarrow}S_{\downarrow})$  after the Mott relation  $\sigma_i S_i =$  $\frac{\pi^2}{3} (\frac{k}{e})(kT) \frac{d\sigma_i}{d\epsilon}$  is taken into account.  $P_T$  can thus be deemed the spin polarization of the thermoelectric conductivity. In the case of an open circuit,  $\nabla \mu_c = eS \nabla T$ . Then  $J_s = (P - P_T)\sigma S \nabla T$ , which is exactly equivalent to the  $J_s$  expression in Ref. [16]. This equation implies that  $\nabla T$  can produce a pure spin current in a ferromagnetic conductor if  $P \neq P_T$  or  $S_{\uparrow} \neq S_{\downarrow}$ . Further, we propose here that conversion of this pure spin current into a transverse charge current via the inverse spin Hall effect (ISHE) in a ferromagnetic conductor finally results in an anomalous Nernst voltage. Actually, the ISHE in a ferromagnetic conductor has been observed in Refs. [8] and [30]. In the following, we phenomenologically discuss how a spin-polarized charge current and a pure spin current are transformed into a transverse charge current through the ISHE in the AHE and ANE, respectively, and then acquire the final relation among the anomalous Nernst coefficient, Seebeck coefficient, and anomalous Hall angle.

In the AHE, the charge current density *J* applied to the *x* axis can be decomposed into two parts: J(1 + P)/2 for spin-up and J(1 - P)/2 for spin-down channels. Without any loss of generality, we further suppose that electrons with opposite spins can (but do not necessarily) have different spin Hall angles  $\theta_{\uparrow\downarrow\downarrow}$ .  $P_{\theta} \equiv (\theta_{\uparrow} - \theta_{\downarrow})/(\theta_{\uparrow} + \theta_{\downarrow})$  and let the average spin Hall angle  $\theta_s \equiv (\theta_{\uparrow} + \theta_{\downarrow})/2$ . Thus a transverse current along the *y* axis  $J_c = \theta_{\uparrow}J(1 + P)/2 - \theta_{\downarrow}J(1 - P)/2 = \theta_s J(P + P_{\theta})$  is generated via the ISHE. The anomalous Hall angle  $\theta_H$  equal to  $J_c/J$  is thus  $\theta_s(P + P_{\theta})$ .

In the SDSE, the pure spin current density  $J_s$  generated by  $\nabla T$  can also be decomposed into two parts:  $J_s/2$  for each spin channel. These two spin currents, with opposite spin polarization directions and opposite moving directions, can be deflected into the same transverse direction and cooperatively contribute to a charge current of  $J_c = \theta_{\uparrow} J_s / 2 + \theta_{\downarrow} J_s / 2 = \theta_s J_s$ . Recalling the relation between  $J_s$  and  $\nabla T$  as well as the relation between  $\theta_s$  and  $\theta_H$ , one can easily obtain  $\nabla V_N = (P - P_T)/$  $(P + P_{\theta})\theta_H S \nabla T$ . The anomalous Nernst coefficient  $\eta$  defined as  $\nabla V_N/(\mu_0 M_0 \nabla T)$  can then be expressed via Eq. (2), which clearly shows a linear dependence of  $\eta$  on  $\theta_H$  and S with coefficient  $(P - P_T)/(P + P_\theta)/(\mu_0 M_0)$  depending on the spin polarization of the conductivity, thermoelectric conductivity, and spin Hall angle. Here  $\mu_0$  and  $M_0$  are the permeability of vacuum and saturated magnetization, respectively. A similar linear relation between  $\eta$  and  $\theta_H$  has been suggested in nonmagnetic materials [31]. In these systems,  $\theta_H \approx \mu B$  and  $\mu$ is the mobility. Thus  $\eta$  linearly depends on  $\mu$ . However, such a relation has not been proposed in ferromagnetic materials before:

$$\eta = (P - P_T)/(P + P_\theta)\theta_H S/(\mu_0 M_0).$$
(2)

In the recent Ref. [21],  $\theta_H S$  was found to contribute partially to  $\mu_0 M_0 \eta$ . Nevertheless, the meaning of the extra part ( $\mu_0 M_0 \eta - \theta_H S$ ) is unknown. Here we can see from Eq. (2) that ( $\mu_0 M_0 \eta - \theta_H S$ )/( $\theta_H S$ ) =  $-(P + P_T)/(P + P_\theta)$  relates closely to some basic material-sensitive parameters.

Equation (2) can also be derived from Eq. (A1) in Ref. [21], where  $S_{xy} \equiv E_y / \nabla_x T = \rho \alpha_{xy} - S \tan \theta_H$ . Here  $\alpha$  and  $\alpha_{xy}$  are the diagonal and nondiagonal elements of the thermoelectric conductivity tensor, respectively.  $\alpha = \sigma S$ . We define another angle (the thermoelectric angle  $\delta_{\text{TE}}$ ) as  $\tan(\delta_{\text{TE}}) \equiv \alpha_{xy}/\alpha$  to aid analysis. Normally,  $\theta_H$  and  $\delta_{\text{TE}}$  are both much smaller than 1. Thus  $S_{xy} = \rho \alpha_{xy} - S \tan \theta_H = (\delta_{\text{TE}} - \theta_H)S$ . Besides S,  $S_{xy}$  is also proportional to the difference between the thermoelectric angle and the anomalous Hall angle.  $\theta_H =$  $\theta_s(P + P_{\theta})$ . Similarly,  $\delta_{\text{TE}} = \theta_s(P_T + P_{\theta})$  as shown below.  $\nabla T$  drives two currents with opposite spin polarization via  $J_{\uparrow/\downarrow} = \alpha_{\uparrow/\downarrow} \nabla T$ . Here only thermoelectrotransport is considered.  $\alpha_{\uparrow/\downarrow} = \sigma_{\uparrow/\downarrow} S_{\uparrow/\downarrow}$ . These two currents will be deflected towards opposite transverse directions by the SOC effect via  $\theta_{\uparrow/\downarrow} J_{\uparrow/\downarrow} = \theta_{\uparrow/\downarrow} \alpha_{\uparrow/\downarrow} \nabla T$ . The deflected transverse currents contribute to a net charge current of  $J_{\text{net,transverse}} = \theta_{\uparrow} J_{\uparrow} - \theta_{\downarrow} J_{\downarrow} = \theta_{\uparrow} \alpha_{\uparrow} \nabla T - \theta_{\downarrow} \alpha_{\downarrow} \nabla T = \alpha_{xy} \nabla T$ . The equation  $J_{\text{net,transverse}} = \alpha_{xy} \nabla T$  is used according to the definition of  $\alpha_{xy}$ , which says that the transverse charge current is driven by the  $\nabla T$ . Thus  $\delta_{\text{TE}} = (P_T + P_\theta)\theta_s$ . Here we have used the relations  $\theta_{\uparrow/\downarrow} = (1 \pm P_\theta)\theta_s$ ,  $\alpha = \alpha_{\uparrow} + \alpha_{\downarrow}$ , and  $P_T = (\alpha_{\uparrow} - \alpha_{\downarrow})/(\alpha_{\uparrow} + \alpha_{\downarrow})$ . Therefore  $S_{xy} = (\delta_{\text{TE}} - \theta_H)S = -(P - P_T)/(P + P_\theta)\theta_H S$ , which shares the same form as Eq. (2) except for the minus sign. Equation (2) can thus also be reproduced from Eq. (A1) in Ref. [21] under the assumption of an ISHE in ferromagnetic layers. This assumption has also been applied in recent theoretical literature [32] and experimentally demonstrated in many experiments [8,30].

Though built in a single-layer system, this phenomenological model can also be cautiously generalized into multilayer systems if the parameters in the model, such as  $\rho$ ,  $\theta_H$ , and  $S_{xy}$ of a single layer, are replaced with the corresponding effective parameters of the multilayers. Some specialty of the multilayer system, such as interfacial scattering, determines the values of those effective parameters and can thus be implicitly reflected in the model.

## VI. MAGNETIZATIONS AND SEEBECK COEFFICIENTS

In order to check Eq. (2), we have also measured the saturated magnetization  $M_0$  [Figs. 4(a) and 4(b)] and Seebeck coefficient of the superlattices [Figs. 4(c) and 4(d)] in the setup shown in Fig. 1(c). First, the dependence of  $M_0$  on (2n - 1) is not strong.  $M_0$  averaged over all samples is about 1370 emu/cc (only 12 nm Co is taken into account in estimating  $M_0$ ). There appears to be a trend, though not obvious, that  $M_0$  increases slowly as  $n \ge 5$ . This increase in  $M_0$  may come from the interfacial proximity effect of Pt, which is common in Co/Pt multilayer systems [33,34].

At the beginning of Seebeck coefficient measurement, we applied  $\pm 300$  Oe in all three directions to check the field dependence of the Seebeck voltage  $V_S$ . According to the M-H curve [from SP8 as shown in Fig. 4(a)],  $\pm 300$  Oe is large enough to saturate magnetization in the x and y directions. However, no observable field dependence of  $V_S$  was found, indicating the absence of the ANE and SSE driven by  $\partial T/\partial z$ and also the absence of the PNE driven by  $\partial T/\partial x$  in the  $V_S$ signal. We then checked the dependence of  $V_S$  on  $\Delta T$  and found  $V_S = (S - S_W) \Delta T$  as expected [Fig. 4(c)], where  $S_W$  $(2.5 \,\mu V/K)$  and S are the absolute Seebeck coefficients of the tungsten probes and samples, respectively. The S values of the superlattices as well as those of Co, Pt, NiFe, and CoFeB are shown in Fig. 4(d).  $S_{Co}$  and  $S_{NiFe}$  are both negative in sign and their magnitudes are also close to their literature values [17,35], while  $S_{Pt}$  is close to 0.  $S_n$  is located between  $S_{Co}$  and  $S_{Pt}$ . The average  $S_n$  over all the superlattices is  $(-10 \pm 4) \,\mu V/K$ , similar to  $(\sigma_{Co}S_{Co} + \sigma_{Pt}S_{Pt})/(\sigma_{Co} + \sigma_{Pt})$ . According to Eq. (2), the relatively small variation in  $S_n$  and  $M_0$  cannot explain the 350% increase in  $v_N$ , which reflects from the other side a strong correlation between  $v_N$  and  $\theta_H$  in our superlattices. Besides, the average ratio  $v_N/\theta_H$  and the average  $S_n$  both decrease by half from Co to superlattices, which persuades us to attribute the decrease in  $v_N/\theta_H$  to the decrease in Seebeck coefficient according to Eq. (2). The increase in  $d\nu_N/d\theta_H$  as  $n \ge 5$  may



FIG. 4. (a) M-H curves of SP8 with H along the in-plane easy and hard axes. (b) Dependence of the  $M_0$  of the superlattices on (2n - 1). (c) Dependence of the Seebeck voltage on the temperature difference. (d) Seebeck coefficient of the superlattices as well as some reference samples.

be ascribed to the small increase in  $M_0$  as well as in  $|S_n|$  as  $n \ge 5$ .

## VII. TESTIFYING OF EQ. (2) IN COMMON FERROMAGNETS

We have also measured the Seebeck coefficients, AHE [Fig. 5(a)], and ANE [Figs. 5(b)–5(d)] of X(20 nm)/Pt(2 nm) with X = Co, CoFeB, and NiFe. Their  $\theta_H$  values are 0.011, 0.048, and 0.0032, respectively. Their  $\nu_N$  values are 7.3, 22, and 11  $\mu$ V/W, respectively. Their Seebeck coefficients |S| are 12, 8.2, and 25  $\mu$ V/K, respectively. The value  $|\nu_N/(\theta_H S)|$  obtained in Co(20 nm)/Pt(2 nm) is 55 K/W, close to the 48 K/W obtained in the pure Co(12 nm) sample. It is interesting to look deeply into the data on NiFe and CoFeB. Though



FIG. 5. (a)  $H_z$  dependence of  $R_{xy}$  and (b, c, d)  $H_z$  dependence of  $V_N$  of X (20 nm; Co, Co<sub>40</sub>Fe<sub>40</sub>B<sub>20</sub>, and Ni<sub>80</sub>Fe<sub>20</sub>)/Pt(2 nm) at an elevated heating power  $\omega$ , respectively.

 $\theta_{\rm H,CoFeB} = 15\theta_{\rm H,NiFe}$ ,  $S_{\rm CoFeB} \approx 1/3S_{\rm NiFe}$ . Thus  $\nu_{\rm N,CoFeB}$  does not differ from  $\nu_{\rm N,NiFe}$  by magnitudes.  $\nu_{\rm N,CoFeB}$  is only twice  $\nu_{\rm N,NiFe}$ . These data in the different materials, we think, also qualitatively satisfy Eq. (2).

It deserves special attention that  $\theta_H$  or the strength of SOC is mainly dominated by interfaces between Pt and Co instead of bulk Co layers in these  $[Pt/Co]_n$  superlattices as  $n \ge 2$ . Meanwhile, magnetization is mainly determined by Co layers, especially as  $n \le 5$ . In such a system where SOC and magnetism are separately determined by Pt and Co, respectively, spin polarization of the spin Hall angle  $(P_\theta)$  can tend to be 0 as proposed in Ref. [32]. If so, Eq. (2) can thus be further reduced as  $\eta = (1 - P_T/P)\theta_H S/(\mu_0 M_0)$ . This means that a material-sensitive parameter  $(P_T/P)$  becomes

- K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778 (2008).
- [2] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat. Mater. 11, 391 (2012).
- [3] T. Kikkawa, K. Uchida, Y. Shiomi, Z. Qiu, D. Hou, D. Tian, H. Nakayama, X. F. Jin, and E. Saitoh, Phys. Rev. Lett. 110, 067207 (2013).
- [4] D. Qu, S. Y. Huang, J. Hu, R. Wu, and C. L. Chien, Phys. Rev. Lett. 110, 067206 (2013).
- [5] M. Schmid, S. Srichandan, D. Meier, T. Kuschel, J. M. Schmalhorst, M. Vogel, G. Reiss, C. Strunk, and C. H. Back, Phys. Rev. Lett. 111, 187201 (2013).

measurable through the ANE. However, this measurement requires simultaneous determination of the Seebeck coeffcient and anomalous Nernst coefficient in the same well-defined temperature distribution, which cannot be completed in our setup and could be further investigated.

#### VIII. CONCLUSION

The ANE and AHE have been measured in  $[Pt/Co]_n$ superlattices. Upon increasing the number of interfaces from 1 to 15,  $\theta_H$  and  $\nu_N$  increase simultaneously, by 430% and 350%, respectively, and meanwhile their S and  $M_0$  vary in much smaller ranges. Furthermore, a linear scaling relation between  $\theta_H$  and  $\nu_N$  is revealed, with different slopes  $d\theta_H/d\nu_N$  as  $n \leq 5$ and  $n \ge 5$ , which is probably attributable to the increase in S and  $M_0$ . This linear relation observed in the same material system verifies a phenomenologic relation among  $\eta$ ,  $\theta_H$ , and S derived from linear response theory. The phenomenologic relation says that  $\eta = (P - P_T)/(P + P_\theta)\theta_H S/(\mu_0 M_0)$ . And it shows the following picture of the ANE:  $\nabla T$  generates a pure spin current in a ferromagnetic conductor via the SDSE and the spin current is then transformed as a transverse charge current via the ISHE and, finally, leads to an observable anomalous Nernst voltage. Thus, a large ANE can be expected in some magnetically doped topological materials (such as  $Bi_2Se_3$ ) where a large Seebeck coefficient and SOC strength coexist. This study not only shows an effective way to enhance the ANE but also experimentally demonstrates in the same material system an inherent relation between the ANE and the AHE and, further, proposes a way to determine the value of  $P_T/P$ in ferromagnetic conductors.

### ACKNOWLEDGMENTS

This work was supported by the 863 Plan Project of Ministry of Science and Technology (MOST) (Grant No. 2014AA032904), the MOST National Key Scientific Instrument and Equipment Development Projects [Grant No. 2011YQ120053], the National Natural Science Foundation of China (NSFC) [Grant No. 11434014, 11222432, 11404382], the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) [Grant No. XDB07030200] and Postdoctoral Science Foundation of China [Grant No. 2013M540154].

- [6] S. Y. Huang, W. G. Wang, S. F. Lee, J. Kwo, and C. L. Chien, Phys. Rev. Lett. 107, 216604 (2011).
- [7] S. Y. Huang, X. Fan, D. Qu, Y. P. Chen, W. G. Wang, J. Wu, T. Y. Chen, J. Q. Xiao, and C. L. Chien, Phys. Rev. Lett. 109, 107204 (2012).
- [8] H. Wu, C. H. Wan, Z. H. Yuan, X. Zhang, J. Jiang, Q. T. Zhang, Z. C. Wen, and X. F. Han, Phys. Rev. B 92, 054404 (2015).
- [9] C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P. Heremans, and R. C. Myers, Nat. Mater. 9, 898 (2010).
- [10] H. Jin, Z. Yang, R. C. Myers, and J. P. Heremans, Solid State Commun. 198, 40 (2014).

- [11] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. Bauer, S. Maekawa, and E. Saitoh, Nat. Mater. 9, 894 (2010).
- [12] K. Uchida, H. Adachi, T. Ota, H. Nakayama, S. Maekawa, and E. Saitoh, Appl. Phys. Lett. 97, 172505 (2010).
- [13] M. Walter, J. Walowski, V. Zbarsky, M. Munzenberg, M. Schafers, D. Ebke, G. Reiss, A. Thomas, P. Peretzki, M. Seibt, J. S. Moodera, M. Czerner, M. Bachmann, and C. Heiliger, Nat. Mater. 10, 742 (2011).
- [14] A. Boehnke, M. Walter, N. Roschewsky, T. Eggebrecht, V. Drewello, K. Rott, M. Munzenberg, A. Thomas, and G. Reiss, Rev. Sci. Instrum. 84, 063905 (2013).
- [15] W. Lin, M. Hehn, L. Chaput, B. Negulescu, S. Andrieu, F. Montaigne, and S. Mangin, Nat. Commun. 3, 744 (2012).
- [16] A. Slachter, F. L. Bakker, J. P. Adam, and B. J. van Wees, Nat. Phys. 6, 879 (2010).
- [17] F. K. Dejene, J. Flipse, and B. J. van Wees, Phys. Rev. B 86, 024436 (2012).
- [18] X. M. Zhang, C. H. Wan, Z. H. Yuan, H. Wu, Q. T. Zhang, X. Zhang, J. Jiang, B. S. Tao, and X. F. Han, arXiv:1506.03698.
- [19] L. Gravier, S. Serrano-Guisan, F. Reuse, and J. P. Ansermet, Phys. Rev. B 73, 052410 (2006).
- [20] J. Flipse, F. L. Bakker, A. Slachter, F. K. Dejene, and B. J. van Wees, Nature Nanotechnol. 7, 166 (2012).
- [21] R. Ramos, M. H. Aguirre, A. Anadon, J. Blasco, I. Lucas, K. I. Uchida, P. A. Algarabel, L. Morellon, E. Saitoh, and M. R. Ibarra, Phys. Rev. B 90, 054422 (2014).
- [22] Y. Pu, D. Chiba, F. Matsukura, H. Ohno, and J. Shi, Phys. Rev. Lett. 101, 117208 (2008).
- [23] K. Hasegawa, M. Mizuguchi, Y. Sakuraba, T. Kamada, T. Kojima, T. Kubota, S. Mizukami, T. Miyazaki, and K. Takanashi, Appl. Phys. Lett. 106, 252405 (2015).

- [24] K. I. Uchida, T. Kikkawa, T. Seki, T. Oyake, J. Shiomi, Z. Qiu, K. Takanashi, and E. Saitoh, Phys. Rev. B 92, 094414 (2015).
- [25] A. D. Avery, S. J. Mason, D. Bassett, D. Wesenberg, and B. L. Zink, Phys. Rev. B 92, 214410 (2015).
- [26] W. M. Haynes (ed.), CRC Handbook of Chemistry and Physics, 92nd ed. (CRC Press, Boca Raton, FL, 2011).
- [27] C. L. Canedy, X. W. Li, and G. Xiao, Phys. Rev. B 62, 508 (2000).
- [28] J. Zhao, Y. J. Wang, X. F. Han, S. Zhang, and X. H. Ma, Phys. Rev. B 81, 172404 (2010).
- [29] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
- [30] B. F. Miao, S. Y. Huang, D. Qu, and C. L. Chien, Phys. Rev. Lett. 111, 066602 (2013).
- [31] J. Chang, R. Daou, C. Proust, D. LeBoeuf, N. Doiron-Leyraud, F. Laliberte, B. Pingault, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, H. Takagi, A. B. Antunes, I. Sheikin, K. Behnia, and L. Taillefer, Phys. Rev. Lett. **104**, 057005 (2010).
- [32] K. Tauber, A. Honemann, D. V. Fedorov, M. Gradhand, and I. Mertig, Phys. Rev. B 91, 220404 (2015).
- [33] P. Poulopoulos, M. Angelakeris, E. T. Papaioannou, N. K. Flevaris, D. Niarchos, M. Nyvlt, V. Prosser, S. Visnovsky, C. Mueller, P. Fumagalli, F. Wilhelm, and A. Rogalev, J. Appl. Phys. 94, 7662 (2003).
- [34] J. Geissler, E. Goering, M. Justen, F. Weigand, G. Schütz, J. Langer, D. Schmitz, H. Maletta, and R. Mattheis, Phys. Rev. B 65, 020405(R) (2001).
- [35] A. A. Rudnitski, *Thermoelectric Properties of the Noble Metals and Their Alloys* (Academy of Sciences of the USSR Press, Moscow, 1956) [in Russian].