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The aim of this series of two papers is to discuss topological invariants for interacting topological insulators
(TIs). In the first paper (I), we provide a paradigm of efficient numerical evaluation scheme for topological
invariants, in which we demystify the procedures and techniques employed in calculating Z2 invariant and spin
Chern number via zero-frequency single-particle Green’s function in quantum Monte Carlo (QMC) simulations.
Here we introduce an interpolation process to overcome the ubiquitous finite-size effect, so that the calculated
spin Chern number shows ideally quantized values. We also show that making use of symmetry properties of the
underlying systems can greatly reduce the computational effort. To demonstrate the effectiveness of our numerical
evaluation scheme, especially the interpolation process, for calculating topological invariants, we apply it on two
independent two-dimensional models of interacting topological insulators. In the subsequent paper (II), we apply
the scheme developed here to wider classes of models of interacting topological insulators, for which certain
limitation of constructing topological invariant via single-particle Green’s functions will be presented.
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I. INTRODUCTION

Topological insulators (TIs) [1,2] in free fermion systems
can be characterized by topological invariants, such as Z2

invariant and spin Chern number, and the calculation of
these topological invariants is straightforward via noninter-
acting Hamiltonian matrix. However, the characterization
of interacting topological insulators via these topological
invariants is still not well understood, both conceptually and
technically in numerical calculation. Of course, there are
already various achievements. In the quantum (anomalous)
Hall insulators [3,4] with broken time-reversal symmetry, the
characterizing topological invariant is the Thouless-Kohmoto-
Nightingale-den Nijs (TKNN) invariant [5,6], or first Chern
number, which takes integer values. For TIs protected by
time-reversal symmetry and charge U (1) symmetry, the Z2

topological index is applied to describe the system [7–9].
With additional U (1) spin rotational symmetry in TIs, the
U (1)spin × U (1)charge � ZT

2 symmetry (ZT
2 stands for time-

reversal symmetry) results inZ classification and the appropri-
ate topological invariant is the spin Chern number Cs [10,11],
which is actually the case for the Kane-Mele model without
Rashba spin-orbit coupling [7,8]. In such systems, the spin
Hall conductivity σ

spin
xy is related to spin Chern number as

σ
spin
xy = Cs

e
2π

.
For noninteracting TIs, both Z2 invariant [8,9] and spin

Chern number [10,11] can be simply evaluated from the
Hamiltonian matrix in band basis. For example, if a system has
spatial inversion symmetry, the Z2 invariant can be calculated
as a product of parity eigenvalues of all occupied energy bands
at all time-reversal invariant momentum (TRIM) points in the
Brillouin zone (BZ) [12]. Spin Chern number, on the other
hand, can be calculated by simply integrating Berry curvature
over the BZ.

For interacting TIs, the evaluation of topological invariants
becomes much more difficult and subtle. The proposals in-
clude constructing topological invariants from single-particle

Green’s function [6,13–18] or imposing twisted boundary
phases to the ground state wave function [19,20]. Recently,
the constructions of topological invariants from single-
particle Green’s function, especially the zero-frequency ver-
sion [21,22], have been actively investigated. Implementations
of topological invariants constructed from zero-frequency
single-particle Green’s function [21] in many-body numerical
techniques have been carried out in various studies. In the one-
dimensional Su-Schrieffer-Heeger model [23], the winding
number based on zero-frequency single-particle Green’s func-
tion is calculated by DMRG method in distinguishing topolog-
ically nontrivial and trivial phases. By LDA+Gutzwiller and
LDA+DMFT methods, the Z2 invariant has been applied in
identifying the correlated TIs SmB6 [24] and PuB6 [25]. The
Z2 invariant has also been calculated in QMC [26–29] and
cluster perturbation theory [30,31] for various generalizations
of the Kane-Mele-Hubbard model. Moreover, there are dynam-
ical mean-field theory calculations of the Bernevig-Hughes-
Zhang model with interactions in which the Z2 invariant is
calculated [32–34]. As for spin Chern number constructed
from zero-frequency single-particle Green’s function, it has
been applied to verify the topological phase transitions in the
Kane-Mele-Hubbard model by quantum Monte Carlo [28,29]
and cellular dynamical mean-field theory (CDMFT) [35].

The issue of evaluating spin Chern number for interacting
topological insulators in CDMFT [35], or more generally
quantum cluster methods [36], is that the correlation effects
can only be captured inside the small cluster, even through
the calculated spin Chern number is quantized due to the
mean-field bath at the thermodynamic limit. Nevertheless,
such approaches cannot faithfully monitor the topological
phase transitions with a length scale larger than the cluster
size involved. On the other hand, QMC is more accurate in
capturing both short- and long-range correlation effects by
handling supercell with much larger size, but, in obtaining
topological invariants, it suffers from finite-size effect and the
topological invariants calculated from QMC for interacting
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TIs are not exactly integer quantized [26,28]. Actually, due
to finite size effect, spin Chern number can be even far
away from expected integer results [28]. Thus, it will be a
great improvement if one can bring the merit of CDMFT (its
thermodynamic limit) into QMC to overcome the finite-size
effect in topological invariants, since the integer quantization
of topological invariants is essential for achieving well-
defined topological phases and identifying topological phase
transitions. Here, we provide such a scheme.

In this paper, employing large-scale quantum Monte Carlo
simulations for interacting TIs, we eliminate the severe finite-
size effect and obtain quantized topological invariants by
introducing an interpolation process and imposing symmetries
of the studied systems. The numerical evaluation scheme of
both Z2 invariant and spin Chern number constructed from
zero-frequency single-particle Green’s function proposed in
Ref. [21] is systematically presented with all important details.
To demonstrate the strength of our calculation scheme, espe-
cially the interpolation process, we test it on two independent
2D models of interacting TIs, in which the topological phase
transitions driven by one-body model parameters are detected
by the integer-quantized topological invariants.

The rest of the paper is organized as follows. In Sec. II,
despite the already existing literature [16,17,20,21,37–39], the
construction of the Z2 invariants and spin Chern number via
zero-frequency single-particle Green’s function is discussed
for the sake of a self-contained narrative. A brief introduction
of projector quantum Monte Carlo method is also presented.
Then our numerical calculation scheme and the interpolation
technique for these topological invariants are introduced in
detail in Sec. III. After that, we show the applications of
our scheme in Sec. IV, based on QMC simulations for two
independent 2D model systems of interacting TIs. Finally,
Sec. V summarizes our method and makes connection with
the paper (II) in this series on identifying interaction-driven
topological phase transitions without symmetry breaking by
the topological invariants calculated via the scheme presented
here for interacting topological insulators, where the limitation
of topological invariants constructed from the single-particle
Green’s function is clearly manifested.

II. TOPOLOGICAL INVARIANTS AND QUANTUM
MONTE CARLO METHOD

A. Z2 invariant and spin Chern number

In interacting fermion systems, the single-particle
Green’s function is given as G(iω,k) = [iω + μ − H(k) −
�(iω,k)]−1, where �(iω,k) is the self-energy originating
from interaction. The zero-frequency single-particle Green’s
function is Hermitian [21], and we can obtain its real
eigenvalues by diagonalizing the Green’s function matrix
G(iω = 0,k)NO×NO

, where NO is the number of orbitals or
bands. In the language of Ref. [22], the topological invariants
can be defined as follows. We simply define the so-called
topological Hamiltonian ht(k) = −G−1(iω = 0,k)NO×NO

, and
then calculate the topological invariant as if ht(k) is a
noninteracting Bloch Hamiltonian. The advantage of ht(k)
is that it reduces to the free Bloch Hamiltonian in the
noninteracting limit. Equivalently, we can work with G(iω =

0,k)NO×NO
, since the eigenvectors of G(iω = 0,k)NO×NO

and
−G−1(iω = 0,k)NO×NO

are the same.
In this paper we study systems with both time-reversal

symmetry and U (1) spin-rotational symmetry, indicating Sz

conservation. Taking the U (1) spin rotational symmetry into
account, we can see that the Green’s function is diagonal
with respect to the spin index, and the two submatrices are
denoted as Gσ (σ = ↑ , ↓), each of which can be diagonalized
as Gσ (0,k)|φm(0,k)〉 = μm(0,k)|φm(0,k)〉. Both Z2 invariant
and spin Chern number can be simply constructed from
the eigenvectors |φm(0,k)〉. For time-reversal invariant and
spatial-inversion-symmetric systems with interactions, the Z2

invariant can be constructed from |φm(0,k)〉 at TRIM points.
The Z2 invariant can be expressed as [21]

(−1)ν =
∏

κ∈TRIM

∏
μm>0

ηm(κ), (1)

with ηm(κ) = 〈φm(0,κ)|P̂ |φm(0,κ)〉,κ stands for TRIM
points. and P̂ is the spatial inversion symmetry operator.
Here we have already taken the Kramer’s degeneracy at TRIM
points into consideration, and we only incorporate the parity in
one spin sector in Eq. (1). This expression of Z2 invariant is a
generalization of that for the free fermion system to interacting
systems. Note that {|φm〉} (μm > 0) reduces to the filled Bloch
bands in the noninteracting limit. Numerical evaluation of
this Z2 invariant in correlated systems is quite simple, and
it has been demonstrated [26–29,33,35] that this topological
invariant works well in detecting topological phase transition
with a change of Z2 invariant in weakly correlated systems.

So far we only discussed the Z2 invariant. Due to the U (1)
spin-rotational symmetry, there is actually a Z invariant, which
contains more information. To introduce this Z invariant, let
us recall the TKNN or Chern number of fermion systems with
broken time-reversal symmetry, which has been generalized
to interacting fermion systems as [21]

C = 1

2π

∫∫
k∈BZ

d2kFxy(k) (2)

with

Fxy(k) = ∂kx
Ay(k) − ∂ky

Ax(k)
(3)

Ai(k) = −i
∑
μm>0

〈φm(0,k)|∂ki
|φm(0,k)〉.

Due to the U (1) spin rotational symmetry, the Green’s function
is diagonal with respect to the spin index, thus we can
calculate Chern numbers by Eq. (4) for both spin-up and
spin-down sectors denoted as C↑ and C↓. Then the spin
Chern number Cs is simply defined as Cs = (C↑ − C↓)/2.
For 2D time-reversal invariant systems, C↑ + C↓ = 0, which
results in the relation Cs = C↑, and we only need to calculate
Chern number C↑ from the spin-up part of zero-frequency
single-particle Green’s function G↑(0,k). This expression of
spin Chern number has also been applied in QMC [28] and
CDMFT [35] simulations for interacting two-dimensional
topological insulators (or the “quantum spin Hall insulators
(QSHI),” in the older terminology).

Through a simple derivation from Eqs. (2) and (3),
we can arrive at an expression that is numerically more
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convenient [6,28]:

C = 1

2πi

∫∫
k∈BZ

dkxdky · Tr

×{P (k)[∂kx
P (k)∂ky

P (k) − ∂ky
P (k)∂kx

P (k)]}, (4)

where P (k) is a projection operator matrix constructed from
eigenvectors |φm(0,k)〉 of Gσ (0,k):

P (k) =
∑
μm>0

|φm(0,k)〉〈φm(0,k)|. (5)

The systems we are dealing with in this paper are all based on
honeycomb lattice; the detailed implementation of Eq. (4) on
the honeycomb lattice geometry is presented in Appendix A.
Turning off interactions, we can observe that Eq. (1) reduces
to the Z2 invariant for free fermion systems defined by Fu and
Kane [12], and both Eq. (2) and Eq. (4) reduce to the TKNN
invariant (or Chern number) [5,6] for noninteracting systems.

In the next section, we introduce our numerical evaluation
scheme of the Z2 invariant in Eq. (1) and spin Chern
number in Eq. (4) in QMC simulations, for model systems of
interacting TIs with U (1)spin × U (1)charge � ZT

2 symmetry and
the spatial inversion symmetry. Especially, both Z2 invariant
and spin Chern number for interacting TIs are necessary
to be quantized to achieve well-defined topological phases.
Thus, both the interpolation technique and implementation of
symmetry properties during numerical calculations to reach
quantized topological invariants are mainly introduced in the
next section.

B. Quantum Monte Carlo method

In this series of work, we apply the projector quantum
Monte Carlo (PQMC) simulation [29], which is the zero-
temperature version of determinantal QMC algorithm [40].
PQMC method obtains the ground-state observables by carry-
ing out an imaginary time evolution starting from trial wave
function that has overlap to the true many-body ground state.
The ground-state expectation value of physical observable is
calculated as follows,

〈Ô〉 = lim

→+∞

〈ψT |e−
Ĥ/2Ôe−
Ĥ/2|ψT 〉
〈ψT |e−
Ĥ |ψT 〉 , (6)

where |ψT 〉 is the trial wave function and 
 is projection
parameter. In all the simulations, to ensure that the algorithm
arrives at the truly converged ground state of finite size
systems, we choose 
 = 40/t and �τ = 0.05/t , in which
�τ is the finite imaginary time step applied in the Trotter
decomposition of partition function.

We can obtain both the static and dynamic observables.
Static ones include the expectation values of energy densities,
double occupancy, and spin-spin correlation function. As for
the dynamic properties, we can measure the dynamic single-
particle Green’s function and spin-spin correlation function,
from which we can determine both the single-particle gap
and spin gap for the many-body systems. Especially, we
concentrate on the single-particle Green’s function Gσ (k,τ )
to calculate the topological invariants. Generally, Gσ (k,τ ) (in

spin sector σ ) is defined as

[Gσ (τ,k)]pq = − 1

N

∑
i,j

eik·(Ri−Rj )〈Tτ [cip,σ (τ )c†jq,σ ]〉, (7)

where i,j ∈ [1,N ] are the unit cell indices and p,q ∈ [1,No]
are the orbital indices inside a unit cell. In this manner, for each
k point, Gσ (τ,k) is a No × No Hermitian matrix [according
to Eq. (12)], and for the L × L system, there are N = L2

momentum points. From Gσ (τ,k) data, we can directly obtain
the single-particle gap. Most importantly, we need to construct
the zero-frequency single-particle Green’s function Gσ (iω =
0,k) from Gσ (τ,k) by combining Fourier transformation and
symmetry analysis presented in Sec. III, after which the
topological invariants can be calculated according to Eqs. (1)
and (4).

III. NUMERICAL EVALUATION SCHEME
OF TOPOLOGICAL INVARIANTS

This section is divided into four successive parts. First, in
Sec. III A, we comment on the condition for zero-frequency
single-particle Green’s function Gσ (iω = 0,k) to be well-
behaved in both free and interacting fermion systems. Second,
in Sec. III B, we explain how to obtain correct Gσ (iω = 0,k)
data from QMC simulation on a finite-size system. Third,
Sec. III C clarifies some numerical details in evaluations of Z2

invariant and spin Chern number. Finally, as the most important
part, the interpolation process of Gσ (iω = 0,k) is introduced
in Sec. III D to achieve the ideally quantized topological
invariants from QMC simulation in a finite-size system.

A. Condition for well-behaved G(iω = 0,k)

In this work, we shall be concerned with quantum many-
body systems at zero temperature. Suppose that the system
under consideration is gapped and has a unique ground state
under periodic boundary condition (no intrinsic topological
order), thus there is a many-body energy gap � between the
ground state energy level E0 and the first excited energy level
E1, namely, � = E1 − E0. In the Lehmann representation, we
can see that the retarded Green’s function G(z,k) with complex
frequency variable z = ωR + iωI is an analytical function in
the ωR ∈ (−�,�) region. In fact, the Lehmann representation
for G(z,k) at zero temperature reads

Gαβ(z,k)

=
∑
m	=0

[ 〈0|ckα|m〉〈m|c†kβ |0〉
z − (Em − E0)

+ 〈m|ckα|0〉〈0|c†kβ |m〉
z + (Em − E0)

]
. (8)

Since the condition Em − E0 � � is satisfied, G(z,k) has no
poles in the ωR ∈ (−�,�) region on the real axis. We can
further observe that G(z,k) is actually an analytical function
with ωR ∈ (−�,�) and arbitrary ωI . Topological invariants
are defined in terms of zero-frequency Green’s function,
namely, the Green’s function at z = 0. More precisely, since
the chemical potential has been absorbed into the definition
of Em (namely, Em is the eigenvalue of Ĥ − μN̂ , where N̂ is
the particle number operator and μ is the chemical potential),
the zero frequency refers to the energy exactly at the chemical
potential [21]. Tuning the chemical potential within the energy
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gap is harmless in an insulator. Thus, the zero-frequency
single-particle Green’s function is well defined for TIs with
the above mentioned properties at zero temperature, and one
can construct topological invariants from it.

From both Eq. (1) and Eq. (4), we can determine that there
are two scenarios of the jumping of topological invariants
determined in terms of Green’s function. The first scenario
is the pole of Green’s function, which is the conventional
case, and the topological transitions in noninteracting fermion
systems belong to this class. The second scenario is the
zero of Green’s function (namely, an eigenvalue of the
Green’s function matrix becomes zero). From the Lehmann
representation, we can see that the first scenario must describe
a phase transition, since Em − E0 = 0 implies gap closing. On
the other hand, the second scenario can be a topological phase
transition [17,23], but it is not necessarily so.

B. Calculations of G(iω = 0,k)

In QMC, we measure the imaginary-time displaced Green’s
function G(τ,k) and obtain G(iωn,k) by Fourier transforma-
tion as follows

G(iωn,k) =
∫ β

0
dτeiωnτG(τ,k). (9)

Note that Eq. (9) has already incorporated the antiperiodic
condition for G(τ,k) as G(τ + β,k) = −G(τ,k). However,
Eq. (9) is only valid for finite temperature. At zero temperature,
iωn becomes continuous on the imaginary frequency axis and
the antiperiodic condition for G(τ,k) is not quite meaningful.
In such a case, one needs to apply the following Fourier
transformation

G(iω,k) =
∫ +∞

−∞
dτeiωτG(τ,k). (10)

The validity of using Eq. (10) at zero temperature is presented
in Appendix B. From Eq. (10), we can directly obtain the
zero-frequency single-particle Green’s function G(iω,k) by
substituting iω = 0 as,

G(iω = 0,k) =
∫ +∞

−∞
dτG(τ,k). (11)

One can furthermore make use of the symmetry properties
of G(τ,k) to simplify the calculation. For a general multiband
system with NO orbitals (in each spin sector within a unit cell),
one can prove

[Gσ (τ,k)]pq = [Gσ (τ,k)]�qp (12)

with p,q ∈ [1,NO]. Equation (12) explicitly shows that
Gσ (τ,k) is a NO × NO Hermitian matrix. If the system
preserves spatial inversion symmetry and the corresponding
spatial inversion operation transforms p sublattice to p′
sublattice, then we can prove

[Gσ (τ,k)]pq = [Gσ (τ, − k)]p′q ′ . (13)

Equation (13) explicitly connects the Gσ (τ,k) data with
opposite wave-vector points. If the system preserves particle-
hole symmetry, we can prove

[Gσ (τ,k)]pq = −ξpξq[Gσ (−τ, − k)]qp, (14)

where ξp and ξq are the sign change during on-site particle-hole
transformation as cp → ξpc

†
p and cq → ξqc

†
q . Equation (14)

shows the connections of Gσ (τ,k) data with positive and
negative τ . The detailed proof for Eqs. (12), (13), and (14)
is demonstrated in Appendix C. Combining these three
symmetry properties of the Gσ (τ,k) matrix, we can determine
that the number of nonzero and independent matrix elements
in Gσ (τ,k) is much smaller than N2

O .

C. Numerical details in evaluating topological invariants

Besides the discussions in Secs. III A and III B, there are
still some important details in numerical application of Eq. (4)
for calculating the topological invariants. Firstly, the infinite
integral over imaginary time τ in Eq. (11) can be approximated
by a cutoff θ as

G(iω = 0,k) ≈
∫ +θ

−θ

dτG(τ,k). (15)

For TIs, the systems have Gσ (τ,k) ∝ e−�sp(k)τ at large τ with
�sp(k) as the single-particle gap at k point. If the gap �sp(k) is
large, the exponential decay of Gσ (τ,k) in imaginary time will
be very fast, and a finite θ is sufficient for the system to evolve
below the energy scale of �sp. However, this approximation
can induce considerable error around the topological phase
transition with single-particle gap closing, since the decaying
of Gσ (τ,k) is very slow around the transition point. Later on,
one will observe the nonmonotonic behavior in results of Chern
number C↑ close to the topological phase transition points in
Sec. IV, which is originating from the above τ cutoff. We
then calculate the integral in Eq. (15) numerically by a simple
trapezoidal method, and the step size for this simple method
is actually the �τ used in QMC simulations.

Secondly, the first-order derivatives over kx,ky in Eq. (4) are
replaced by first-order finite difference [28]. Since the interval
between two adjacent k points is proportional to 1/L for a
L × L system, replacing the derivatives by finite-difference
will bring in error proportional to 1/L, which is the key origin
for finite-size effect in Chern number calculated by Eq. (4).
Also, the integral over k in the BZ region in Eq. (4) can
only be performed by summations over L2 discrete k points
for a L × L system. We can imagine this can also contribute
to finite-size effect in Chern number calculation by Eq. (4).
Overall, due to the finite-size effect in QMC simulations, the
spin Chern number result can be very far from the expected
integer [28].

D. Interpolation of G(iω = 0,k)

As discussed above, the spin Chern number calculated from
QMC simulations in finite-size systems suffer severe finite-size
effect, and the obtained results are usually far away from the
expected integer values. To remove the finite-size effect, we
propose an interpolation process for G(iω = 0,k) to obtain
integer-quantized spin Chern number.

We emphasize that the calculation of Chern number by
Eq. (A7) in Appendix A from QMC data of G(iω = 0,k)
for L × L systems actually adopts the linear interpolation
of G(iω = 0,k) in the whole BZ region, since there are
actually only L2 accessible k points during simulations with
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periodic boundary conditions (PBC). That linear interpolation
introduces systematic error proportional to 1/L, which is the
origin of finite-size effect for spin Chern number. Then we
can imagine that via obtaining numerical data of G(iω = 0,k)
at more k points can surely suppress the finite-size effect.
The method for that is naturally to apply twisted boundary
conditions (TBC) with phases (θ1,θ2) in (a1,a2) directions
during the QMC simulations for a fixed L × L system. Imple-
menting twisted boundary conditions during QMC simulations
actually corresponds to shifting the accessible k points in BZ
region, which allows one to obtain data of G(iω = 0,k) at
other k points beside the L2 k points under PBC. However,
practical QMC simulations with TBC can cause much heavier
computational effort, since different twisted boundary phases
shall be used. Instead, we put forward an interpolation process
for G(iω = 0,k) based on its data at L2 accessible k points
under PBC.

The procedures of the interpolation process and
corresponding calculations of spin Chern number are as
following. First, we carry out the QMC simulations under
PBC for a L × L system with NO orbitals inside a unit
cell (for one spin sector). Second, we obtain the data of
G(iω = 0,k) at L2 k points by Eq. (15). After that we carry
out the Fourier transformation for G(iω = 0,k) to get the real
space [Gσ,ij (iω = 0)]pq data. Then, we obtain Gσ (iω = 0,k)
data at arbitrary k point in BZ by

[Gσ (0,k)]pq = 1

L2

L2∑
i,j=1

[Gσ,ij (iω = 0)]pqe
ik·(Ri−Rj ), (16)

where i,j stands for unit cells and p,q ∈ [1,NO] are the
indexes for orbital or band. Eq. (16) is applied here according
to the periodization process in CDMFT, which is presented
in detail in Appendix D. Mathematically, the above process
by Eq. (16) for Gσ (iω = 0,k) is actually the trigonometric
function interpolation, which is very appropriate for periodic
function like Gσ (iω = 0,k) (see more details in Appendix D).
Here, we need to admit that other interpolation methods instead
of above procedure can also be applied to obtain Gσ (iω = 0,k)
data at more k points. However, the above interpolation process
we have adopted is extremely simple to be implemented
numerically. Comparing to other interpolation methods, which
are actually simple fittings of Gσ (iω = 0,k) curve over k
points in BZ region, interpolation of Gσ (iω = 0,k) by above
process is physically more reasonable. Beside the fact that the
above interpolation process only deals with simple discrete
Fourier transformations already used in CDMFT, it also makes
Gσ (iω = 0,k) differential to any order at arbitrary k point. The
validity of the interpolation process is based on the observation
that the topology of the system will not change during a
continuous deformation if there is no gap closing, which makes
the interpolation process natural and appropriate. This means
that if the continuous deformation do not generate any singu-
larity of the single-particle Green’s function, the interpolation
process will not alter the topological property of the system,
but only improve the quality of the calculated topological in-
variants and allow us to achieve quantized spin Chern number.
Conclusively, the above interpolation process for G(iω = 0,k)
can be approximately taken as carrying out QMC simulations

with TBC to obtain G(iω = 0,k) data at different k points in
BZ region physically, while it’s interpolation mathematically.

During practical QMC simulations, the lattice size for
interpolation process will be large but still finite, and then we
choose the interpolation lattice size IL × IL and construct the
Gσ (iω = 0,k) data at IL × IL wavevector points in BZ by
Eq. (16). IL can be much bigger than original lattice size L

in QMC simulation. Then we evaluate the spin Chern number
for the IL × IL system by Eq. (A7) in Appendix A. In next
section, one can clearly observe the converging of spin Chern
number to the ideal quantized value with increasing IL.

IV. APPLICATIONS IN QMC

In this section, we apply the above mentioned numerical
scheme to two independent 2D interacting TIs. The topological
phase transitions in these systems are driven by single-particle
parameters. Results of topological invariants across topo-
logical phase transitions in generalized Kane-Mele-Hubbard
model (GKMH) are shown in Sec. IV A, while Sec. IV B
concentrates on topological phase transitions in the cluster
Kane-Mele-Hubbard model (CKMH).

We set the following parameters in the QMC simulations,

 = 40/t,�τ = 0.05/t . For the imaginary time integration
in Eq. (15), a cutoff θ = 20/t is applied.

A. Generalized Kane-Mele-Hubbard model

Generalized Kane-Mele-Hubbard (GKMH) model
[26,28,29] is given by

Ĥ = −t
∑
〈i,j〉σ

tij (c†iσ cjσ + h.c) − t3
∑

〈〈〈i,j〉〉〉σ
(c†iσ cjσ + H.c.)

+ iλ
∑

〈〈i,j〉〉αβ

νij

(
c
†
iασ z

αβcjβ − c
†
jβσ z

βαciα

)

+ U

2

∑
i

(ni↑ + ni↓ − 1)2. (17)

For nearest-neighbor (NN) hopping, we have tij = td for NN
bonds inside unit cells and tij = t for the others, as demon-
strated in Fig. 1(a). The t3 term is the third-nearest-neighbor
hopping. The fourth term represents spin-orbit coupling (λ)
connecting next-nearest-neighbor sites with a complex (time-
reversal symmetric) hopping. The factor νij = −νji = ±1
depends on the orientation of the two nearest-neighbor bonds
that the electron moves in going from site i to j . The last
term describes the on-site Coulomb repulsion. For the GKMH
model, we set t as energy unit.

Due to the U (1)spin × U (1)charge � ZT
2 symmetry of the

system, the GKMH model acquires a Z classification. Without
interaction (U = 0), the (td/t) − (t3/t) phase diagram for
λ/t > 0, determined from both Z2 invariant (−1)ν and Chern
number Cs , is shown in Fig. 2(a). There are four phases and
their phase boundaries in Fig. 2(a) are independent of the size
of λ/t , as long as λ/t > 0. In Fig. 2(b), we show the spin
Chern number C↑ for fixed td/t = 0.5 and increasing t3/t ,
calculated from Eq. (4). Since the system is noninteracting,
we have Gσ (iω = 0,k) = −[Hσ (k)]−1 with Hσ (k) the 2 × 2
noninteracting Hamiltonian matrix for the GKMH model. In
Fig. 2(b), one can clearly observe that the Chern number Cs
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3t
λ
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3M
1K

2K

1b

2b

FIG. 1. (a) Illustration of the GKMH model as in Eq. (17). The
unit cell is presented as the yellow shaded rectangle, consisting of
A and B sublattices denoted by black and gray dots. The lattice
is spanned by primitive vectors a1 = (

√
3,0)a,a2 = (1/2,

√
3/2)a

with a the lattice constant. The black and blue lines denote nearest-
neighbor hopping t and td , while the λ term and third-nearest-neighbor
hopping t3 are represented by red and green lines. The arrows in red
lines shows νij = +1 for spin-up part. (b) BZ of GKMH model.
K1,K2 are Dirac points, while κ = �,M1,M2,M3 are the four TRIM
points.

converges to its expected quantized value, with increasing
lattice size.

With finite interaction strength U , we need to measure
the single-particle Green’s function Gσ (τ,k) in QMC sim-

0.0 0.2 0.4 0.6 0. .0
-2

-1

0

1

0

1

2

3

0.0 0.2 0.4 0.6 0.

8 1

8 1.0
0

1

2

3

1=

1=

0=

0=

1sC = −
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0sC =

1sC = +

(b)
L=12
L=24
L=48
L=72
L=120
L=400

C
↑

0.5dt t =

(a)

3 1 2t t =3 1 6t t =

FIG. 2. (a) (td/t) − (t3/t) Phase diagram for GKMH model at
U = 0 and arbitrary λ/t > 0. (b) Calculation results of Chern number
C↑ with td/t = 0.5 and varying t3/t , the linear system sizes are
L = 12,24,48,72,120,400.

ulation and then construct the topological invariants from
it. For the GKMH model, Gσ (τ,k) is a 2 × 2 Hermi-
tian matrix, according to Eq. (12). Due to the presence
of spatial inversion symmetry and Eq. (13), we can ob-
tain [Gσ (τ,k)]11 = [Gσ (τ, − k)]22 and [Gσ (τ,k)]12 = [Gσ (τ,
− k)]21. Then at TRIM points κ , we have [Gσ (τ,κ)]11 =
[Gσ (τ,κ)]22 and [Gσ (τ,κ)]12 = [Gσ (τ,κ)]21. From Eq. (14),
we can get [Gσ (τ,k)]pp = −[Gσ (−τ, − k)]pp,p = 1,2 and
[Gσ (τ,k)]12 = [Gσ (−τ,−k)]21. Combining these relations,
we obtain the equations applied in numerical calcu-
lations as [Gσ (−τ,k)]11 = −[Gσ (τ,k)]22,[Gσ (−τ,k)]12 =
[Gσ (τ,k)]12. At TRIM points, Gσ (τ,κ) is a real symmetric
matrix with equal diagonal elements. Based on these consid-
erations, we deduce that there are only two independent matrix
elements in Gσ (τ,k) as

[Gσ (iω = 0,k)]11 = −[Gσ (iω = 0,k)]22

≈
∫ +θ

0
{[Gσ (τ,k)]11 − [Gσ (τ,k)]22}dτ, (18)

and

[Gσ (iω = 0,k)]12 = [Gσ (iω = 0,k)]�21

≈ 2
∫ +θ

0
[Gσ (τ,k)]12dτ. (19)

As mentioned above, θ is the cutoff for τ in the integral of
Eq. (13). Equations (18) and (19) explicitly show that we only
need to measure two elements of Gσ (τ,k) matrix with τ > 0
at all discrete k points. At TRIM points, we can obtain the sim-
plified relations as [Gσ (iω = 0,κ)]11 = [Gσ (iω = 0,κ)]22 =
0 and [Gσ (iω = 0,κ)]12 = [Gσ (iω = 0,κ)]21. Namely, at
TRIM points we have Gσ (iω = 0,κ) = Zκσx while σx is the
Pauli matrix and Zκ is some κ-dependent coefficient [26–29].

For Z2 invariant, we only deal with Gσ (iω = 0,κ). The
matrix representation of inversion symmetry operator P̂ for the
GKMH model is P = σx for each spin sector. The parity of all
unoccupied eigenstates at some TRIM point κ is simply η(κ) =
sgn{[Gσ (0,κ)]12}. Then we can get the Z2 invariant simply as
(−1)ν = η(�)η(M1)η(M2)η(M3). As a result, we observe that
the Z2 invariant for the GKMH model is integer-quantized,
free from finite-size effect. On the other hand, to calculate
spin Chern number Cs , we only need to obtain [Gσ (τ,k)]11

and [Gσ (τ,k)]12 in Gσ (τ,k) matrix due to its Hermiticity. After
that, spin Chern number can be numerically evaluated through
Eq. (4).

To apply our numerical calculation scheme for topological
invariants, we choose two paths in the phase diagram of
Fig. 2(a). First, starting from td/t = 1.0,λ/t = 0.2 and U/t =
2.0, we calculate the topological invariants to monitor the
t3-driven topological phase transition. Second, we choose
t3/t = 0,λ/t = 0.2,U/t = 2.0 and calculate the topological
invariants to monitor the td -driven topological phase transition.
The interaction is chosen to be at a small value U/t = 2.0 to
avoid the appearance of antiferromagnetic state [29,41]. Thus,
there is no spontaneous symmetry breaking across these two
topological phase transitions driven by hopping parameters in
the interacting GKMH model.

For the t3-driven topological phase transition, the results
of both Z2 invariant and Chern number C↑ (equal to spin
Chern number Cs) from QMC simulations with finite size

195163-6



TOPOLOGICAL INVARIANTS FOR . . . . I. EFFICIENT . . . PHYSICAL REVIEW B 93, 195163 (2016)

FIG. 3. (a) Z2 invariant (−1)ν and (b), (c) Chern number C↑
for the t3-driven topological phase transition in the GKMH model
with td/t = 1.0,λ/t = 0.2 and U/t = 2.0 from finite-size QMC
simulation and the interpolation process. (a) Z2 invariant (−1)ν is
quantized as mentioned in the main text. (b) and (c), the Chern
number C↑ from finite-size QMC calculation indicated by the red
open hexagon with error bar acquires a drop with finite value at the
transition point, which can be taken as signature of topological phase
transition, but the C↑ itself is not quantized before or after the phase
transition, due to the finite-size effect. After the interpolation with the
QMC data in L = 12 (b) and L = 18 (c) systems, the C↑ converge to
the ideal quantized integers, where IL stands for interpolation lattice
size used in the interpolation process.

L = 6,12,18 are shown in Figs. 3(a), 3(b), and 3(c), at td/t =
1.0,λ/t = 0.2 and U/t = 2.0. At U = 0, the GKMH model
experiences a topological phase transition at t3/t = 1/3 from
Cs = +1 to Cs = −2 as indicated in Fig. 2(a). At U/t = 2.0,
the quantized Z2 invariant in Fig. 3(a) demonstrates that
the topological phase transition point changes little. Detailed
calculations of parities at all TRIM points show that the
parities at M1,M2,M3 change across the phase transition,
which is related to the fact that the single-particle gap closes
at M1,M2,M3 points [29]. As for the Chern number from
finite-size QMC calculation denoted by the red open hexagon
symbols with error bar in Figs. 3(b) and 3(c), we can observe

drop with finite values across the phase transition, the position
coincide with that in Z2 invariant. Combining these results, the
phase transition point is t3/t ≈ 0.334 ∼ 0.335 for the L = 6
system and t3/t ≈ 0.333 ∼ 0.334 for the L = 12,18 system.

The problem about the results of Chern number in Figs. 3(b)
and 3(c) is that they are not integer quantized, though the
convergence with increasing L can be observed. To solve this
problem, the interpolation process described in Sec. III D is
applied based on the results of Chern number from QMC
simulations of L = 12,18. As shown in Figs. 3(b) and 3(c),
one indeed observes the gradual convergence of Chern number
C↑ when the interpolation lattice size IL increases. In fact, for
IL = 120, the Chern number C↑ is almost ideally quantized,
which demonstrates that the interpolation method works very
well. Numerical results for the td -driven topological phase
transition, which are presented in Appendix F, show similar
effectiveness of our numerical evaluation scheme of the
topological invariants.

B. Cluster Kane-Mele-Hubbard model

The cluster Kane-Mele-Hubbard model [30,42] (CKMH)
has six honeycomb lattice sites as one unit cell; the Hamilto-
nian is given as follows

Ĥ = −
∑
〈ij〉σ

tij (c†iσ cjσ + c
†
jσ ciσ )

+ iλI

∑
〈〈ij〉〉αβ

νij

(
c
†
iασ z

αβcjβ − c
†
jβσ z

βαciα

)

+ iλO

∑
〈〈ij〉〉αβ

νij

(
c
†
iασ z

αβcjβ − c
†
jβσ z

βαciα

)

+ U

2

∑
i

(ni↑ + ni↓ − 1)2 . (20)

For nearest-neighbor (NN) hopping, we have tij = t for
NN bonds inside unit cells and tij = td for those connecting
the six-site unit cells, as demonstrated in Fig. 4(a). The
amplitudes for SOC term inside a unit cell and between
different unit cells are λI and λO , respectively. U is the on-
site Coulomb repulsion. Similar to the GKMH model, the
U (1)spin × U (1)charge � ZT

2 symmetry is also preserved in the
CKMH model, which results in Z classification. Besides, both
spatial inversion symmetry and particle-hole symmetry are
also present in the CKMH model. Notice that the CKMH
model has a six-site unit cell, in this section, the linear system
size L in finite size QMC simulation actually corresponds
to that of the six-site unit cell, i.e., the total lattice sites are
6 × L × L. The physical origin of the CKMH model is actually
the Kekulé distortion, which explicitly breaks the transitional
symmetry of honeycomb lattice and trigger cluster anisotropy
in hopping strengths. Such a large unit cell greatly increases
the QMC simulation efforts of the CKMH model comparing
to that of the GKMH model in the previous session, where the
total lattice site is only 2 × L × L (the computation efforts of
QMC scale to the third power of the total lattice sites).

Since there are three independent parameters td ,λI ,λO ,
even the phase diagram for the noninteracting CKMH model
is already interesting. To simplify the presentation, we only
demonstrate results on two special cases. First, we set λO = 0,
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t
dt

U

Iλ

U

1
2 3

4
56

Oλ
1a

2a

FIG. 4. Illustration of the CKMH model in Eq. (20). The yellow
shaded region shows the six-site unit cell with primitive lattice
vectors a1 = (

√
3,0)a,a2 = (1/2,

√
3/2)a with the nearest-neighbor

bond length a/
√

3. The six sublattices 1,2,3,4,5,6 are shown in
different colors. The black solid and black dotted lines indicate the
nearest-neighbor hopping term inside (t) and between (td ) unit cells.
The red solid and red dotted lines represent SOC terms inside (λI )
and between (λO ) unit cells. The sign choice for SOC hopping is the
same as that in Fig. 1(a). The on-site Coulomb repulsion U is shown
by the blue shaded circle.

the (td/t) − (λI/t) phase diagram of this case is shown in
Fig. 5(a). We can observe that the QSHI phases exist in
the middle region of the (td/t) − (λI/t) phase diagram, with
different spin Chern numbers Cs = +1 and Cs = −2, as a
function of λI/t . The presence of the Cs = −2 phase is
unexpected and very interesting, since the Chern number is

0 1 2 3
0.0
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0sC =
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FIG. 5. Phase diagrams for the noninteracting CKMH model
under two different parameter sets. (a) (td/t) − (λI /t) phase diagram
with λO = 0; (b) α − (λI /t) phase diagram with α = td/t = λO/λI .

changed by 3 when going from Cs = 1 to Cs = −2, further
increase λI/t , QSHI phase is destroyed. Second, we keep
all three td ,λI ,λO parameters finite and introduce a ratio of
hopping α = td/t = λO/λI . The α − (λI/t) phase diagram at
U = 0 is presented in Fig. 5(b). In the plotted region of α and
td/t , three phases with one nontrivial in Cs are found.

With interaction, we apply the interpolation process in
Sec. III D to calculate the topological invariants. Before
presenting the data, let’s discuss the structure of Gσ (τ,k) and
Gσ (iω = 0,k) for the CKMH model as it is quite complicated.
First, both Gσ (τ,k) and Gσ (iω = 0,k) are 6 × 6 Hermitian
matrices for the CKMH model. Second, using spatial inversion
and particle-hole symmetries, we can obtain useful relations
among the matrix elements of Gσ (τ,k). Combining these two
symmetry properties, Gσ (τ,k) and Gσ (−τ,k) are explicitly
related and we only need to calculate the Gσ (τ,k) data with
τ > 0. The detailed analysis is presented in Appendix E.
The Gσ (iω = 0,k) matrix for the CKMH model only has 12
independent matrix elements and can be expressed as

Gσ (0,k) =

⎛
⎜⎜⎜⎜⎜⎝

A1 A4 A5 A6 A7 A8

A�
4 A2 A9 −A7 A10 A11

A�
5 A�

9 A3 A8 −A11 A12

A�
6 −A�

7 A�
8 −A1 A�

4 −A�
5

A�
7 A�

10 −A�
11 A4 −A2 A�

9
A�

8 A�
11 A�

12 −A5 A9 −A3

⎞
⎟⎟⎟⎟⎟⎠,

(21)

where A1,A2,A3 are real numbers and Ai,i = 4, . . . ,12 are
complex numbers. At TRIM points, Eq. (21) can be further
simplified to only 9 independent matrix elements and Gσ (iω =
0,κ) matrix obtains the following matrix structure as

Gσ (0,κ)

=

⎛
⎜⎜⎜⎜⎜⎝

0 B4 iB5 B6 iB7 B8

B4 0 B9 −iB7 B10 iB11

−iB5 B9 0 B8 −iB11 B12

B6 iB7 B8 0 B4 iB5

−iB7 B10 iB11 B4 0 B9

B8 −iB11 B12 −iB5 B9 0

⎞
⎟⎟⎟⎟⎟⎠.

(22)

In Eq. (22), Bi,i = 4, . . . ,12 are real numbers. The explicit
expressions for both Ai and Bi are given in Appendix E.

For numerical evaluation of Z2 invariant in CKMH model,
we adopt the Gσ (iω = 0,κ) matrix in Eq. (22) for TRIM
points. The matrix representation of spatial inversion sym-
metry operator for each spin sector is

P =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠. (23)

To calculate the Z2 invariant, we only need to diagonalize
the Gσ (iω = 0,κ) matrix with κ = �,M1,M2,M3, and then
calculate the parities at these TRIM points by Eq. (1). To
calculate spin Chern number, we only need to adopt the matrix
structure of Gσ (iω = 0,k) in Eq. (21) and apply Eq. (4), first
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FIG. 6. (a) Z2 invariant (−1)ν and (b), (c) Chern number C↑ for
the λI -driven topological phase transition with λO = 0,td/t = 0.5
and U/t = 1.5 from finite-size calculations by QMC simulation
(denoted by red open hexagon with error bar) and interpolation
process. The drop of integer-valued Z2 invariant and the jump of
Chern number C↑ can be taken as signature of topological phase
transition. In (b) and (c), with large interpolation lattice size IL from
finite QMC data with L = 6 and 12, the Chern number C↑ reaches
its quantized value.

with the finite-size QMC data and then with interpolation
process.

We concentrate on two independent paths in the parameter
space of the CKMH model. First, we choose λO = 0,td/t =
0.5 and U/t = 1.5 and study the λI -driven topological phase
transition in the interacting CKMH model. For U = 0, the
transition point for this λI -driven topological phase transition
from Cs = 0 to Cs = +1 is at λI /t ≈ 0.289. Second, we set
α = 1.8,U/t = 2.0 in the CKMH model and study the λI -
driven topological phase transition, similarly, there is also a
λI -driven topological phase transition from Cs = 0 to Cs =
+1 at λI /t ≈ 0.1 for U = 0. In the following, we calculate Z2

invariant (−1)ν and spin Chern number Cs for λI/t parameter
across these two phase transitions, to demonstrate that our
interpolation process works for the CKMH model as well.

Figure 6 shows the Z2 invariant (−1)ν and Chern number
C↑ (equal to spin Chern number Cs), calculated from finite-

size QMC simulations of L = 6,12 systems (both denoted by
red open hexagon with error bar) for the λO = 0,td/t = 0.5
and U/t = 1.5 case. One can observe that the Z2 invariant
is exactly integer-quantized to ±1 [Fig. 6(a)]. Such integer
quantization in finite-size system is due to the spatial inversion
and particle-hole symmetries of the CKMH model. These two
symmetries result in the special matrix structure of Gσ (iω =
0,κ) in Eq. (22), which is sufficient to guarantee that the parities
at TRIM points are exactly ±1. As shown in Figs. 6(a), 6(b),
and 6(c), for both L = 6 and L = 12, the λI -driven topological
phase transition point is at λI /t = 0.288 ∼ 0.289 from the
drop in Z2 invariant (−1)ν and the jump in Chern number C↑.
Across the topological phase transition, both single-particle
gap close and the parity change all happen at � point. As for
the Chern number C↑ from finite size L = 6 and L = 12 QMC
calculation [Fig. 6(b) and 6(c)], they are still far from the ideal
quantized result due to the finite-size effect, although the trend
of convergence with increasing system size is present.

The calculation results of Chern number C↑ by the interpo-
lation process for the λI -driven topological phase transition is
presented in Figs. 6(b) and 6(c), from the QMC data in L = 6
and 12 systems. We can observe that the interpolation method
can give good results of quantized integer for C↑. The non-
monotonic behavior in IL = 12,24,48 close to the transition
in Fig. 6(b) is due to the inappropriate τ cutoff in calculating
Eq. (15), as mentioned in Sec. III C. This behavior is absent for
large enough ILs. Through the interpolation method, a sharp
topological phase transition from Cs = 0 to Cs = +1 can be
clearly seen. Similarly, Z2 invariant (−1)ν and Chern number
C↑ for the case of λI -driven topological phase transition with
α = 1.8,U/t = 2 are also calculated (shown in Appendix F).

V. CONCLUSION

To conclude, we provide a toolkit to calculate the topologi-
cal invariants constructed from zero-frequency single-particle
Green’s function for interacting TIs. All the important numeri-
cal details are carefully documented, hence serves the purpose
of demystifying the numerical evaluation of Z2 invariant and
spin Chern number for interacting TIs. Most importantly, we
introduce an interpolation process to eliminate the finite-size
effect on spin Chern number and obtain quantized topological
invariants from finite-size QMC simulations, which renders
the topological phases well defined.

To demonstrate the power of our calculation scheme,
especially the interpolation process, both the topological
phases and topological phase transitions in two interacting TI
models, namely, the generalized Kane-Mele-Hubbard model
and the cluster Kane-Mele-Hubbard model, are identified by
numerical evaluation of topological invariants. The results
show that the numerical scheme works well in capturing the
topological phases and their phase transitions driven by one-
body model parameter. The Z2 invariants are already integer
quantized by applying the symmetry properties of the studied
system during data process. With the interpolation process,
the integer-quantized spin Chern number is also achieved with
QMC simulations in systems with very small size. Through
these calculations of topological invariants, we can also
determine the topological phase transition points accurately, at
least more accurately than those from the gap extrapolations.
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The present paper demonstrates that the numerical evalua-
tion scheme, especially the interpolation process, of topologi-
cal invariants for interacting TIs works well, in distinguishing
topologically phases and identifying their phase transitions
driven by the one-body model parameters. In paper II of
this series, we shall apply the numerical evaluation scheme
developed here to wider classes of models of interacting TIs, in
which certain limitation of constructing topological invariants
from single-particle Green’s function is manifested in a very
interesting manner, calling for more versatile technique to
diagnose the interaction-driven topological phase transitions
in interacting TIs.
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APPENDIX A: DETAILED IMPLEMENTATION OF EQ. (4)
FOR HONEYCOMB LATTICE

In this appendix, we present the numerical implementation
of Eq. (4) on honeycomb lattice, provided that we have already
obtained the zero-frequency single-particle Green’s function
data Gσ (iω = 0,k). The reason for having this discussion is
that the primitive vectors for honeycomb lattice in real (a1,a2)
and momentum space (b1,b2) [see Figs. 1(a), 1(b)] are not
along the (x,y) or (kx,ky) direction of the Cartesian coordinate.
Hence, both the integral over honeycomb lattice BZ and the
derivatives over (kx,ky) in Eq. (4) can be Jacobian transformed
from those on the honeycomb lattice BZ to that on a square
lattice as

{
qu = kx

qv = kx+
√

3ky

2

{
0 � qu � 2π√

3a

0 � qv � 2π√
3a

=⇒ kx = qu ky = −qu + 2qv√
3

. (A1)

The transformed BZ is indeed a square one, and we can rewrite Eq. (4) by substituting Eq. (A1) as

C = 1

2πi

∫ 2π/
√

3a

0
dqu

∫ 2π/
√

3a

0
dqv · Tr{Q(qu,qv)[∂qu

Q(qu,qv)∂qv
Q(qu,qv) − ∂qv

Q(qu,qv)∂qu
Q(qu,qv)]}, (A2)

where Q(qu,qv) = P (qu,(−qu + 2qv)/
√

3) and P (kx,ky) is the projection matrix defined in Eq. (5). Comparing Eq. (4) and
Eq. (A2), one observes the Jacobian transformation does not change the form of the formula.

QMC simulates finite size system, so the integration and derivation in Eq. (A2) are discretized, we set Qi,j = Q(qu,i ,qv,j )
and (qu,i ,qv,j ) = (2iπ/

√
3L1a,2jπ/

√
3L2a) with i ∈ [0,L1],j ∈ [0,L2], then we have the expressions for finite difference as

∂qu
Q(qu,qv)|q=(qu,i ,qv,j ) = Qi+1,j − Qi−1,j

2δqu

∂qv
Q(qu,qv)|q=(qu,i ,qv,j ) = Qi,j+1 − Qi,j+1

2δqv

, (A3)

where δqu
= 2π/

√
3L1a,δqv

= 2π/
√

3L2a. Due to the periodic boundary condition, we have Q0,j = QL1,j ,QL1+1,j = Q1,j and
Qi,0 = Qi,L2 ,Qi,L2+1 = Qi,1. Based on Eq. (A3), we arrive at the expression for the integrand in Eq. (A2) as

Tr{Q(qu,qv)(∂qu
Q(qu,qv)∂qv

Q(qu,qv) − ∂qv
Q(qu,qv)∂qu

Q(qu,qv))}

= 1

4δqu
δqv

Tr{Qi,j ([Qi+1,j ,Qi,j+1] + [Qi,j+1,Qi−1,j ] + [Qi−1,j ,Qi,j−1] + [Qi,j−1,Qi+1,j ])}. (A4)

Simultaneously, the integral over the square BZ in Eq. (A2) is changed into summation over discrete wave-vector points as∫
k∈BZ

f (k)d2k = �BZ

L1L2

∑
k∈BZ

f (k), (A5)

where L1L2 is the number of unit cells for the finite size system, and �BZ = 4π2/3a is the volume of BZ. For a finite-size
system, the result of the summation will deviate from the expected quantized integer, which is the finite-size effect we have seen
in the main text, i.e., Figs. 3, 7, 6, and 8, but we have also seen that the summation results converge to the quantized integer with
increasing system size. Combining Eqs. (A4) and (A5), we deduce the constant coefficient for Eq. (A2) as

1

2πi
· 1

4δqu
δqv

· �BZ

N
= 1

2πi
· 3L1L2a

2

16π2
· 4π2

3L1L2a2
= 1

8πi
. (A6)

195163-10



TOPOLOGICAL INVARIANTS FOR . . . . I. EFFICIENT . . . PHYSICAL REVIEW B 93, 195163 (2016)

So finally, we can get the simplified expression of Eq. (A2) as

C = 1

8πi

L1∑
i=1

L2∑
j=1

S(qu,i ,qv,j )

S(qu,i ,qv,j ) = Tr{Qi,j ([Qi+1,j ,Qi,j+1] +[Qi,j+1,Qi−1,j ] + [Qi−1,j ,Qi,j−1] + [Qi,j−1,Qi+1,j ])}

(qu,i ,qv,j ) =
(

2iπ√
3L1a

,
2jπ√
3L2a

)
Qi,j = Q(qu,i ,qv,j ) Q(qu,qv) = P

(
qu,

−qu + 2qv√
3

)
. (A7)

During the calculation, we only need to prepare the projection
matrix P (qu,(−qu + 2qv)/

√
3) through the zero-frequency

Green’s function matrix obtained from QMC simulation. As

FIG. 7. (a) Z2 invariant (−1)ν and (b), (c) Chern number C↑ for
the td -driven topological phase transition in the GKMH model with
t3/t = 0,λ/t = 0.2 and U/t = 2.0 from finite-size QMC simulation
and interpolation process. (a) Z2 invariant is integer quantized and
there is a gradual shifting of the transition point from td/t ≈ 1.955 in
L = 6 system to td/t ≈ 1.995 in the L = 18 system. (b) and (c), the
finite drop in Chern number from finite-size QMC calculation with
L = 12 and L = 18 (denoted by red open hexagon with error bar)
can be observed clearly. The interpolation results of Chern number
C↑, with the QMC data in L = 12 (b) and L = 18 (c) systems, are
ideally quantized.

Chern number should be an integer for a gapped system, we can
only calculate the imaginary part of S(qu,i ,qv,j ) in Eq. (A7).

FIG. 8. (a) Z2 invariant (−1)ν and (b), (C) Chern number C↑
for the λI -driven topological phase transition in the CKMH model
with α = 1.8 and U/t = 2.0 from finite-size calculations by QMC
(denoted by red open hexagon with error bar) and interpolation
process. The drop of integer-valued Z2 invariant and the jump of
Chern number C↑ can be taken as signature of topological phase
transition. In (b) and (c), with large IL in interpolation, the Chern
number C↑ reaches its quantized value.
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APPENDIX B: VALIDITY OF EQ. (10)
AT ZERO TEMPERATURE

In this appendix, we validate the usage of Eq. (10) in
obtaining G(iω,k) data from G(τ,k) at zero temperature. Let’s
start with a review on some basic facts about Matsubara fre-
quency Green’s function at finite temperature. The Matsubara
frequencies, iωn = i(2n + 1)π/β,n ∈ Z for fermion systems
and iωn = i2nπ/β,n ∈ Z for boson systems, are actually the
poles of the corresponding Fermi-Dirac and Bose-Einstein
distribution function as

nFD(ε) = 1

eβε + 1

= 1

2
+ 1

β

+∞∑
n=−∞

1

iωn − ε
ωn = (2n + 1)π

β

nBE(ε) = 1

eβε − 1

= −1

2
− 1

β

+∞∑
n=−∞

1

iωn − ε
ωn = 2nπ

β
. (B1)

We can explicitly observe that for fermions the exact zero
Matsubara frequency iω = 0 can only be physically reach-
able at zero temperature. Otherwise, the imaginary-time
single-particle Green’s function at finite temperature is defined
as

G(τ,ÂB̂) = −〈Tτ [Â(τ )B̂(0)]〉 = −θ (τ )〈eτĤ Âe−τĤ B̂〉
± θ (−τ )〈B̂eτĤ Âe−τĤ 〉, (B2)

where + is for fermionic operators and − is for bosonic
operators, while Â and B̂ stands for single-particle fermionic or
bosonic operators. According to this definition, one can simply
prove the periodic and antiperiodic properties of G(τ,ÂB̂) for
fermionic and bosonic systems as

Fermion:G(τ,ÂB̂) = −G(β + τ,ÂB̂)
(B3)

Boson:G(τ,ÂB̂) = G(β + τ,ÂB̂).

We can also write down the Lehmann representation of
G(τ,ÂB̂) for both fermionic and bosonic systems via expand-
ing the expectation by all many-body eigenstates of the system
as

G(τ,ÂB̂) = 1

Z

∑
mn

e(Em−En)τ [−θ (τ )e−βEm ± θ (−τ )e−βEn ]

×〈m|Â|n〉〈n|B̂|m〉. (B4)

For finite temperature case, the Fourier transformation be-
tween the imaginary-time Green’s function G(τ,ÂB̂) and the
Matsubara frequency Green’s function G(iωn,ÂB̂)

G(iωn,ÂB̂) =
∫ β

0
G(τ,ÂB̂)eiωnτ dτ. (B5)

So the Lehmann representation expression of G(iωn,ÂB̂) is

G(iωn,ÂB̂) =
∑
mn

Dmn

〈n|Â|m〉〈m|B̂|n〉
iωn − (Em − En)

(B6)

Dmn = ±e−βEm + e−βEn

Z
,

where the sign ± originates from the term eiωnβ = +1 for
bosons and eiωnβ = −1 for fermions. The above formulas sum-
marize the basic properties of Matsubara frequency Green’s
function.

At exact zero temperature, we have the Lehmann represen-
tation for G(τ,k) as

G(τ,ÂB̂) =
∑
m

[−θ (τ )e(E0−Em)τ 〈0|Â|m〉〈m|B̂|0〉

± θ (−τ )e−(E0−Em)τ 〈m|Â|0〉〈0|B̂|m〉]. (B7)

Taking β → +∞ limit in Eq. (B6), the Lehmann representa-
tion for G(iω,ÂB̂) at zero temperature can also be reached
as

G(iω,ÂB̂) =
∑
m

[ 〈0|Â|m〉〈m|B̂|0〉
iω − (Em − E0)

± 〈m|Â|0〉〈0|B̂|m〉
iω + (Em − E0)

]
.

(B8)

Now the problem is, at zero temperature, Fourier transfor-
mation in Eq. (B5) cannot transfer G(τ,ÂB̂) in Eq. (B7) to
G(iω,ÂB̂) in Eq. (B8), since Eq. (B8) cannot be obtained if one
naively takes β → +∞ limit in Eq. (B5), which corresponds
to integration domain [0, + ∞]. To solve this problem,
we present a simple generalization of finite temperature
Matsubara frequency Green’s function formalism into the
zero-temperature case, by altering the Fourier transformation
in Eq. (B5) to the following one as

G(iω,ÂB̂) =
∫ +∞

−∞
G(τ,ÂB̂)eiωτ dτ. (B9)

With this new transformation, we can now obtain Eq. (B8) from
Eq. (B7), at zero temperature. In practical QMC simulations,
we do not take the integral in Eq. (B9) to ±∞, and instead we
carry out a cutoff for τ in the integral as Eq. (15) in the main
text. Nevertheless, Eq. (B9) validates the usage of Eq. (11)
in the main text calculating G(iω = 0,k) from G(τ,k) matrix
obtained from QMC simulations.

APPENDIX C: PROOF OF EQS. (12)–(14)

The definition of [Gσ (τ,k)]pq with p,q = 1,2, . . . ,m as
orbitals for each spin sector in a unit cell, is

[Gσ (τ,k)]pq = −〈Tτ [ckpσ (τ )c†kqσ (0)]〉

= − 1

N

N∑
i,j=1

e−ik·(Ri−Rj )〈Tτ [cipσ (τ )c†jqσ (0)]〉,

(C1)
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where N = L2 is the number of unit cells. Then we have

[Gσ (τ,k)]�qp = − 1

N

N∑
i,j=1

eik·(Ri−Rj )〈Tτ [ciqσ (τ )c†jpσ (0)]〉�.

(C2)

For any operator, we have 〈φ|Â|φ〉� = 〈φ|Â†|φ〉, which means
〈Â〉� = 〈Â†〉. Based on this relation, we have

〈Tτ [ciqσ (τ )c†jpσ (0)]〉� = 〈Tτ [cjpσ (τ )c†iqσ (0)]〉. (C3)

Then we can prove

[Gσ (τ,k)]�qp = − 1

N

N∑
i,j=1

eik·(Ri−Rj )〈Tτ [cjpσ (τ )c†iqσ (0)]〉

= − 1

N

N∑
i,j=1

e−ik·(Ri−Rj )〈Tτ [cipσ (τ )c†jqσ (0)]〉

= [Gσ (τ,k)]pq. (C4)

So the proof for Eq. (12) is complete.
For Eq. (13), the inversion operation Î (in each spin sector)

transforms p sublattice to p′. For GKMH model, Î transfers A
sublattice into B as 1 ↔ 2, shown in Fig. 1(a), while it transfers
1 ↔ 4,2 ↔ 5 and 3 ↔ 6 for the CKMH model, shown in
Fig. 4. We assume the relation p ↔ p′ and q ↔ q ′ under the
spatial inversion symmetry operation for generally multiband
systems. As the position vector should be inverse under Î, i.e.,
Ri → −Ri we obtain the transformation for simple operators

ckpσ ,ckqσ in reciprocal space as

ckpσ = 1√
N

∑
i

e−ik·Ri cipσ →

IckpσI−1 = 1√
N

∑
i

Ie−ik·RiI−1 · I−1cipσI−1

= 1√
N

∑
i

eik·Ri cip′σ = c−kp′σ . (C5)

Similarly, we have

Ic
†
kpσI−1 = c

†
−kp′σ

Ickqσ (τ )I−1 = c−kq ′σ (τ ), (C6)

Ic
†
kqσ (τ )I−1 = c

†
−kq ′σ (τ ).

So for the imaginary-time Green’s function matrix, we have

I[Gσ (τ,k)]pqI−1 = −〈Tτ [Ickpσ (τ )c†kqσI−1]〉
= −〈Tτ [Ickpσ (τ )I−1Ic

†
kqσI−1]〉

= −〈c−kp′σ (τ )c†−kq ′σ 〉
= [Gσ (τ, − k)]p′q ′ (C7)

Due to the spatial inversion symmetry, the G(τ,k) matrix
should be invariant under the inversion symmetry operation,
from which we can get

[Gσ (τ,k)]pq = [Gσ (τ, − k)]p′q ′ . (C8)

This is exactly Eq. (13).

Finally, we prove the relation Eq. (14). The standard definition for [Gσ (τ,k)]pq is

[Gσ (τ,k)]pq = −〈Tτ [ckpσ (τ )c†kqσ (0)]〉 = −θ (τ )〈ckpσ (τ )c†kqσ 〉 + θ (−τ )〈c†kqσ ckpσ (τ )〉
= −θ (τ )〈ckpσ c

†
kqσ (−τ )〉 + θ (−τ )〈c†kqσ (−τ )ckpσ 〉

= −θ (τ )
1

N

N∑
i,j=1

e−ik·(Ri−Rj )〈cipσ c
†
jqσ (−τ )〉 + θ (−τ )

1

N

N∑
i,j=1

e−ik·(Ri−Rj )〈c†jqσ (−τ )cipσ 〉, (C9)

where we have applied the the following relations

〈ckpσ (τ )c†kqσ 〉 = 〈ckpσ c
†
kqσ (−τ )〉 〈c†kqσ ckpσ (τ )〉 = 〈c†kqσ (−τ )ckpσ 〉. (C10)

Then we carry out the particle-hole transformation for [Gσ (τ,k)]pq as cp → ξpd
†
p and cq → ξqd

†
q , we have

1

N

N∑
i,j=1

e−ik·(Ri−Rj )〈cipσ c
†
jqσ (−τ )〉 −→ 1

N

N∑
i,j=1

e−ik·(Ri−Rj )ξpξq〈d†
ipσ djqσ (−τ )〉 (C11)

= ξpξq〈d†
−kpσ d−kqσ (−τ )〉,

and the other term

1

N

N∑
i,j=1

e−ik·(Ri−Rj )〈c†jqσ (−τ )cipσ 〉 −→ 1

N

N∑
i,j=1

e−ik·(Ri−Rj )ξpξq〈djqσ (−τ )d†
ipσ 〉 (C12)

= ξpξq〈d−kqσ (−τ )d†
−kpσ 〉.

Combining the results of these two terms, under the particle-hole transformation, [Gσ (τ,k)]pq changes to

[Gσ (τ,k)]pq −→ −θ (τ )ξpξq〈d†
−kpσ d−kqσ (−τ )〉 + θ (−τ )ξpξq〈d−kqσ (−τ )d†

−kpσ 〉. (C13)
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On the other hand, we can write down [Gσ (−τ, − k)]qp according to original definition in Eq. (C9)

[Gσ (−τ, − k)]qp = −θ (−τ )〈c−kqσ (−τ )c†−kpσ 〉 + θ (τ )〈c†−kpσ c−kqσ (−τ )〉. (C14)

Comparing Eqs. (C13) and (C14), and considering that the particle-hole symmetry is preserved, we arrive at

[Gσ (τ,k)]pq = −ξpξq[Gσ (−τ, − k)]qp, (C15)

which is Eq. (14) in the main text.

APPENDIX D: CONNECTION BETWEEN

THE INTERPOLATION PROCESS IN SEC. III D

AND PERIODIZATION IN CDMFT

In Sec. III D of the main text, we proposed an interpolation
process for Gσ (iω = 0,k) based on two steps of discrete
Fourier transformations. Actually, the process, especially the
last step as Eq. (16), is inspired by the similar implementation
in CDMFT, which is dubbed periodization. However, there are
still some differences between the one we applied in this paper
and that in CDMFT framework. In this section, we discuss
these differences.

CDMFT simulates a correlated system within a cluster
(with some other noninteracting bath energy levels) and
open boundary condition is applied for the finite-size cluster.
To recover the translational symmetry broken by the open
boundary condition, a periodization process [43–46] is applied
to construct the Green’s function and self-energy with arbitrary
momentum resolution. The periodization process is generally
realized by

QL(iωn,k) = 1

Nc

Nc∑
i,j=1

QC
ij (iωn)eik·(ri−rj ), (D1)

where Nc is the size of cluster, QC(iωn) is the quantity
calculated on the cluster and QL(k,iωn) is the periodization
result with arbitrary k point in BZ. In CDMFT, generally
one can choose QC(iωn) to be MC(iωn) and �C(iωn), where
MC(iωn) = [iωn + μ − �C(iωn)]−1 is the cluster cumulant
and �C(iωn) is the cluster self-energy. Naively thinking,
directly substituting GC(iωn) into Eq. (D1) seems to be the
simplest way, since matrix inverse operations are needed
during numerical calculations if QC(iωn) is chosen to be
MC(iωn) and �C(iωn) instead. However, due to the breaking
of lattice translational symmetry, the simple G periodization
can generate artificial results and another more complicated
version of G periodization instead of Eq. (D1) should be
applied to obtain reasonable results [45].

For our purpose of calculating spin Chern number in QMC,
nevertheless, we can apply the G periodization method simply
via Eq. (D1) by choosing QC(iωn) to be GC(iωn) [the Green’s
function Gσ,ij (iω = 0) for L × L system in Eq. (16)]. Since
the finite size Green’s function G(iω = 0,k) or Gσ,ij (iω = 0)
for L × L system obtained from QMC simulation actually
respects the periodic boundary condition, this is different
from the periodization in CDMFT [45] and guarantees our
interpolation of Green’s function to arbitrary k point in BZ
gives rise to smooth curves.

APPENDIX E: DERIVATION OF EQS. (21) AND (22)

For the CKMH model, the spatial inversion operators as 1 ↔ 4,2 ↔ 5 and 3 ↔ 6 among the six sublattices. One can show
that spatial inversion symmetry result in the following properties of Gσ (τ,k) matrix, according to Eq. (13).

[Gσ (τ,k)]11 = [Gσ (τ, − k)]44 [Gσ (τ,k)]12 = [Gσ (τ, − k)]45 [Gσ (τ,k)]13 = [Gσ (τ, − k)]46

[Gσ (τ,k)]14 = [Gσ (τ, − k)]41 [Gσ (τ,k)]15 = [Gσ (τ, − k)]42 [Gσ (τ,k)]16 = [Gσ (τ, − k)]43

[Gσ (τ,k)]22 = [Gσ (τ, − k)]55 [Gσ (τ,k)]23 = [Gσ (τ, − k)]56 [Gσ (τ,k)]24 = [Gσ (τ, − k)]51

[Gσ (τ,k)]25 = [Gσ (τ, − k)]52 [Gσ (τ,k)]26 = [Gσ (τ, − k)]53

[Gσ (τ,k)]33 = [Gσ (τ, − k)]66 [Gσ (τ,k)]34 = [Gσ (τ, − k)]61 [Gσ (τ,k)]35 = [Gσ (τ, − k)]62

[Gσ (τ,k)]36 = [Gσ (τ, − k)]63

[Gσ (τ,k)]44 = [Gσ (τ, − k)]11 [Gσ (τ,k)]45 = [Gσ (τ, − k)]12 [Gσ (τ,k)]46 = [Gσ (τ, − k)]13

[Gσ (τ,k)]55 = [Gσ (τ, − k)]22 [Gσ (τ,k)]56 = [Gσ (τ, − k)]23

[Gσ (τ,k)]66 = [Gσ (τ, − k)]33 (E1)

The particle-hole operators with ξ1 = +1,ξ2 = −1,ξ3 = +1,ξ4 = −1,ξ5 = +1,ξ6 = −1, then according to Eq. (14), we have
the following properties for [Gσ (τ,k)]1q,q = 1,2,3,4,5,6 as

[Gσ (τ, − k)]44 = −[Gσ (−τ,k)]44 [Gσ (τ, − k)]45 = +[Gσ (−τ,k)]54 [Gσ (τ, − k)]46 = −[Gσ (−τ,k)]64

[Gσ (τ, − k)]41 = +[Gσ (−τ,k)]14 [Gσ (τ, − k)]42 = −[Gσ (−τ,k)]24 [Gσ (τ, − k)]43 = +[Gσ (−τ,k)]34. (E2)
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With the condition of Hermitian matrix of Gσ (τ,k) in Eq. (12), we have [Gσ (−τ,k)]54 = [Gσ (−τ,k)]�45,[Gσ (−τ,k)]64 =
[Gσ (−τ,k)]�46. With Eqs. (E1) and (E2), we have

[Gσ (τ,k)]11 = −[Gσ (−τ,k)]44 [Gσ (τ,k)]12 = +[Gσ (−τ,k)]�45 [Gσ (τ,k)]13 = −[Gσ (−τ,k)]�46

[Gσ (τ,k)]14 = +[Gσ (−τ,k)]14 [Gσ (τ,k)]15 = −[Gσ (−τ,k)]24 [Gσ (τ,k)]16 = +[Gσ (−τ,k)]34. (E3)

Similarly, for [Gσ (τ,k)]2q,q = 2,3,4,5,6 from the particle-hole symmetry, we have

[Gσ (τ, − k)]55 = −[Gσ (−τ,k)]55 [Gσ (τ, − k)]56 = +[Gσ (−τ,k)]65 [Gσ (τ, − k)]51 = −[Gσ (−τ,k)]15

[Gσ (τ, − k)]52 = +[Gσ (−τ,k)]25 [Gσ (τ, − k)]53 = −[Gσ (−τ,k)]35. (E4)

With [Gσ (−τ,k)]65 = [Gσ (−τ,k)]�56 and combining Eqs. (E1) and (E4), we also have

[Gσ (τ,k)]22 = −[Gσ (−τ,k)]55 [Gσ (τ,k)]23 = +[Gσ (−τ,k)]�56 [Gσ (τ,k)]24 = −[Gσ (−τ,k)]15

[Gσ (τ,k)]25 = +[Gσ (−τ,k)]25 [Gσ (τ,k)]26 = −[Gσ (−τ,k)]35. (E5)

For [Gσ (τ,k)]3q,q = 3,4,5,6 from the particle-hole symmetry, we have

[Gσ (τ, − k)]66 = −[Gσ (−τ,k)]66 [Gσ (τ, − k)]61 = +[Gσ (−τ,k)]16 [Gσ (τ, − k)]62 = −[Gσ (−τ,k)]26

[Gσ (τ, − k)]63 = +[Gσ (−τ,k)]36. (E6)

Combining Eq. (E1) and Eq. (E6), we also have

[Gσ (τ,k)]33 = −[Gσ (−τ,k)]66 [Gσ (τ,k)]34 = +[Gσ (−τ,k)]16 [Gσ (τ,k)]35 = −[Gσ (−τ,k)]26

[Gσ (τ,k)]36 = +[Gσ (−τ,k)]36. (E7)

For [Gσ (τ,k)]4q,q = 4,5,6 from the particle-hole symmetry, we have

[Gσ (τ, − k)]11 = −[Gσ (−τ,k)]11 [Gσ (τ, − k)]12 = +[Gσ (−τ,k)]21 [Gσ (τ, − k)]13 = −[Gσ (−τ,k)]31 (E8)

With [Gσ (−τ,k)]21 = [Gσ (−τ,k)]�12,[Gσ (−τ,k)]31 = [Gσ (−τ,k)]�13 and combining Eqs. (E1) and (E8), we also have

[Gσ (τ,k)]44 = −[Gσ (−τ,k)]11 [Gσ (τ,k)]45 = +[Gσ (−τ,k)]�12 [Gσ (τ,k)]46 = −[Gσ (−τ,k)]�13 (E9)

For [Gσ (τ,k)]5q,q = 5,6 from the particle-hole symmetry, we have

[Gσ (τ, − k)]22 = −[Gσ (−τ,k)]22 [Gσ (τ, − k)]23 = +[Gσ (−τ,k)]32. (E10)

With [Gσ (−τ,k)]32 = [Gσ (−τ,k)]�23 and combining Eqs. (E1) and (E10), we also have

[Gσ (τ,k)]55 = −[Gσ (−τ,k)]22 [Gσ (τ,k)]56 = +[Gσ (−τ,k)]�23. (E11)

For [Gσ (τ,k)]66 from the particle-hole symmetry, we have

[Gσ (τ, − k)]33 = −[Gσ (−τ,k)]33. (E12)

Combining Eqs. (E1) and (E12), we also have

[Gσ (τ,k)]66 = −[Gσ (−τ,k)]33. (E13)

To calculate the Gσ (iω = 0,k) matrix, we need to apply the Fourier transformation as

Gσ (iω = 0,k) =
∫ +∞

−∞
Gσ (τ,k)dτ. (E14)

Then by Eq. (E14), we can show that there are actually only 12 independent matrix elements in Gσ (iω = 0,k) matrix for CKMH
model, which we need to calculate, combining Eqs. (E3), (E5), (E7), (E9), (E11), and (E13). For the diagonal matrix elements
of Gσ (iω = 0,k) matrix, we have three independent diagonal elements as

A1 = [Gσ (iω = 0,k)]11 =
∫ +∞

−∞
[Gσ (τ,k)]11dτ =

∫ +∞

0
{[Gσ (τ,k)]11 − [Gσ (τ,k)]44}dτ = −[Gσ (iω = 0,k)]44

A2 = [Gσ (iω = 0,k)]22 =
∫ +∞

−∞
[Gσ (τ,k)]22dτ =

∫ +∞

0
{[Gσ (τ,k)]22 − [Gσ (τ,k)]55}dτ = −[Gσ (iω = 0,k)]55 (E15)

A3 = [Gσ (iω = 0,k)]33 =
∫ +∞

−∞
[Gσ (τ,k)]33dτ =

∫ +∞

0
{[Gσ (τ,k)]33 − [Gσ (τ,k)]66}dτ = −[Gσ (iω = 0,k)]66
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For the off-diagonal matrix elements, we can determine that there are only nine independent matrix off-diagonal elements in
Gσ (iω = 0,k) matrix as

A4 = [Gσ (iω = 0,k)]12 =
∫ +∞

−∞
[Gσ (τ,k)]12dτ =

∫ +∞

0
{[Gσ (τ,k)]12 + [Gσ (τ,k)]�45}dτ = +[Gσ (iω = 0,k)]�45

A5 = [Gσ (iω = 0,k)]13 =
∫ +∞

−∞
[Gσ (τ,k)]13dτ =

∫ +∞

0
{[Gσ (τ,k)]13 − [Gσ (τ,k)]�46}dτ = −[Gσ (iω = 0,k)]�46

A6 = [Gσ (iω = 0,k)]14 =
∫ +∞

−∞
[Gσ (τ,k)]14dτ = 2

∫ +∞

0
[Gσ (τ,k)]14dτ

A7 = [Gσ (iω = 0,k)]15 =
∫ +∞

−∞
[Gσ (τ,k)]15dτ =

∫ +∞

0
{[Gσ (τ,k)]15 − [Gσ (τ,k)]24}dτ = −[Gσ (iω = 0,k)]24

A8 = [Gσ (iω = 0,k)]16 =
∫ +∞

−∞
[Gσ (τ,k)]16dτ =

∫ +∞

0
{[Gσ (τ,k)]16 + [Gσ (τ,k)]34}dτ = +[Gσ (iω = 0,k)]34

A9 = [Gσ (iω = 0,k)]23 =
∫ +∞

−∞
[Gσ (τ,k)]23dτ =

∫ +∞

0
{[Gσ (τ,k)]23 + [Gσ (τ,k)]�56}dτ = +[Gσ (iω = 0,k)]�56

A10 = [Gσ (iω = 0,k)]25 =
∫ +∞

−∞
[Gσ (τ,k)]25dτ = 2

∫ +∞

0
[Gσ (τ,k)]25dτ

A11 = [Gσ (iω = 0,k)]26 =
∫ +∞

−∞
[Gσ (τ,k)]26dτ =

∫ +∞

0
{[Gσ (τ,k)]26 − [Gσ (τ,k)]35}dτ = −[Gσ (iω = 0,k)]35

A12 = [Gσ (iω = 0,k)]36 =
∫ +∞

−∞
[Gσ (τ,k)]36dτ = 2

∫ +∞

0
[Gσ (τ,k)]36dτ (E16)

Then taking the τ cutoff θ and transforming the integral to summation over discrete τ , we can get the following matrix structure
of Gσ (iω = 0,k) matrix as

Gσ (iω = 0,k) =

⎛
⎜⎜⎜⎜⎜⎝

A1 A4 A5 A6 A7 A8

A�
4 A2 A9 −A7 A10 A11

A�
5 A�

9 A3 A8 −A11 A12

A�
6 −A�

7 A�
8 −A1 A�

4 −A�
5

A�
7 A�

10 −A�
11 A4 −A2 A�

9
A�

8 A�
11 A�

12 −A5 A9 −A3

⎞
⎟⎟⎟⎟⎟⎠. (E17)

As for the Z2 invariant for CKMH model, we only need to obtain the Gσ (iω = 0,κ) data at four TRIM points as κ =
�,M1,M2,M3. From the symmetry properties in Eq. (E1), we can obtain that for the TRIM points, we have

[Gσ (τ,κ)]11 = [Gσ (τ,κ)]44 [Gσ (τ,κ)]12 = [Gσ (τ,κ)]45 [Gσ (τ,κ)]13 = [Gσ (τ,κ)]46

[Gσ (τ,κ)]14 = [Gσ (τ,κ)]41 [Gσ (τ,κ)]15 = [Gσ (τ,κ)]42 [Gσ (τ,κ)]16 = [Gσ (τ,κ)]43

[Gσ (τ,κ)]22 = [Gσ (τ,κ)]55 [Gσ (τ,κ)]23 = [Gσ (τ,κ)]56 [Gσ (τ,κ)]24 = [Gσ (τ,κ)]51

[Gσ (τ,κ)]25 = [Gσ (τ,κ)]52 [Gσ (τ,κ)]26 = [Gσ (τ,κ)]53

[Gσ (τ,κ)]33 = [Gσ (τ,κ)]66 [Gσ (τ,κ)]34 = [Gσ (τ,κ)]61 [Gσ (τ,κ)]35 = [Gσ (τ,κ)]62

[Gσ (τ,κ)]36 = [Gσ (τ,κ)]63

[Gσ (τ,κ)]44 = [Gσ (τ,κ)]11 [Gσ (τ,κ)]45 = [Gσ (τ,κ)]12 [Gσ (τ,κ)]46 = [Gσ (τ,κ)]13

[Gσ (τ,κ)]55 = [Gσ (τ,κ)]22 [Gσ (τ,κ)]56 = [Gσ (τ,κ)]23

[Gσ (τ,κ)]66 = [Gσ (τ,κ)]33. (E18)

Then we can determine that at TRIM points, we have A1 = A2 = A3 = 0 and [Gσ (τ,κ)]14,[Gσ (τ,κ)]25 and [Gσ (τ,κ)]36 are all
real numbers. From these relations, we have B6 = A6,B10 = A10 and B12 = A12, and they are all real numbers as well. For other
elements, we have

A4 = [Gσ (iω = 0,κ)]12 =
∫ +∞

−∞
[Gσ (τ,κ)]12dτ =

∫ +∞

0
{[Gσ (τ,κ)]12 + [Gσ (τ,κ)]�12}dτ = B4

A5 = [Gσ (iω = 0,κ)]13 =
∫ +∞

−∞
[Gσ (τ,κ)]13dτ =

∫ +∞

0
{[Gσ (τ,κ)]13 − [Gσ (τ,κ)]�13}dτ = iB5
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A6 = [Gσ (iω = 0,κ)]14 =
∫ +∞

−∞
[Gσ (τ,κ)]14dτ = 2

∫ +∞

0
[Gσ (τ,κ)]14dτ = B6

A7 = [Gσ (iω = 0,κ)]15 =
∫ +∞

−∞
[Gσ (τ,κ)]15dτ =

∫ +∞

0
{[Gσ (τ,κ)]15 − [Gσ (τ,κ)]�15}dτ = iB7

A8 = [Gσ (iω = 0,κ)]16 =
∫ +∞

−∞
[Gσ (τ,κ)]16dτ =

∫ +∞

0
{[Gσ (τ,κ)]16 + [Gσ (τ,κ)]�16}dτ = B8

A9 = [Gσ (iω = 0,κ)]23 =
∫ +∞

−∞
[Gσ (τ,κ)]23dτ =

∫ +∞

0
{[Gσ (τ,κ)]23 + [Gσ (τ,κ)]�23}dτ = B9

A10 = [Gσ (iω = 0,κ)]25 =
∫ +∞

−∞
[Gσ (τ,κ)]25dτ = 2

∫ +∞

0
[Gσ (τ,κ)]25dτ = B10

A11 = [Gσ (iω = 0,κ)]26 =
∫ +∞

−∞
[Gσ (τ,κ)]26dτ =

∫ +∞

0
{[Gσ (τ,κ)]26 − [Gσ (τ,κ)]�26}dτ = iB11

A12 = [Gσ (iω = 0,k)]36 =
∫ +∞

−∞
[Gσ (τ,k)]36dτ = 2

∫ +∞

0
[Gσ (τ,k)]36dτ = B12. (E19)

We can observe that all the matrix elements of Gσ (τ,κ) matrix must be either purely real or purely imaginary, and the diagonal
matrix elements are all zero. Hence, the matrix structure as Gσ (τ,κ) is as following,

Gσ (iω = 0,κ) =

⎛
⎜⎜⎜⎜⎜⎝

0 B4 iB5 B6 iB7 B8

B4 0 B9 −iB7 B10 iB11

−iB5 B9 0 B8 −iB11 B12

B6 iB7 B8 0 B4 iB5

−iB7 B10 iB11 B4 0 B9

B8 −iB11 B12 −iB5 B9 0

⎞
⎟⎟⎟⎟⎟⎠, (E20)

in which {Bi |i = 4,5, . . . ,12} are purely real numbers.

APPENDIX F: TOPOLOGICAL PHASE TRANSITIONS IN

THE GKMH MODEL AND CKMH MODEL

In this part, we present some more numerical data of
topological invariants for across topological phase transitions
for both the GKMH model in Sec. IV A and the CKMH
model in Sec. IV B. For the td -driven topological phase
transition of GKMH model in Sec. IV A, the results of
both Z2 invariant and Chern number C↑ (equal to spin
Chern number Cs) from finite-size QMC simulations are
shown in Fig. 7, at t3/t = 0,λ/t = 0.2 and U/t = 2.0. The
noninteracting GKMH model obtains a topological phase
transition at td/t = 2.0 for t3/t = 0, as long as λ/t > 0. From
the results in Fig. 7, one sees the weak interaction U/t = 2.0
only give a small shift of the topological phase transition point.
Across this td -driven phase transition, both the parity change
and single-particle gap close happen only at the M2 point,
due to the anisotropy [26,28,29] introduced by td . From the
integer-quantized Z2 invariant, the phase transition point only
possesses a small shift in td/t , from L = 6 system to L = 18
system, in Fig. 7(a). By means of the interpolation process,
with the QMC simulation results of L = 12 and 18, we obtain
the perfect, quantized Chern number C↑ results in Figs. 7(b)
and 7(c).

Figure 8 shows the results of Z2 invariant (−1)ν [Fig. 8(a)]
and Chern number C↑ [Figs. 8(b) and 8(c)) for the case
of λI -driven topological phase transition of CKMH model
in Sec. IV B with α = 1.8,U/t = 2, from finite-size QMC
simulations of L = 6,12 systems and interpolation. The
sharp drop of integer-valued Z2 invariant (−1)ν defines the
topological phase transition, at λI /t = 0.103 ∼ 0.104 for the
L = 6 system and λI /t = 0.100 ∼ 0.101 for the L = 12
system. The positions for the finite value jump of Chern
number C↑ in L = 6 and L = 12 systems are consistent with
those of Z2 invariant (−1)ν . Across the topological phase
transition, both the single-particle gap close and the parity
change happen at the � point. Still, C↑ from QMC are not
quantized integer value according to the results in Figs. 8(b)
and 8(c).

The calculation results of Chern number C↑ after the
interpolation for the λI -driven topological phase transition
is presented in Figs. 8(b) and 8(c), from the QMC data in
L = 6 and 12 systems. With large enough IL, the integer-
valued Chern number C↑ can be obtained. Again, very
close to the transition point, the nonmonotonic behavior of
C↑ from interpolation method appears both in Figs. 8(b)
and 8(c), when IL is not large, but it disappears after we
increase IL.
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