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Topological phase transitions in free fermion systems can be characterized by the closing of single-particle
gap and the change in topological invariants. However, in the presence of electronic interactions, topological
phase transitions can be more complicated. In paper I of this series [Phys. Rev. B 93, 195163 (2016)], we
have proposed an efficient scheme to evaluate the topological invariants based on the single-particle Green’s
function formalism. Here, in paper II, we demonstrate several interaction-driven topological phase transitions
(TPTs) in two-dimensional (2D) interacting topological insulators (TIs) via large-scale quantum Monte Carlo
(QMC) simulations, based on the scheme of evaluating topological invariants presented in paper I. Across these
transitions, the defining symmetries of the TIs have been neither explicitly nor spontaneously broken. In the first
two models, the topological invariants calculated from the Green’s function formalism succeed in characterizing
the topologically distinct phases and identifying interaction-driven TPTs. However, in the other two models, we
find that the single-particle gap does not close and the topological invariants constructed from the single-particle
Green’s function acquire no change across the TPTs. Unexpected breakdown of the Green’s function formalism
in constructing the topological invariants is thus discovered. We thence classify the topological phase transitions
in interacting TIs into two categories in practical computation: Those that have noninteracting correspondence
can be characterized successfully by the topological invariants constructed from the Green’s functions, while
for the others that do not have noninteracting correspondence, the Green’s function formalism experiences a
breakdown, but more interesting and exciting phenomena, such as emergent collective critical modes at the
transition, arise. Discussion on the success and breakdown of topological invariants constructed from the Green’s
function formalism in the context of symmetry protected topological (SPT) states is presented.

DOI: 10.1103/PhysRevB.93.195164

I. INTRODUCTION

This is paper II of the series on “topological invariants
for interacting topological insulators.” In paper I of this
series [1], we have proposed an efficient scheme to evaluate
the topological invariants based on single-particle Green’s
function formalism. By introducing an interpolation process
we have successfully overcome the ubiquitous finite-size effect
of topological invariants in QMC simulations of interacting
TIs and obtained ideally quantized spin Chern number in one-
body-parameter-driven topological phase transition between
TIs (or between TI and topologically trivial insulators).
In this paper, we apply the numerical evaluation scheme
developed in paper I to wider classes of interacting TIs, where
across the interaction-driven topological phase transitions,
the defining symmetries of the topological insulators have
been neither explicitly nor spontaneously broken, but the
topological invariants constructed from the Green’s function
may experience unexpected breakdown. Thus, even though
there are cases where the interaction-driven TPTs can be suc-
cessfully captured by the Green’s function scheme, we found
that in several TPTs the topological invariants fail and provide
artificial information about the transition, as well as the phases.
We attribute such difference to the fact that in cases where
the Green’s function formalism works, the phases across the
interaction-driven TPT have noninteracting correspondence,
but in the cases where the Green’s function formalism fails,
there is no noninteracting correspondence to the phases after
the interaction-driven TPT. Consequently, calling for more

complete understanding of topological invariants in interacting
TIs is clearly manifested.

As discussed in paper I [1], for noninteracting TIs, both Z2

invariant [2,3] and spin Chern number [4] can be simply eval-
uated from Hamiltonian matrix. For example, in systems with
spatial inversion symmetry, the Z2 invariant can be calculated
as products of parity eigenvalues of all occupied bands at time-
reversal invariant (TRI) points in the Brillouin zone (BZ) [3].
Spin Chern number can be calculated by integrating the Berry
curvature over BZ [5]. For interacting TIs, numerical evalu-
ations of the topological invariants become more involved.
The generalizations of constructing topological invariants
from single-particle Green’s function [5–11] and twisted
boundary phases [12,13] have been proposed respectively,
whereas the former and in particular its zero-frequency ver-
sion, has been systematically developed in Refs. [10,14–17].
There are successful applications of the Green’s function
formalism in the one-dimensional (1D) Su-Schrieffer-Heeger
model [18], in the two-dimensional (2D) Kane-Mele-Hubbard
model with various generalizations [1,19–23], in the Bernevig-
Hughes-Zhang model [24–26], and also in real material
calculations with LDA+Gutzwiller and LDA+DMFT where
SmB6 [27] and PuB6 [28] have been predicted to be realizations
of correlated TIs from calculating Z2 invariant.

However, this is just the tip of the iceberg. The interplay
between topology and electronic interaction is expected to
lead to more complicated and richer physics. Many possible
generalizations of the concept of TI to interacting systems have
been put forward. Many exotic phenomena of interacting TIs
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have been predicted/discovered, such as topological Kondo
insulator [27–31], topological Mott insulator and fractional-
ized TI in 2D and 3D systems [32,33], interaction-reduced
classification of noninteracting TIs in the 10 distinct classes
(the tenfold way [34–36]) in 1D, 2D, and 3D systems [37–49],
and interaction-driven intrinsic topological order at the bound-
ary of TIs [43,50–57]. Besides fermionic systems, it was
proposed that bosonic systems can also form exotic states that
are similar to fermionic TIs [40,50,58–60], all of which are
generally called symmetry protected topological (SPT) states.

More recently, an exotic interaction-driven TPT in the 2D
system (the BKMH-J model below) that is fundamentally
different from the TI-to-trivial insulator transition in non-
interacting systems, was discovered with large-scale QMC
simulations [61,62]. Across the transition, fermions never
close their gap, but emergent collective bosonic modes become
critical. Thus one can view this transition as a transition
between a bosonic SPT state and a trivial featureless Mott
insulator [62,63]. Within appropriate parameter region, this
transition is described by a (2 + 1)D O(4) nonlinear sigma
model with exact SO(4) symmetry, and a topological term
at exactly � = π . It was proposed that there is a series of
such interaction-driven TPT in 2D interacting TIs [63], and
they can be studied with unbiased QMC simulations without
minus-sign problem (the BKMH-J and BKMH-V models
discussed here are among them). A natural question then arises,
namely, what will be the fate of the topological invariants
constructed from single-particle Green’s function formalism
across these exotic interaction-driven TPTs. Here, in this paper,
we provide the answer.

In this paper, employing large-scale QMC simulations, we
explore several interaction-driven TPTs in 2D TIs with neither
explicit nor spontaneous symmetry breaking. These TPTs hap-
pen in the generalized Kane-Mele-Hubbard model [1,19–21]
(GKMH), cluster Kane-Mele-Hubbard model [1,23,64]
(CKMH), the bilayer Kane-Mele-Hubbard model (BKMH)
with interlayer antiferromagnetic spin-spin interaction J

(BKMH-J ) [62], and interlayer interaction V (BKMH-V ). The
TPTs in the first two models have noninteracting correspon-
dences, and by means of the interpolation process developed
in paper I [1], we obtain the ideally quantized topological
invariants (spin Chern number) to characterize them. The
TPTs in the second two models do not have noninteracting
analogues, we found an unexpected breakdown of the Green’s
function formalism in constructing the topological invariants,
in which it is clearly seen that after the interaction-driven
TPTs, the trivial insulators [product states of SO(4) interlayer
J -singlet or V -singlet] are still incorrectly associated with
ideally quantized, nonzero spin Chern numbers if they were
constructed from single-particle Green’s function. These arti-
ficial results show the limitation of the single-particle Green’s
function formalism in monitoring interaction-driven TPTs
and highlight calling for more complete understanding and
versatile technique in studying interacting TIs.

The rest of the paper is organized as follows. In Sec. II, the
QMC results of the interaction-driven TPTs are presented,
containing the ones in GKMH and CKMH models which
have noninteracting correspondences and the Green’s function
formalism succeeds, and the others in BKMH-J and BKMH-V
models which do not have noninteracting analogues and the

Green’s function formalism fails. In Sec. III, we carry out
detailed analysis for the reason of the breakdown of spin
Chern number constructed from Green’s function formalism
in characterizing certain interaction-driven TPTs. Finally, a
summary is given in Sec. IV.

II. NUMERICAL RESULTS

In this section, we present the QMC simulation results
for the four interaction-driven TPTs with neither explicit nor
spontaneous symmetry breaking, with special focus on the nu-
merical data of topological invariants calculated from the zero-
frequency single-particle Green’s function. As for the Green’s
function formalism in constructing the topological invariants,
the interpolation process to overcome the finite size effect in
QMC simulation, and the basic introduction of the projector
QMC technique itself, the readers are referred to paper I [1].

A. Interaction-driven TPTs in GKMH model

As introduced in paper I [1], the generalized Kane-Mele-
Hubbard (GKMH) model [19–21] is given by

Ĥ = −
∑

〈i,j〉σ
tij (c†iσ cjσ + H.c.) − t3

∑

〈〈〈i,j〉〉〉σ
(c†iσ cjσ + H.c.)

+ iλ
∑

〈〈i,j〉〉αβ

vij (c†iασ z
αβcjβ − c

†
jβσ z

βαciα)

+ U

2

∑

i

(ni↑ + ni↓ − 1)2

+ J

8

∑

〈i,j〉
[(Di,j − D

†
i,j )2 − (Di,j + D

†
i,j )2], (1)

where Di,j = ∑
σ c

†
iσ cjσ . For the nearest-neighbor (NN)

hopping, we have tij = td for the NN bonds inside unit cells and
tij = t for the others, as shown in Fig. 1(a). The t3 term is the
third-nearest-neighbor hopping. The λ term represents spin-
orbit coupling (SOC) connecting the next-nearest-neighbor
sites with a complex (time-reversal symmetric) hopping with
amplitude λ. The factor vij = vji = ±1 depends on the
orientation of the two nearest-neighbor bonds that an electron
moves in going from site i to j . The U term is the on-site
Coulomb repulsion, while the J term, which only exists for
the NN bonds inside unit cells, is a faithful approximation
[62] of the antiferromagnetic (AFM) Heisenberg interaction
J

∑
〈ij〉 Si · Sj . Throughout this paper, we set t as the energy

unit. The honeycomb lattice and its BZ are shown in Figs. 1(a)
and 1(b).

Due to U (1)spin × U (1)charge � ZT
2 symmetry, the GKMH

model without interaction belongs to Z classification. Fig-
ure 1(c) shows the (td/t) − (t3/t) phase diagram for λ/t > 0,
determined from both Z2 invariant (−1)ν and spin Chern
number Cs . Here the phase boundaries is independent of
λ/t parameter as long as λ/t > 0. As we see, there are
four different phases with different spin Chern number Cs ,
in which three of them with spin Chern numbers Cs �= 0 are
topologically nontrivial and the last one with Cs = 0 is trivial.

Here we concentrate on two U -driven TPTs, which are
described by spin Chern number variation in odd or even
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FIG. 1. (a) Illustration of honeycomb lattice and all the terms in
GKMH model as Eq. (1). The unit cell is presented as the yellow
shaded rectangle, consisting of A and B sublattices denoted by black
and gray circles. The lattice is spanned by primitive vectors a1 =
(
√

3,0)a, a2 = (1/2,
√

3/2)a with a the lattice constant. The black
and blue lines denotes nearest-neighbor hopping between (t) and
inside (td ) unit cells, while the SOC term (λ) and third-neighbor
hopping (t3) are represented by red and green lines. The arrows in red
lines shows νij = +1 for the spin-up part. The on-site U interaction
and the AFM J interaction existing only inside the unit cell are
presented by green circles and magenta ellipse. (b) The BZ of GKMH
model. K1,K2 are Dirac points, while 	, M1, M2, M3 are the four
TRI points. (c) The noninteracting (td/t) − (t3/t) phase diagram for
GKMH model, and the Z2 invariant (−1)ν and spin Chern number
Cs for all the phases. The green dot (td = t,t3 = 0) and red hexagon
(td = t,t3 = 0.6t) along with λ = 0.2t and J = 1 are the chosen
parameters, based on which we identify the U -driven TPTs in Fig. 2
and Fig. 3, respectively.

integer across the transitions. The anisotropy introduced by
the J term inside the unit cell suppresses the xy-AFM long
range order, which otherwise arises in the large U limit with
J = 0 [65–68], but favors a topologically trivial dimerized
insulator phase without breaking time-reversal symmetry and
spin U (1) symmetry. The U -driven TPT with spin Chern
number variation |
Cs | = 1 can be realized by setting td =
t,λ = 0.2t,t3 = 0 [green dot in Fig. 1(c)], J = t and increasing
U . The other U -driven TPT with |
Cs | = 2 appears by
choosing td = t,λ = 0.2t,t3 = 0.6t [red hexagon in Fig. 1(c)],
J = t . For both phase transitions, the possible intervening
xy-AFM long-range order is excluded by extrapolating the
corresponding magnetic structure factor to thermodynamic
limit. Thus, there is no spontaneous symmetry breaking
during the transitions. We also need to emphasize that such
interaction-driven TPTs can exist for a fairly large range of

FIG. 2. (a) Z2 invariant (−1)ν and (b), (c) Chern number C↑
for the U -driven topological phase transition in GKMH model with
td = t,λ = 0.2t,t3 = 0 [green dot in Fig. 1(c)] and J = t from QMC
results for L = 6 and L = 12 and interpolation to large IL. We can
observe that Z2 invariant (−1)ν are integer quantized. The Chern
number C↑ obtained from finite size systems L = 6,12 acquire a
jump with finite value at the transition point, but the jump is not
ideally quantized due to finite size effect. After interpolation, based
on the L = 6,12 QMC data, the ideally quantized Chern number is
achieved.

parameters, as long as the intervening xy-AFM order is absent,
and we only demonstrate the above two representative cases.

For the TPT with |
Cs | = 1 in the GKMH model, the
results of both Z2 invariant and spin Chern number Cs are
shown in Fig. 2. The integer-quantized Z2 invariant determines
the interaction-driven TPT with Uc ≈ 4.005t for the L = 6
system and Uc ≈ 3.935t for the L = 12 system, as shown
in Fig. 2(a), which indicates a very small finite-size effect
in the topological phase transition point. We find that across
the transition both the parity changing and the single-particle
gap closing only happen at the M2 point in the BZ, which is
due to the anisotropy introduced by the J term. However, the
Chern number C↑ calculated from finite size systems L = 6,12
shown in Figs. 2(b) and 2(c) suffers from severe finite-size
effect, meanwhile the value and jump in Cs are far from ideal
quantization, even though its finite-value jumps happen at the
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transition points. We then apply the interpolation process [1] to
obtain its integer-quantized values. The results are also shown
in Figs. 2(b) and 2(c). We have carried out interpolation for
QMC results on L = 6 [Fig. 2(b)] and L = 12 [Fig. 2(c)]
systems and the interpolation lattice size IL can be as large
as IL = 400. The convergence of C↑ with IL to its expected
integer value can be clearly observed.

Combining the Z2 invariant (−1)ν and spin Chern number
Cs = C↑ in Fig. 2, the U -driven, QSH insulator to dimer
insulator transition is clearly established. In the dimer insulator
phase, spin singlets are formed on the bonds inside unit cell
due to presence of J and U interactions. Under the dimer
limit, the system is actually a direct product state, which is
topologically trivial (Cs = 0) since all the electronic degrees
of freedom are frozen, and there is no edge state even if open
boundary was created. This trivial dimer insulator is adia-
batically connected—without going through phase transition
and symmetry breaking—to the ν = 0,Cs = 0 noninteracting
trivial insulator in Fig. 1(c), while the interacting quantum
spin Hall (QSH) insulator at J = 1 and U < 4t with Cs = 1
is adiabatically connected to the ν = 1,Cs = +1 phase in
Fig. 1(c). This means that the above U -driven TPT with
|
Cs | = 1 has a noninteracting correspondence which is
the transition at the red line in Fig. 1(c), and the effect of
interactions is only to renormalize the hopping parameters.

For the TPT with |
Cs | = 2 in the GKMH model, the
results of spin Chern number Cs are shown in Fig. 3, for both
finite size QMC and interpolation results. Without interaction,
the system is a TI with Cs = −2, for which the Z2 invariant
is ν = 0 as (−1)ν = +1. With J = t and increasing U , a U -
driven TPT from Cs = −2 TI to Cs = 0 dimer insulator is
expected. Across this TPT, we observe that the single-particle
gap closing and the parity change happen at both M1 and M3

points, although the total Z2 parity does not have a variation.
Combining the jumps in both parity and Chern number C↑ with
the gap closing behavior, we determine the transition points
for this TPT as Uc ≈ 3.46(5)t for L = 6 and Uc ≈ 3.30(5)t
for L = 12, which gives a 
Uc ≈ 0.16t shift of the phase
boundary due to finite size effect in QMC.

To reach ideally quantized spin Chern number for this
U -driven TPT, the interpolation process is then applied. The
calculation results of Chern number C↑ after the interpolation
from L = 6,12 systems are also shown in Figs. 3(a) and 3(b).
Again, we achieve the ideally quantized Chern number C↑
and a sharp transition from Cs = −2 to Cs = 0 when the
interpolation lattice size IL is large enough. There are some
nonmonotonic behaviors in the results for small IL. These
behaviors are caused by the τ cutoff that we applied in
the interpolation [1], but they disappear when IL is large
enough.

Similar to the |
Cs = 1| case, this U -driven TI-dimer TPT
with |
Cs | = 2 also has noninteracting correspondence. The
Cs = −2 TI phase at J = t and U < 3.5 is adiabatically
connected to the ν = 0,Cs = −2 TI phase in Fig. 1(c), while
the ν = 0,Cs = 0 dimer-singlet insulator at J = t and U >

3.5 is adiabatically connected to the ν = 0,Cs = 0 phase in
Fig. 1(c) as well. So the U -driven TPT in Fig. 3 is exactly
the same as the transitions on the solid cyan line in Fig. 1(c).
Considering both TPTs with |
Cs | = 1 and |
Cs | = 2, it’s
interesting that the spin Chern number constructed from

FIG. 3. (a), (b) Chern number C↑ for the U -driven topological
phase transition in the GKMH model with td = t,λ = 0.2t,t3 = 0.6t

[red hexagon in Fig. 1(c)] and J = t from finite-size calculations by
QMC method for L = 6 and L = 12 systems and interpolation with
large IL. For finite size system, the Chern number C↑ acquires a
jump with finite value which is not quantized at the transition point,
after the interpolation, the convergence to the ideally quantized Chern
number is clearly seen and it sharply defines the interaction-driven
topological phase transition.

single-particle Green’s function can detect interaction-driven
TPTs, even though interaction U for both transitions is
large. Clearly, this is due to the fact that these TPTs have
noninteracting correspondences.

B. Interaction-driven TPTs in CKMH model

As introduced in paper I [1], the CKMH model [23,64] has
six lattice sites per unit cell, and the model Hamiltonian is
given by

Ĥ = −
∑

〈ij〉σ
tij (c†iσ cjσ + c

†
jσ ciσ )

+ iλI

∑

〈〈ij〉〉αβ

vij (c†iασ z
αβcjβ − c

†
jβσ z

βαciα)

+ iλO

∑

〈〈ij〉〉αβ

vij (c†iασ z
αβcjβ − c

†
jβσ z

βαciα)

+ U

2

∑

i

(ni↑ + ni↓ − 1)2 . (2)

For the nearest-neighbor (NN) hopping, we have tij = t for
the NN bonds inside unit cells and tij = td for those connecting
the six-site unit cells, as shown in Fig. 4(a). λI and λO are
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FIG. 4. (a) The CKMH model with six site unit cell. The
yellow shaded region shows the unit cell with primitive lattice
vectors a1 = (

√
3,0)a, a2 = (1/2,

√
3/2)a while the distance between

nearest-neighbor lattice sites is a/
√

3. The black solid and dotted
lines indicate the nearest-neighbor hopping terms inside and between
different unit cells. The red solid and dotted lines represent the
SOC terms inside and between different unit cells. The sign choice
for SOC hopping is the same as that in Fig. 1(a). The on-site
Coulomb repulsion is shown by the blue shaded circle. (b) The
noninteracting (td/t) − (λI /t) phase diagram for the CKMH model
with λO = 0. (c) The noninteracting α − (λI /t) phase diagram for
the CKMH model. The red square (td/t = 0.5,λI /t = 0.4) and green
dot (α = 0.5,λI /t = 0.15) are the chosen parameters based on which
the U -driven TPTs are studied in Figs. 5 and 6, respectively.

the SOC terms inside and between unit cells, respectively.
U is the on-site Coulomb repulsion. Similar to the GKMH
model, the CKMH model preserves U (1)spin × U (1)charge �

ZT
2 symmetry, which also results in Z classification. Besides,

both spatial inversion symmetry and particle-hole symmetry
are also conserved in CKMH model. The hexagonal BZ of

the CKMH model differs with that of the GKMH model in
Fig. 1(b) only up to a rescaling of reciprocal lattice vectors.

Similar to the CKMH model discussed in paper I [1], we
first set λO = 0 and only keep the SOC term λI finite. In this
case, the (td/t) − (λI/t) phase diagram of the noninteracting
CKMH model is shown in Fig. 4(b). We can observe that
two TIs exist in the middle region of the phase diagram, with
different spin Chern numbers Cs = +1 at small λI and Cs =
−2 at larger λI . Then, we keep all three hopping parameters td ,
λI , and λO finite and introduce a ratio of α = td/t = λO/λI .
The noninteracting α − (λI/t) phase diagram is presented in
Fig. 4(c).

In the CKMH model, a large on-site U interaction can
drive the system into a topologically trivial insulator without
spontaneous symmetry breaking, i.e., without AFM long range
order, provided that the value of td/t is far away from 1.
As will become clear below, these trivial insulators can be
either a plaquette valance bond solid (pVBS) or columnar
valance bond solid (cVBS) [69]. These VBSs are insulators
built from spin singlets, with either two electrons or six
electrons. In the following, we first study the U -driven TPT
with td = 0.5t,λI = 0.4t [red square in Fig. 4(b)], and then the
U -driven TPT with α = 2,λI = 0.15t [green dot in Fig. 4(c)].

We first study the U -driven TPT marked by the red square
td = 0.5t,λI = 0.4t in Fig. 4(b). Results of both Z2 invariant
(−1)ν and Chern number C↑ from the QMC data with L =
6,12 and interpolation with large IL are presented in Fig. 5.
Both the integer variation of Z2 invariant [Fig. 5(a)] and finite
value jump of Chern number C↑ [Figs. 5(b) and 5(c)] suggest
the TPT at Uc ≈ 3.085t for L = 6 system and Uc ≈ 3.125t

for L = 12 system. Across the transition, we find that both
single-particle gap closing and parity change happen at 	

point. To obtain the ideally quantized Chern number C↑,
the interpolation process is applied, as shown in Figs. 5(b)
and 5(c). The quantized C↑ results in Figs. 5(b) and 5(c) further
confirm the U -driven TPT with spin Chern number variation
|
Cs | = 1.

The topologically trivial phase after the TPT is a pVBS, in
which six electrons form a total spin singlet inside a unit cell
indicated by the yellow shaded region in Fig. 4(a). This phase
is easy to understand. With large U , the effective model of
the system becomes J − J ′ Heisenberg model in which J,J ′
are inside and between different unit cells with J ∝ t2/U

and J ′ ∝ t2
d /U , respectively. For the parameter td = 0.5t , we

arrive at approximately J ≈ 4J ′ (neglecting the contribution
of SOC hopping term), such a J − J ′ Heisenberg model
acquires a pVBS ground state on the honeycomb lattice [69].
Thus this TPT is a U -driven QSH-to-pVBS transition. What’s
more, the (−1)ν = −1,Cs = +1 QSH insulator at U < 3 in
the CKMH model is adiabatically connected to the ν = 1,Cs =
+1 gray-colored QSH region in the noninteracting phase
diagram Fig. 4(b). In contrast, the (−1)ν = +1,Cs = 0 phase
for U > 3 is adiabatically connected to the ν = 0,Cs = 0
phase in the cyan region in Fig. 4(b). Hence the TPT shown in
Fig. 5 is exactly the same as the transition along the blue solid
line in the noninteracting phase diagram Fig. 4(b).

We then study the U -driven TPT in CKMH model starting
from the green dot α = 2,λI = 0.15t in Fig. 4(c). Results
of both Z2 invariant (−1)ν and Chern number C↑ calculated
from the QMC data in L = 6,12 systems and interpolation
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FIG. 5. (a) Z2 invariant (−1)ν and (b), (c) Chern number C↑ for
the U -driven topological phase transition in the CKMH model with
td = 0.5t,λI = 0.4t [red square in Fig. 4(b)] from QMC calculation
for L = 6,12 system and interpolation with large IL. Across the TPT
point, the quantized Z2 invariant experiences an integer variation and
Chern number C↑ acquires a finite-value jump. After the interpolation
with the QMC data in L = 6,12 with large IL, the Chern number C↑
reaches its ideally quantized value.

with large IL are, respectively, shown in Figs. 6(a), 6(b),
and 6(c). Both these two topological invariants experience
jumps at Uc ≈ 4.275t for L = 6 system and Uc ≈ 4.365t for
L = 12 system, suggesting the transition point Uc ≈ 4.37t .
Across the transition, we also observe that the single-particle
gap closing and parity change happen at the 	 point. Likewise,
the interpolation scheme, applied upon the QMC data in L = 6
and L = 12 systems, gives the ideally quantized C across this
TPT, as shown in Figs. 6(b) and 6(c).

With α = 2,λI = 0.15t , at large U limit, in the effective
J − J ′ model, we now have J ′ > J , so the ground state of
CKMH model at U > 4.4 is a cVBS state [69], in which the
spin singlets form on the td bonds in Fig. 4(a) connecting
different unit cells. Similar to the CKMH model with td =
0.5t,λI = 0.4t discussed above, the (−1)ν = −1,Cs = +1
phase at U < 4.4 is adiabatically connected to the gray-
colored ν = 1,Cs = +1 QSH region in the noninteracting
phase diagram Fig. 4(c), while the cVBS phase at U > 4.4 is

FIG. 6. (a) Z2 invariant (−1)ν and (b), (c) Chern number C↑ for
the U -driven topological phase transition in the CKMH model with
α = 2,λI = 0.15t [green dot in Fig. 4(c)] from QMC calculation for
L = 6,12 systems and interpolation with large IL. Across the TPT,
the quantized Z2 invariant experiences an integer variation and Chern
number C↑ acquires a finite-value jump. After the interpolation, the
Chern number C↑ reaches ideally quantized value and demonstrates
the interaction-driven TPT.

adiabatically connected to the ν = 0,Cs = 0 phase with light
cyan color in Fig. 4(c). So this U -driven QSH-to-cVBS TPT
is the same as the transition on the blue solid line in Fig. 4(c).

C. Interaction-driven TPT in the BKMH- J model

The next two interaction-driven TPTs are very different
from those discussed above in that from here we will observe
breakdown of the topological invariants constructed from the
Green’s function formalism and find a new type of interaction-
driven TPT where the fermions are gapped throughout the TPT
but there are emergent collective bosonic modes that become
critical at the transition. The topological trivial phases after
the TPT are featureless Mott insulators, which do not have
noninteracting correspondences.

Let’s begin with the bilayer Kane-Mele-Hubbard model
with interlayer AFM interaction J [61–63]. The Hamiltonian
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λ
t J

U

Unit Cell

1
2

(a)

(b)

FIG. 7. (a) Illustration of AA-stacked honeycomb lattice and
bilayer KMH model with interlayer AFM interaction J . The four-site
unit cell is presented as the shaded rectangle. The gray and black
lines indicates the nearest-neighbor hopping t on layers 1 and 2,
respectively. The spin-orbital coupling term λ, for one spin flavor,
is shown by the red lines and arrows with νij = +1. The on-site
Coulomb repulsion U and interlayer AFM coupling J are represented
by the shaded circle and rectangle. (b) The U -J phase diagram for
BKMH-J model for λ = 0.2t . The blue and magenta lines with arrow
demonstrate the paths where the topological invariants constructed
from Green’s function are calculated in Figs. 8 and 9, respectively.

of the BKMH-J model is given as

H = −t
∑

ξ〈i,j〉,α
(c†ξiαcξjα + c

†
ξjαcξiα)

+ iλ
∑

ξ〈〈i,j〉〉,αβ

vij (c†ξiασ z
αβcξjβ − c

†
ξjβσ z

βαcξiα)

+ U

2

∑

ξi

(nξi − 1)2

+ J

8

∑

i

[(D1i,2i − D
†
1i,2i)

2 − (D1i,2i + D
†
1i,2i)

2], (3)

where ξ = 1,2 is the layer index. Inside each layer, the nearest-
neighbor hopping t and SOC term λ are the same as those in the
GKMH model. The interactions include the on-site Coulomb
repulsion U and interlayer AFM exchange coupling J , which
has the same expression as the J interaction term in Eq. (1),
except that now the J term is the interlayer one. The lattice
geometry and all the terms in the BKMH-J Hamiltonian are
presented in Fig. 7(a). Its unit cell contains four lattice sites,
and the corresponding BZ is the same as that in Fig. 1(b).

The BKMH-J model has U (1)spin × [U (1) × U (1)]charge �

ZT
2 symmetry. Here the two U (1) charge symmetries corre-

spond to the charge conservations in each layer. The detailed
U -J phase diagram of the BKMH-J model has already been
carefully studied in Ref. [62] by the QMC simulations. With
finite λ and no interaction U = J = 0, the system is a TI with
spin Chern number Cs = +2 and Z2 invariant (−1)ν = +1.
With interaction, at large U limit with small J , the system
enters the xy-AFM phase [19,62,67]. With large J , interlayer
dimer-singlet insulator is naturally the ground state of the
BKMH-J model. The U -J phase diagram determined from
the QMC simulations is presented in Fig. 7(b) for λ = 0.2t .

As demonstrated in Refs. [62,63], the BKMH-J model
with U = 0 has an SO(4) � SU (2) × SU (2) symmetry. To
see it more clearly, we define fi↑ = (c1i↑,(−1)ic†2i↑)T and

fi↓ = ((−1)ic1i↓,c
†
2i↓)T , then the SO(4) symmetry of BKMH-

J model at U = 0 becomes explicit, since we can rewrite the
model Hamiltonian with P̂i = 1

2 (−1)i
∑

σ f
†
iσ iτ 2(f †

iσ )T as

H =
∑

i,j,σ

χσ (f †
iσ tij fjσ + H.c.) − J

4

∑

i

(P̂ †
i P̂i + P̂i P̂

†
i ), (4)

where we have χσ = (−1)σ , and tij = t for hoppings on the
NN bonds and tij = iλ for SOC on the next-nearest-neighbor
(NNN) bonds. The Hamiltonian in Eq. (4) is invariant under the
transformation: fiσ → Uσfiσ with Uσ ∈ SU (2) for both σ =
↑,↓, so the BKHM-J model at U = 0 indeed has the SO(4) �
SU (2) × SU (2) symmetry. This SO(4) symmetry results in
the degeneracy of interlayer spin-singlet s-wave pairing order
and the interlayer xy-AFM order [62,63], such that both the
interlayer spin-singlet s-wave pairing gap and the interlayer
spin gap close at the J -driven TPT point denoted by the red
point in Fig. 7(b).

Here we focus on the J -driven TPT at U = 0, as denoted
by the blue line with arrow in Fig. 7(b). From the QMC
results in Ref. [62], at the J -driven TPT point, both spin
and charge gap close but the single-particle gap remains
open, i.e., the fermionic degree of freedom is gapped out
throughout the entire J axis. This is in sharp contrast with the
interaction-driven TPTs in both GKMH (Sec. II A) and CKMH
(Sec. II B) models, as well as those one-body-parameter-driven
TPTs discussed in paper I [1]. This unique property means that
this TPT has no free fermion correspondence.

What is the situation if we still perform the spin Chern
number calculation based on single-particle Green’s function
as in GKMH (Sec. II A) and CKMH (Sec. II B) models? At
U = 0 with increasing J , the QMC results of Chern number
C↑ for L = 6 and L = 12,18 systems and the interpolation
results with large IL are presented in Figs. 8(a) and 8(b). As
expected, the L = 6, 12, and 18 results suffer severe finite-size
effect and C↑ is much smaller than expected Cs = +2 even
for very small J . After the interpolation with large IL, the
ideally quantized C↑ are obtained in both Figs. 8(a) and 8(b),
but a very unexpected behavior appears: The C↑ constructed
from single-particle Green’s function do not change across this
J -driven TPT. Correspondingly, we also observe that there is
no parity change in any of the TRI points, and we find that
the single-particle gap is also finite at the transition point,
but it is the interlayer singlet pairing gap and interlayer spin
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FIG. 8. Chern number C↑ for the J -driven TPT in the BKMH-J
model with λ = 0.2t,U = 0 [the blue line with arrow in Fig. 7(b)]
from QMC with L = 6, 12 and 18 and interpolation process, using
the QMC data in (a) L = 6 and (b) L = 12 systems. The ideally
quantized Chern number C↑ in large IL cases indicate that it has no
variation across the J -driven TPT.

gap that close at the critical point Jc � 3.73, as shown in
Ref. [62]. From Fig. 8, it’s really obscure to determine whether
there is a J -driven Cs = +2 to Cs = 0 transition. Yet, we
know that when J > Jc, the system is inside the interlayer
dimer-singlet insulator phase without any edge states [62], as
it is a direct product state of interlayer J singlets, under large-J
limit. This seemingly contradicting result actually points out
that the spin Chern number constructed from Green’s function
fails in detecting the J -driven TPT in the BKMH-J model.
Actually, the same results of spin Chern number have also
been obtained in Ref. [61] with finite frequency single-particle
Green’s function. This failure of spin Chern number is closely
related to the interlayer dimer-singlet insulator phase, which
has no free fermion correspondence, as well as the special
nature of this TPT, i.e., it is the collective bosonic modes that
become critical at the transition whereas the fermionic degree
is always gapped [62].

To further illustrate the breakdown of the spin Chern
number constructed from Green’s function formalism in the
BKMH-J model, we also calculate C↑ inside the interlayer
dimer-singlet insulator phase at finite U . In the U -J phase
diagram presented in Fig. 7(b), we choose a path at λ =
0.2t,U = t with J ∈ [3.3,5.0] [the magenta path in Fig. 7(b)].
The Chern number C↑ calculated directly from L = 12 QMC
simulation and after the interpolation process are presented

FIG. 9. Chern number C↑ for the finite-U inside the SO(4) J -
singlet insulator phase in BKMH-J model with λ = 0.2t,U = 1
[the magenta line with arrow in Fig. 7(b)] from both finite-size
QMC calculation and interpolation process, using the QMC data
of L = 12 systems. Chern number C↑ converges to C↑ = +2 with
increasing IL.

in Fig. 9. Again, for the finite-U region inside the interlayer
dimer-singlet insulator phase, spin Chern number Cs defined
from single-particle Green’s function possesses a Cs = +2
value, which is indeed unexpected. Regardless of U = 0 or
U �= 0, the interlayer dimer-singlet insulator phase should be
topologically trivial (which has been confirmed by the absence
of edge states from strange correlator measurements in QMC
[62]). So now, it is clear that the spin Chern number cannot
correctly describe this J -driven TPT in the BKMH-J model.

The interlayer dimer-singlet insulator phase in the BKMH-
J model is a Mott insulator without any spontaneous
symmetry breaking, and the J -driven TPT is TI-to-Mott-
insulator transition. Furthermore, the interlayer dimer-singlet
insulator phase cannot be adiabatically connected to any
noninteracting band insulator without phase transition and
symmetry breaking. This is in sharp contrast with the cases
in both Sec. II A and Sec. II B, where the dimer insulator
phase in the GKMH model and pVBS, cVBS phases in the
CKMH model after the U -driven TPTs have their respective
noninteracting correspondences. At first glance, one might
think that at the J → ∞ limit, the J -singlet phase is also
adiabatically connected to a noninteracting insulator with large
interlayer hopping tz. Surely, a large tz can give rise to a
trivial band insulator. However, these two phases actually
have different charge symmetries, which are U (1) × U (1) for
the J -singlet phase and only a single U (1) for the large-tz
insulator phase, respectively. According to this analysis, the
nonexistent adiabatic connection to a band insulator is the
essential reason for the breakdown of spin Chern number
to capture the interlayer dimer-singlet insulator phase in the
BKMH-J model.

D. Interaction-driven TPT in the BKMH-V model

The BKMH-J model is not a special case for the breakdown
of the Green’s function formalism of topological invariants.
As proposed in Ref. [63], there are a series of interaction-
driven TPT in 2D interacting TIs, where the single-particle gap
does not close at the transition, and there is no noninteracting
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V t0
TI Mott Insulator
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2.80cV t ≈

FIG. 10. (a) Illustration of the BKMH-V model. All the terms in
Eq. (5) are identical to those in Eq. (3) except the interlayer AFM
interaction J is replaced by the interlayer electron repulsion V . (b)
The phase diagram of BKMH-V model. V -driven TPT from 2D TI
to the featureless Mott insulator is at Vc/t � 2.80.

correspondence for both the TPT itself and the topological
trivial insulator phase after the transition. The bilayer Kane-
Mele-Hubbard model with interlayer interaction V (BKMH-V
model) in this section is the second explicit example.

The Hamiltonian is given as

H = −t
∑

ξ〈i,j〉,α
(c†ξiαcξjα + c

†
ξjαcξiα)

+ iλ
∑

ξ〈〈i,j〉〉,αβ

vij (c†ξiασ z
αβcξjβ − c

†
ξjβσ z

βαcξiα)

+V
∑

i

(c†1i↑c2i↑c
†
1i↓c2i↓ + c

†
2i↓c1i↓c

†
2i↑c1i↑), (5)

where both the lattice geometry and the model parameters
are depicted in Fig. 10(a). The V interaction is actually
pair hopping from one layer to the other, which is one
of the most important terms from second quantization of
Coulomb interaction. At first glance, this model preserves
[U (1) × U (1)]spin × U (1)charge � ZT

2 symmetry. Here the two
U (1) spin symmetries correspond to the Sz conservations in
each layer. A more careful analysis reveals that this model also
preserves the SO(4) � SU (2) × SU (2) symmetry similar to
the BKMH-J model at U = 0 in Sec. II C, since the model
Hamiltonian in Eq. (5) can also be written by the f fermions
as

H =
∑

i,j,σ

χσ (f †
iσ tij fjσ + H.c.) − V

2

∑

i

(P̂i P̂i + P̂
†
i P̂

†
i ), (6)

where χσ , tij , and P̂i are all the same as those in Eq. (4).
This Hamiltonian is also invariant under the transformation as
fiσ → Uσfiσ with Uσ ∈ SU (2) for σ = ↑,↓, independently,
so the BKHM-V model indeed has the SO(4) � SU (2) ×
SU (2) symmetry.

At V → ∞ limit, one can actually obtain the exact many-
body ground state wave function of Eq. (6), which is a direct

product state as

|�g〉 =
∏

i

|�i〉 =
∏

i

1√
2

(c†1i↑c
†
1i↓ − c

†
2i↑c

†
2i↓)|0〉. (7)

This ground state |�g〉 is indeed a featureless Mott insulator. It
does not break the underlying SO(4) symmetry of the Hamil-
tonian explicitly or spontaneously, as all the bilinear fermion
condensations vanish. For example, one can easily verify
that 〈�g|c†ξiαcηjβ |�g〉 = 1

2δξηδij δαβ and 〈�g|c†ξiαc
†
ηjβ |�g〉 =

〈�g|cξiαcηjβ |�g〉 = 0. What’s more, |�g〉 does not have
noninteracting correspondence either since one can simply
observe the double occupancy of |�g〉 is 〈�g|n1i↑n1i↓|�g〉 =
〈�g|n2i↑n2i↓|�g〉 = 1

2 , whereas the double occupancy for a
noninteracting system is 1

4 . Hence, the ground state |�g〉 in
Eq. (7) for the model in Eq. (5) under V → +∞ limit is a
featureless Mott insulator.

Our QMC results of the BKMH-V model reveal that there
is a V -driven TPT from TI to Mott insulator at Vc/t � 2.82.
The corresponding phase diagram is presented in Fig. 10(b).
We also confirm that the single-particle gap does not close
across this TPT. Instead, the charge 2e excitation gap,
corresponding to the on-site spin-singlet s-wave pairing order

̂

†
i = 1√

2
(c†1i↑c

†
1i↓ − c

†
2i↑c

†
2i↓), closes at the transition point.

Both the single-particle gap and the on-site pairing gap across
the topological phase transition for the BKMH-V model are
presented in Appendix. After the transition, the system enters
into a featureless Mott insulating phase.

To demonstrate the breakdown of the Green’s function
formalism across this V -driven TPT, we calculate the spin
Chern number Cs for the BKMH-V model. The results of
C↑ from QMC simulations of L = 6,12 are presented in
Figs. 11(a) and 11(b). Again, we can observe that C↑ varies
continuously without finite-value jump for both L = 6 and
L = 12 systems. By further applying the interpolation process
to the data of L = 6,12 systems, we obtain the integer-
quantized Chern number C↑, also presented in Figs. 11(a)
and 11(b). Same as the one in the BKMH-J model, the Chern
number C↑ acquires no change across the V -driven TPT,
since the SO(4) V -singlet insulator at V > Vc is a product
state with all the electron degrees of freedom frozen, i.e., no
edge states. The ideally quantized spin Chern number inside
the featureless Mott insulator phase is another manifestation
of the failure of the topological invariants constructed from the
Green’s function formalism.

III. HOW THE SPIN CHERN NUMBER WORKS

Based on the above QMC results in Secs. II A, II B, II C,
and II D on interaction-driven topological phase transitions,
we can now arrive at some basic understanding on the reason
why the spin Chern number constructed from single-particle
Green’s function works well in some interacting topological
quantum phases while it experiences breakdown in the others.

A. Working condition of the spin Chern number

In the interaction-driven TPTs in GKMH (Sec. II A) and
CKMH (Sec. II B) models, all the phases can be adiabati-
cally connected to the corresponding noninteracting insulator
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FIG. 11. Chern number C↑ for the V -driven TPT in the BKMH-V
model with λ = 0.2t from QMC and interpolation results using the
QMC data in (a) L = 6 and (b) L = 12 systems. The ideally quantized
Chern number C↑ in large IL cases indicate that C↑ has no variation
across this topological phase transition.

phases in the same model Hamiltonian, and at the transitions,
the single-particle gap closes, just like in the corresponding
noninteracting cases. In these cases, the spin Chern number
can be successfully applied to characterize topologically
distinct phases and the TPTs. The underlying physics goes as
follows. For the spin Chern number Cs constructed from the
single-particle Green’s function to acquire a change of integer
number, the zero-frequency single-particle Green’s function
must possess either a pole or a zero [1]. The appearance of a
pole corresponds to the single-particle gap closing, as observed
in all the topological phase transitions in free fermion systems.
The appearance of a zero in the single-particle Green’s function
across TPT has been discussed and found in interacting TIs
[18,61,70]. Here, we have confirmed that the single-particle
gap close at the U -driven TPTs in both GKMH and CKMH
models. As for the J -driven TPT in BKMH-J and V -driven
TPT in BKMH-V models, we find that across the transition,
the single-particle gap keeps finite and there is neither pole nor
zero appearing in the zero-frequency single-particle Green’s
function.

For a noninteracting TI with finite spin Chern number
Cs , its spin Hall conductivity is σ

spin
xy = Cs

e2

h
. For the free

fermion system, the spin Chern number can be calculated
from the single-particle Green’s function [5–7,9]. For an
interacting TI with finite Cs , if it is adiabatically connected
to a noninteracting TI without phase transition and symmetry
breaking, then this interacting TI should have exactly the

same physical spin Hall conductivity. So we can conclude that
in interacting systems if both phases across a TPT (driven
by interaction or one-body-parameter and without explicit
or spontaneous symmetry breaking) can be adiabatically
connected to their noninteracting correspondences, then the
spin Chern number calculated from single-particle Green’s
function can always characterize them and the transition.

B. Breakdown of the spin Chern number constructed
from the Green’s function

The reason for the breakdown of the spin Chern number
constructed from the Green’s function in the BKMH-J
(Sec. II C) and BKMH-V (Sec. II D) models is twofold.
First, the interlayer dimer-singlet insulator in BKMH-J model
and the featureless Mott insulator in BKMH-V model after
the transitions are Mott insulators without noninteracting
correspondence. Second, the critical fluctuation associated
to the transition is collective and bosonic instead of single-
particle and fermionic.

Across the transition, neither pole nor zero of single-particle
Green’s function appears, which results in the same integer
values of the spin Chern number. In the interlayer dimer-singlet
insulator and featureless Mott insulator phase, as shown in
Figs. 8, 9, and 11, the spin Chern number constructed from the
single-particle Green’s function is equal to Cs = +2, which is
an artifact of the Green’s function formalism.

We can understand such an artifact from the perspective
of symmetry-protected topological (SPT) phases [58,59].
An important property of SPTs is that they only have
short-range entanglement and can be adiabatically connected
to some direct product state (with the same topological
invariant) without going through symmetry breaking and
phase transitions. The simplest product state for noninteracting
fermion systems is the Slater determinant, i.e., a product
state of free fermion wave function in momentum space. The
noninteracting correspondences of the trivial insulators after
the U -driven TPTs in GKMH and CKMH models are such
Slater determinants. However, for BKMH-J and BKMH-V
models, although the interlayer dimer-singlet insulator and
featureless Mott insulator at large J and V can be adiabatically
connected to the product states at the limit of J → +∞ and
V → +∞, the wave-function basis of such product states are
singlets consisting of two electrons [71], instead of the single-
electron wavefunction used to construct the Slater determinant.
Thus, the interlayer dimer-singlet insulator and featureless
Mott insulator in BKMH-J and BKMH-V models are not
adiabatically connected to free-fermion Slater determinants.
In the cases of BKMH-J and BKMH-V models, even if
one constructs the topological invariants from single-particle
Green’s function formalism, the obtained spin Chern numbers
do not correspond to the physical spin Hall conductivity. The
physical spin Hall conductivity, on the other hand, should be
carried by the emergent low-energy bosonic modes, which
become critical at these interaction-driven TPTs [62,63].

IV. SUMMARY

By means of large-scale QMC simulations, we have
investigated several interaction-driven topological phase
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transitions in 2D interacting TIs without explicit or spon-
taneous symmetry breaking. We further characterize these
TPTs via the topological invariants across these interaction-
driven TPTs, including Z2 invariant and spin Chern number
constructed from single-particle Green’s function at zero
frequency. We find that the spin Chern number successfully
detects the interaction-driven TPTs in GKMH (Sec. II A) and
CKMH (Sec. II B) models, while it experiences unexpected
breakdown in BKMH-J (Sec. II C) and BKMH-V (Sec. II D)
models. To understand such breakdown, we have analyzed
the working condition for spin Chern number constructed
in Green’s function formalism, and discuss why it fails for
the interlayer dimer-singlet insulator and featureless Mott
insulator phases in BKMH-J and BKMH-V models. It turns
out that the spin Chern number constructed from single-
particle Green’s function can only characterize interacting
TIs which can be adiabatically connected to noninteract-
ing insulators, for which the spin Chern number corre-
sponds to the physical spin Hall conductivity. For interacting
TIs without noninteracting correspondence, the spin Chern
number constructed from single-particle Green’s function
is artificial, as demonstrated in BKMH-J and BKMH-V
models.

In terms of SPT, the interlayer dimer-singlet insulator and
the featureless Mott insulator in BKMH-J and BKMH-V
models, where the spin Chern number experiences breakdown,
are indeed SPT trivial states. Actually, the interaction-driven
TPTs in these models are of bosonic nature due to the
gapped fermion degree of freedom. Our work highlights
the important issue of how to characterize the topological
aspects of SPT states in generally interacting fermion systems
which cannot be adiabatically connected a noninteracting band
insulator. As a result, we expect new and more versatile
techniques to correctly describe the topological invariants
in such interacting states. Recent progress in calculating
entanglement spectrum [72,73], entanglement entropy [74],
and directly probing the edge states via strange correla-
tion [68,75] in interacting TIs seem to provide promising
directions.
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FIG. 12. (a) Single-particle gap 
sp(K) and (b) charge gap 
c(	)
for the BKMH-V model with λ = 0.2t for chosen V/t = 2.5 ∼ 3.1.

sp(K) keeps finite across the TPT, while 
c(	) experiences a
closing and reopening at Vc/t � 2.80 after the extrapolation to
thermodynamic with third-order polynomial in 1/L.

APPENDIX: EXCITATION GAPS ACROSS
THE TPT IN THE BKMH-V MODEL

For BKMH-V model in Eq. (5), we have mentioned that the
single-particle gap keeps finite while the charge gap (on-site
pairing gap) closes and reopens across the topological phase
transition, at Vc/t � 2.80. Here, we present numerical data of
both gaps for the BKMH-V model.

FIG. 13. Structure factor P (	)/N and its finite-size extrapolation
over 1/L by cubic polynomials for the on-site spin-singlet s-wave
superconductivity order in Eq. (A1) for L = 3,6,9,12 with V/t =
2.5 ∼ 3.1. From the results, the superconductivity order is always
short-ranged in the BKMH-V model.
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FIG. 14. Original data of [P (	,τ )]11 at topological phase tran-
sition point V/t = 2.80 for BKMH-V model systems with L =
3,6,9,12, under semilogarithmic plot.

The single-particle gap is extracted from the imaginary-
time single-particle Green’s function in reciprocal space as
Gσ (τ,k), which is a 4 × 4 Hermitian matrix for the BKMH-
V model. At the τ → +∞ limit, we have [Gσ (τ,k)]αα ∝
Zke

−τ
sp(k) with α = 1,2,3,4 indicating sublattices, and

sp(k) is the single-particle gap at k point for the system. As
for the on-site pairing gap, we define the spin-singlet s-wave
pairing order


̂
†
iα = 1√

2
(c†1iα↑c

†
1iα↓ − c

†
2iα↑c

†
2iα↓), (A1)

where α = 1,2 stands for A,B sublattices respectively and
integer i represents the unit cells of the bilayer model. One
can observe that 
̂

†
iα represents local pairing order on vertical

bonds between layers. Then we can obtain the dynamic
correlation function in reciprocal space for such on-site pairing

order as

[P (Q,τ )]αβ = 1

N

∑

ij

eiQ·(Ri−Rj )〈Tτ [
̂†
iα(τ )
̂jβ(0)]〉, (A2)

where Q = 	 is the ordering vector for the BKMH-V model
and N = L2 is the number of unit cells for a L × L system.
Then we can extract the corresponding charge gap 
c(Q) under
τ → +∞ limit via [P (Q,τ )]αα ∝ RQe−τ
c(Q).

Both the numerical results of single-particle gap 
sp(K)
and charge gap 
c(	) across the TPT in the BKMH-V model
with λ = 0.2t are shown in Fig. 12. The single-particle gap

sp(K) [Fig. 12(a)] keeps finite with a large value at the L →
∞ limit, which is about 0.9t at the topological phase transition
point. However, the charge gap 
c(	) acquires a closing and
reopening across the TPT around Vc/t � 2.80.

To exclude the possible stepping in of long-range on-
site spin-singlet s-wave superconductivity order, we have
calculated the structure factors P (	) for the order in Eq. (A1)
for L = 3,6,9,12 systems. The result and its finite-size
extrapolation over 1/L to thermodynamic limit are shown in
Fig. 13. One can observe that the superconductivity order is
always short-ranged in the BKMH-V model. Combining with
the excitation gaps result, it’s clear that the pairing gap closing
and reopening at the topological phase transition point is an
intrinsic property of the model.

We emphasize that the original data of [P (	,τ )]11, via
which we extract the charge gap 
c(	), has quite high quality.
For example, we present [P (	,τ )]11 data for V/t = 2.80 in
BKMH-V model systems with L = 3,6,9,12 in Fig. 14 with
semilogarithmic plot. In Fig. 14, we can see that the data of
ln[P (	,τ )]11 is perfectly linear with imaginary-time τ . Thus,
the closing of charge gap 
c(	) around Vc/t � 2.80 at the
V -driven topological phase transition point in the BKMH-V
model, as shown in Fig. 12(b), is sufficiently solid.
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