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The sign problem is a major obstacle in quantum Monte Carlo simulations for many-body fermion
systems. We examine this problem with a new perspective based on the Majorana reflection positivity and
Majorana Kramers positivity. Two sufficient conditions are proven for the absence of the fermion sign
problem. Our proof provides a unified description for all the interacting lattice fermion models previously
known to be free of the sign problem based on the auxiliary field quantum Monte Carlo method. It also
allows us to identify a number of new sign-problem-free interacting fermion models including, but not
limited to, lattice fermion models with repulsive interactions but without particle-hole symmetry, and
interacting topological insulators with spin-flip terms.
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Introduction.—A major difficulty in the study of strongly
correlated systems is the exponentially large many-body
Hilbert spaces, which are usually difficult to handle by
analytic methods. Unbiased numerical methods are therefore
indispensable. Among various numerical approaches, the
quantum Monte Carlo (QMC) method can yield accurate
results by taking stochastic but importance sampling over
very small but representative portions of the many-body
Hilbert space. An advantage of the QMC method is that it is
scalable with the system size if there is no sign problem.
Unfortunately, the sign problem exists in most interacting
fermion and frustrated quantum spin systems.
The origin and manifestation of the sign problem vary in

different QMC algorithms. A frequently used algorithm for
lattice fermions is the auxiliary field determinantal method
[1,2], in which the interaction terms are decoupled by the
Hubbard-Stratonovich (HS) transformation into a superpo-
sition of quadratic fermion terms in the background of
imaginary-time-dependent auxiliary fields. The fermionoper-
ators are then integrated out, yielding a fermion determinant
that serves as the statistical weight for each HS field
configuration. The sign problem emerges because this deter-
minant is not always positive. In particular, the average value
of the signs of these determinants often becomes exponen-
tially small in the thermodynamic limit at low temperatures.
This leads to uncontrollable statistical errors and ruins the
QMC simulations. Although a great deal of effort has been
made to solve, at least partially, this problem [3–12], a general
solution is still lacking [13].
For certain classes of lattice fermion models, QMC

simulations are proved to be sign-problem free. Familiar
examples include the positive-U Hubbard model on a
bipartite lattice at half filling [2], the negative-U Hubbard
model [2,14], and their SU(2N) generalizations [15–17]. The

half-filled Kane-Mele-Hubbard model of interacting topo-
logical insulators is also sign-problem free [18,19]. For these
models, after suitable HS decompositions with the Kramers
time-reversal (TR) invariance [20,21], each determinant is
factorized into a product of two complex conjugate determi-
nants defined in two subspaceswith opposite spins.Anumber
of nonfactorizable models, such as the multicomponent and
multiband Hubbard models [22–24], and the negative-U
Hubbard models with spin-orbit coupling [25,26], can
also be shown to be free of the sign problem. In these
systems, instead of the determinant itself being factorizable,
the eigenvalues of the corresponding matrix are complex-
conjugate paired, and real eigenvalues are doubly degenerate;
thus, the determinant is non-negative valued. Recently,
the Majorana HS decomposition was introduced in QMC
simulations [27,28]. It is applied to spinless fermion
models with repulsive interactions at the particle-hole
symmetric point. For some of the above mentioned models,
the positivity of fermion determinants can be understood
from the algebraic structure of the orthogonal split group
OðN;NÞ [29,30].
The sign structures of the ground state wave functions of

quantum lattice models are closely related to the reflection
positivity of the Hamiltonian. The concept of reflection
positivity was first introduced in the context of quantum
field theory [31]. Its main application in condensed matter
physics started from Lieb’s work on the spin reflection
positivity in the Hubbard model [32,33], and was recently
applied to systems with Majorana reflection positivity
[34–36]. For interacting fermion systemswith these reflection
positivities, it can be shown that their ground state wave
functions are non-negative under certain suitably defined
bases. However, these basis states are often nonlocal in real
space, which is inconvenient for use in QMC simulations.
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In this Letter, we explore the QMC sign problem of lattice
fermions from the perspective of Majorana reflection pos-
itivity and Majorana Kramers positivity defined below. We
use the Majorana fermion representation, because it allows
any fermionic systems, whether fermion number conserving
or not, to be treated on an equal footing. In the framework of
the determinantalQMCalgorithm, the statisticalweight in the
sampling is replaced by the trace of exponentials of fermion
bilinears resulting from the HS decomposition, which is
evaluated as a determinant.AHSdecomposition is said to be a
“positive decomposition” if all the generated determinants are
positive semidefinite. Below, we show that there are at least
two kinds of positive decompositions that lead to QMC
simulations free of the sign problem.We dub themMajorana
reflection positive decomposition and Majorana Kramers
positive decomposition, respectively. These do not exhaust
all positive decompositions. They do, however, cover nearly
all the interacting lattice fermion models that are previously
known to be sign-problem free. From these decompositions,
we also identify a number of new models that are free of the
sign problem.
Let us begin with the determinantal QMC algorithm for a

general latticemodel ofDirac fermions. TheHamiltonianH is
a sumof a quadratic kinetic energy termH0 and an interaction
term of four-fermion operators HI [1,2,37]. After the HS
decomposition, the partition function Z is expressed as

Z ¼ Tre−βH ¼ lim
M→∞

X

p

ρp; ð1Þ

ρp ¼ Tr
YM

k¼1

e−τH0e−τHIðηkÞ; ð2Þ

where β is the inverse temperature, τ ¼ β=M is the discrete
time interval, and p ¼ fηMðfigÞ;…ηkðfigÞ;…; η1ðfigÞ;
i ¼ 1;…; Ng represents a time sequence of the HS-field
distributionswithN the lattice size. Thedecoupled interaction
HIðηkÞ contains only two-fermion terms, and depends on the
time-step size τ and the spatial distribution of the HS fields
ηkðfigÞ. The value of ρp can be determined by tracing out the
fermion degrees of freedom in H0 and HI. The formula for
determining ρp is given in the Supplemental Material,
Sec. I [38].
At each lattice site, a Dirac fermion can be represented

using two Majorana fermions. Thus, the original N Dirac
fermions can be expressed in terms of 2N Majorana
fermions. We divide these 2N Majorana fermions into

two groups, γð1Þi and γð2Þi (1 ≤ i ≤ N), and define their
Clifford algebra operators as [36]

Γþ
α ¼ i½m=2�γð1Þi1

…γð1Þim
; Γ−

α ¼ ð−iÞ½m=2�γð2Þi1
…γð2Þim

; ð3Þ
where α represents a sequence fi1; i2;…; img with
1 ≤ i1 < � � � < im ≤ N, and ½x� equals the largest integer
less than or equal to x. Γ�

α is said to be even (odd) if m is
even (odd). The reflection operation θ is defined as an

antilinear automorphism map: θðiÞ ¼ −i, θðγð1Þi Þ ¼ γð2Þi ,

and θðγð2Þi Þ ¼ γð1Þi . Clearly, θ2 ¼ 1 and θðΓ�
α Þ ¼ Γ∓

α . A
bosonic operator O is Majorana reflection symmetric if
θðOÞ ¼ O, and is Majorana reflection positive if it further
satisfies the condition [34,35]

Tr½Q∘θðQÞO� ≥ 0; ð4Þ
where Q ¼ P

αcαΓþ
α is an arbitrary operator in the algebra

spanned by the Γþ matrices with the cα’s the complex
coefficients, and Q∘θðQÞ ¼ P

αβcαc
�
βΓþ

α Γ−
β .

In the Majorana representation, the bilinear terms in the
expression of ρp, including H0 and HIðτkÞ, each can be
expressed as

Hbl ¼ γTVγ; ð5Þ

where γT ¼ ðγð1Þi ; γð2Þi ÞT and V is a 2N × 2N antisymmetric
matrix. V is the coefficient matrix of H0 or HIðτkÞ in the
Majorana representation.
Majorana reflection positive decomposition.—V is

defined as a Majorana reflection positive kernel if it can
be represented as

V ¼
�

A iB

−iBT A�

�
; ð6Þ

where A and B are N × N matrices. A is complex anti-
symmetric satisfying AT ¼ −A. B ¼ B† is a Hermitian
matrix, which is either positive semidefinite or negative
semidefinite. (B can be either positive or negative semi-

definite because, after a gauge transformation γð2Þj → −γð2Þj ,
B becomes −B and A remains unchanged.) A HS decom-
position satisfying this condition will be called a Majorana
reflection positive decomposition.
Theorem 1: ρp is positive semidefinite if all the

coefficient matrices of the bilinear fermion terms in
Eq. (2) are Majorana reflection positive kernels.
This theorem can be proved in two steps. The first is to
show that if V is a Majorana reflection positive kernel, then
expð−τγTVγÞ is reflection positive. A proof on this was
actually already given in Ref. [35]. This means that ρp is
just the trace of a product of a series of reflection positive
operators determined by the exponentials of the bilinear
fermion operators H0 and HIðηkÞ in Eq. (2). The second
step is to show that the product of a series of reflection
positive operators is also reflection positive and its trace is
non-negative. A proof of this, as a lemma, is given in the
Supplemental Material, Sec. II [38]. Combining the above
results, we have ρp ≥ 0. Thus, the system is sign-problem
free in QMC simulations if all the kernels in Eq. (2) are
Majorana reflection positive. The Majorana reflection can
be regarded as a generalization of the PT transformation
discussed in Refs. [39,40]. However, this symmetry alone
does not leads to the positivity of ρp. For example, if B is
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not positive semidefinite, expð−τγTVγÞ remains Majorana
reflection symmetric, but is no longer Majorana reflection
positive. In this case, ρp is not always positive definite.
Despite its seeming simplicity, Theorem 1 covers all

two- and higher-dimensional interacting fermion models
previously known to be sign-problem free in determinantal
QMC simulations, without imposing explicitly the TR
invariance in the HS decomposition. These include the
Hubbard model and its variations [2,18,19], the interacting
spinless fermion model [27,28], and other models whose
coefficient matrices in the Dirac fermion representation
have the orthogonal split OðN;NÞ group algebra structure
[29]. Below, we discuss two such examples, one for
spinless fermions and the other for spin-1=2 systems,
and prove they are sign-problem free in new parameter
regions unknown before.
The first example is an interacting spinless fermionmodel

defined on a bipartite lattice. The model Hamiltonian is

H0 ¼ −
X

i;j∈A
c†i B1;ijcj þ

X

i;j∈B
c†i B2;ijcj

þ
X

i∈A;j∈B
ðc†i Fijcj þ H:c:Þ; ð7Þ

HI ¼
X

ij

Vij

�
ni −

1

2

��
nj −

1

2

�
; ð8Þ

where ni ¼ c†i ci. B1 and B2 are real symmetric matrices,
both of which are positive semidefinite (or, equivalently,
negative semidefinite). F is an arbitrary real matrix. Vij ≥ 0

if i and j belong to different sublattices, and Vij ≤ 0

otherwise.
HI can be decomposed into a bilinear form by taking the

following HS transformation:

e−τVijðni−1
2
Þðnj−1

2
Þ ¼ 1

2
e−ðτVij=4Þ

X

η¼�
eηλijðc

†
i cjþνc†j ciÞ; ð9Þ

where ν ¼ −1 if i and j belong to the same sublattices
and ν ¼ þ1 otherwise. In Eq. (9), η is a discrete local HS
field, and λij is determined by the equation

ffiffiffi
ν

p
λij ¼

cosh−1 expðτVij=2Þ.
It is simple to verify that both H0 and the decoupled

interaction terms in the exponent of Eq. (9) can be cast into
the form

H0
bl ¼

X

i;j∈A
c†i ðCij − B1;ijÞcj þ

X

i;j∈B
c†i ðDij þ B2;ijÞcj

þ
X

i∈A;j∈B
ðc†i Fijcj þ H:c:Þ; ð10Þ

where C and D are real antisymmetric matrices satisfying
C ¼ −CT and DT ¼ −D. In the Supplemental Material,
Sec. III. A [38], it is shown that the matrix kernel of H0

bl is
Majorana reflection positive. Therefore, the interacting

spinless model H0 þHI is sign-problem free, according
to Theorem 1.
If both B1 and B2 vanish, the above interacting fermion

Hamiltonian defined on the honeycomb lattice is the model
studied in Refs. [27–29]. It can be extended to include the
on-site staggered chemical potential term, and remains
sign-problem free [29,41]. This is equivalent to only
keeping the diagonal terms of B1;2. Generally speaking,
in the presence of B1;2, Eqs. (7) and (8) do not possess the
particle-hole symmetry. For example, consider the case
with B1;ij ¼ μδij if i ∈ A and j ∈ A, and B2;ij ¼ 0, which is
equivalent to applying a uniform chemical potential μ=2
and a staggered on-site potential ð−Þiμ=2 to the system. In
the weak coupling limit, the single-particle spectrum splits
into two bands and the band gap is approximately equal to
μ=2, which means that the chemical potential is located
right at the bottom of the upper band. At zero temperature,
the fermion density remains at half filling. However, with
increasing temperature, the fermion density begins to
deviate from half filling and the upper band is populated
by fermions within an energy window of T starting from
the bottom of that band. This implies that a spinless fermion
model with repulsive interactions can be simulated without
the sign problem away from half filling.
Now let us consider a second example, a spin-1=2

fermion model with Coulomb repulsion, spin-orbit cou-
pling, and spin-flip terms, again defined on a bipartite
lattice. This is a generalized Kane-Mele-Hubbard model.
The Hamiltonian H ¼ H0 þHI is defined by

H0 ¼ −t
X

hijiσ
c†iσcjσ þ iλ

X

hhijiiσ
σc†iσcjσ

þ
X

ij

ð−Þjhijc†i↑cj↓ þ H:c:; ð11Þ

HI ¼ U
X

i

�
ni↑ −

1

2

��
ni↓ −

1

2

�
; ð12Þ

where ciσ (σ ¼ ↑, ↓) is the annihilation operator of the
fermion with spin σ:hij is a real symmetric positive (or,
negative) semidefinite matrix. If we only keep the diagonal
terms of hij, they reduce to an in-plane staggered magnetic
field distribution. In the limit λ ¼ 0 and hij ¼ 0, this
Hamiltonian becomes the half-filled Hubbard model. For
finite λ and hij, it breaks the SU(2) invariance. In the
absence of hij, the z component of total spin Sz remains
conserved. In this case, Eq. (12) is known to be sign-
problem free [18,19]. However, in the presence of hij, both
the Sz conservation and the TR symmetry are broken. The
previous proof for the absence of the sign problem is no
longer valid [18,19].
To show the above model is sign-problem free, let us first

consider the following bilinear Hamiltonian of spin-1/2
fermions,
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H00
bl ¼

X

ij

ðc†i↑Mijcj↑ þ c†i↓M
�
ijcj↓Þ

−
X

ij

hijðc†i↑c†j↓ þ cj↓ci↑Þ; ð13Þ

where Mij is an arbitrary N × N complex matrix. It can be
shown that H00

bl is Majorana reflection positive. A proof of
this is given in the Supplemental Material, Sec. III. B [38].
The Coulomb interaction HI can be decomposed into a

bilinear form by the following HS transformation

e−τUðni↑−1
2
Þðni↓−1

2
Þ ¼ 1

2
e
1
4
τU
X

η¼�
eiλ

0ηðni↑þni↓−1Þ; ð14Þ

where λ0 ¼ cos−1 expð−τU=2Þ. By taking a particle-hole
transformation for the down-spin fermion operators c†j↓ →

ð−Þjcj↓ and keeping the up-spin fermion operators
unchanged, the bilinear exponent on the right-hand side
of Eq. (14) becomes iλ0ηðni↑ − ni↓Þ. Under the same
transformation, the t and λ terms in H0 defined by
Eq. (11) remain unchanged, but the h term becomes the
second term of Eq. (13). Thus, H0 is also Majorana
reflection positive, and the Kane-Mele-Hubbard model
defined in Eq. (12) is free of the QMC sign problem
according to Theorem 1.
The absence of the sign problem of the Hamiltonian

defined by Eqs. (11) and (12) is actually beyond the
framework of Kramers TR-invariant decompositions in
the Dirac fermion representation [20,21]. It provides an
opportunity to study the effect of TR-symmetry breaking in
two-dimensional interacting topological insulators through
QMC simulations [42,43]. The h terms, which flip electron
spins, can arise from the scattering of magnetic impurities.
The magnetic impurities on the edges of a two-dimensional
topological insulator can destabilize the helical edge states
by opening gaps. The interplay among interaction effects,
band structure topology, and magnetic impurities is an
interesting topic that deserves further investigation.
Majorana Kramers positive decomposition.—We next

present a second theorem for the absence of the sign
problem based on the Kramers symmetry structure of
Majorana fermions.
Theorem 2: ρp is non-negative if there exist two

transformation operators S and P such that

STVS ¼ V�; ð15Þ
PVP−1 ¼ V; ð16Þ

where S is a real antisymmetric matrix satisfying S2 ¼ −I
and ST ¼ −S, P is a symmetric or antisymmetric Hermitian
matrix satisfying P2 ¼ I, and P anticommutes with S,
i.e., PS ¼ −SP.
A proof of this theorem is given in the Supplemental

Material, Sec. IV [38]. The HS decomposition satisfying
Eqs. (15) and (16) is termed Majorana Kramers positive

decomposition. It is a generalization of the Kramers TR-
invariant decomposition used in the determinant QMC
simulations of Dirac fermions in Refs. [20,21]. Here, S,
combined with the complex conjugation C, defines an
antiunitary Kramers transformation operator T ¼ SC sat-
isfying T2 ¼ −1. A kernel V that satisfies Eqs. (15) and
(16) is also invariant under the antilinear transformation
T 0 ¼ PSC. If P is antisymmetric, then T 0 is also a Kramers
operator, satisfying ðT 0Þ2 ¼ −1, and V is not Majorana
reflection symmetric. On the other hand, if P is symmetric,
then ðT 0Þ2 ¼ 1. In this case, V is both Majorana reflection
and Kramers symmetric.
Equation (15) ensures that the Majorana coefficient

matrix V is symmetric under the TR transformation. But
the symmetry alone does not ensure ρp to be non-negative.
This is because the eigenvalues of

Q
k expð−τVkÞ always

appear in pairs: if Λα is an eigenvalue, so is Λ−1
α . Moreover,

from Eq. (15), it can be shown that Λ�
α and ðΛ�

αÞ−1 are also
eigenvalues. IfΛα is modulus 1, thenΛ�

α ¼ Λ−1
α . In this case,

these four eigenvalues reduce to two if Λα is not doubly
degenerate. According to the expression of ρp in terms of the
Λα’s in the SupplementalMaterial, Sec. I [38], ρpmay not be
positive definite. The condition defined by Eq. (16) adds an
extra constraint to the Majorana coefficient matrix V. It
enforces the double degeneracy of the eigenvalues ofQ

k expð−τVkÞ when they are modulus 1. This Kramers
degeneracy assures ρp ≥ 0.
Theorem 2 is valid independent of the specific representa-

tions of S and P. This implies that there is significant
flexibility in choosing the HS decomposition scheme.
Below, we consider some simple realizations of S and P
operators. Assuming the system contains N ¼ 2L sites, we
label the lattice sites by two indices ða; iÞwitha ¼ 1, 2 (a can
be also regarded as the index for the orbital degrees of
freedom) and i ¼ 1;…; L, and the corresponding Majorana

fermion operators by γðμÞa;i with μ ¼ 1, 2 the index of the two
Majorana fermions at each site. Operator S can then be taken
as S ¼ iσ2 ⊗ τ0 ⊗ I, where I is the identity matrix in the
sector of i, andσα and τα denote the identity (α ¼ 0) andPauli
(α ¼ 1, 2, 3) matrices in the sectors of μ and a, respectively.

The role of S is to map γð1Þa;i to γð2Þa;i and γð2Þa;i to −γð1Þa;i .
P can be either antisymmetric or symmetric. An anti-

symmetric P can be defined as σ1;3 ⊗ τ2 ⊗ I. S and P thus
defined can be applied to the interacting fermion model
investigated in Refs. [20,21]. For a symmetric P, there are
more choices, including any of the following: σ1 ⊗ τα ⊗ I
and σ3 ⊗ τα ⊗ I (α ¼ 0, 1, 3). For each of these, there
exists a corresponding class of V ’s satisfying Eqs. (15) and
(16). For example, for P ¼ σ1 ⊗ τ0 ⊗ I, V can be gen-
erally expressed as

V ¼
X

α

ðσ0 ⊗ τα ⊗ Aα þ iσ1 ⊗ τα ⊗ BαÞ; ð17Þ
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where Aα and Bα with α ¼ 0, 1, and 3 are real antisym-
metric matrices, and A2 and B2 are imaginary symmetric
matrices. The interacting fermion models that can be
decomposed into the form of Eq. (17) would represent a
new class of models without the QMC sign problem. An
example of a sign-problem free Hamiltonian that satisfies
Eq. (17) is given in the Supplemental Material, Sec. V [38].
Summary.—We have shown that interacting fermion

models are free of the sign problem in determinantal
QMC simulations if the bilinear Hamiltonians obtained
with the HS decomposition possess the Majorana reflection
positivity or the Majorana Kramers positivity. The two
theorems we have proven cover all the sign-problem-free
interacting lattice models that are previously known. They
also allow us to identify a number of new interacting
fermion models without the QMC sign problem.
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