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The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the

carriers transportation by comparing the photoluminescence results between quantum wells with and without a

p–n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with

a p–n junction escape from quantum wells and form photocurrent rather than relax to the ground state of the

quantum wells. The photo absorption coefficient of multiple quantum wells is also enhanced by a p–n junction.

The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.

PACS: 68.65.Fg, 73.63.−b, 81.07.St DOI: 10.1088/0256-307X/33/10/106801

Light-to-electric conversion is when light con-
verts into electricity by means of a material, which
has been used widely for solar cells and photo-
detection. The p–n junction is a fundamen-
tal structure for the light-to-electric conversion de-
vices, which have been used widely in silicon so-
lar cells,[1] nitride-based solar cells,[2,3] GaAs-based
solar cells[4,5] and photodetectors.[6−8] GaAs has
a great potential in light-to-electric conversion de-
vices such as solar cells and detectors. GaAs-
based single-junction solar cells,[9,10] multi-junction
solar cells[11,12] and intermediate-band solar cells[13,14]

have been investigated widely. Combined with
other III–V compound semiconductors, GaAs has
been used in photodetectors such as quantum well
infrared photodetectors,[15,16] and quantum dot in-
frared photodetectors.[17,18] According to the light-to-
electricity theory,[19] photo-excited carriers in quan-
tum wells should be restricted by the barriers and
should not generate photocurrent. Recently, it was re-
ported that the range of the spectral response has ex-
tended and efficiency has increased in solar cells by the
insertion of multiple quantum wells into the depletion
region of a p–n junction.[20,21] The photo-excited car-
rier escaping phenomena in quantum wells are mainly
explained by thermionic emission and tunneling pro-
cesses after the carrier relaxed to the ground state of
the quantum wells.[22,23]

The light-to-electricity conversion process includes
photon absorption and carrier transport processes.
The theory of solar cells and photoelectric detectors
utilizes a macro-parameter absorption coefficient to
describe the photon absorption process[24,25] and the

absorption coefficient is considered to be a constant
for a given material. Thus the photon absorption pro-
cess is the same when the material is with or with-
out a p–n junction and is irrespective of whether the
device is under working conditions. The absorption
coefficient[26] is proportional to the probability of the
transition from an initial state to a final state, to the
density of electrons in the initial state, and to the
density of available final states. The transition prob-
ability is integrated by the initial-state and final-state
wavefunctions with the perturbation Hamiltonian of
the photon potential, where the conduction band and
the valence band are considered as the final states of
electrons and holes, respectively. Furthermore, the
absorption coefficient is measured by using a thin film
without a p–n junction. The quantum well is an ap-
propriate structure to observe the light-to-electricity
conversion process, due to the fact that it has the
ability to distinguish the restricted carrier from the
free carrier. However, the carrier transportation pro-
cess is difficult to observe directly in experiments.
Here we observe directly in experiments that most of
the photo-excited carriers escaping from a quantum
well to generate photocurrent rather than relax to the
ground state of the quantum well in the sample of In-
GaAs/GaAs multiple quantum wells (MQWs) with a
p–n junction when under working conditions.

Samples were grown by molecular beam epitaxy
(MBE, VG V80) on insulating GaAs (100) substrates.
For the p–i–n structure sample, the active region is
sandwiched between a 300 nm Be-GaAs layer with
doping density of 3×1017 cm−3 and a 300 nm Si-GaAs
layer with a 7× 1017 cm−3 doping density. The n–i–n
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structure sample was grown under the same condi-
tion as the p–i–n sample. The only difference is that
the p-contact and p-GaAs were replaced by n-contact
and n-GaAs, respectively. The structure includes 10
quantum wells with thickness of 5 nm, and the compo-
sition of indium is 0.2. The width of barrier is 20 nm.
Device fabrication followed standard p–i–n processing
steps including wet chemical etching and metallization
for the p- and n-contacts.

A 915 nm laser was used as the excitation source
to measure the PL at 260K. The photon energy of the
laser is 1.35 eV, which lies between the bandgaps of In-
GaAs quantum well and the GaAs barrier, called res-
onant excitation. The photo-excited carriers are gen-
erated only in the InGaAs quantum wells and should
be restricted by the GaAs barrier.
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Fig. 1. PL spectra of MQWs without p–n junction un-
der resonant excitation with a wavelength of 915 nm. (a)
The PL spectra under the open-circuit and 1.3V bias con-
ditions with a 63mW excitation power. Compared with
that under the open-circuit condition, the integrated PL
intensity under a 1.3V bias decreases by 9%. (b) The
dependence of integrated PL intensities and peak wave-
lengths on excitation power under the open-circuit and
1.3V bias conditions. The integrated PL intensity under
1.3V bias decreases by a few percent for the same excita-
tion power.

PL spectra of MQWs with n–i–n structure shown
in Fig. 1(a) were acquired under the open-circuit con-
dition and under 1.3V bias at the temperature of
260K. Integrated PL intensity under 1.3V bias de-
creases by 9% compared with that under the open-
circuit condition, and the position of PL peak is
970.3 nm under the open-circuit condition and red
shift to 970.5 nm under 1.3V bias. This phenomenon
also exists under the condition of different excitation
powers (Fig. 1(b)). The intensity of PL increases lin-
early with the excitation power under the open-circuit

condition from 23mW to 63mW, and decreases by no
more than 20% after 1.3V bias applies. Meanwhile,
the position of PL peaks decreases from 972 nm to
970.3 nm under the open-circuit condition, and shifts
from 972.2 nm to 970.5 nm under 1.3V bias. The in-
tensity decrease of PL and peak red shift under exter-
nal field comes from the quantum confine Stark effect.
The PL peak blue shift with excitation power is con-
tributed to the band filling effect. Our results agree
with the previous report.[27]
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Fig. 2. PL spectra and light-to-electricity conversion re-
sults of InGaAs/GaAs MQWs with p–n junction excited
by a laser with wavelength of 915 nm. (a) PL spectra un-
der the open-circuit and short-circuit conditions with a
63mW excitation power. The peak wavelength of the PL
spectrum shows a blue shift under the short-circuit con-
dition, and the integrated intensity is reduced to 12.7%
of that under the open-circuit condition. The measured
open-circuit voltage is 0.809V and short-circuit current
is 4.88mA. (b) Integrated PL intensity and peak wave-
length excited by different excitation powers under the
open-circuit and short-circuit conditions. (c) Dependence
of open-circuit voltage and short-circuit current upon exci-
tation powers. The short-circuit current increases linearly
with the increasing excitation power, whereas the open-
circuit voltage increases exponentially with the increasing
excitation power.

The PL spectra of MQWs with a p–n junction
shown in Fig. 2(a) are measured at the excitation
power of 63mW under the open-circuit and short-
circuit conditions, respectively. The peak positions of
InGaAs/GaAs MQWs are 969.5 nm and 968.5 nm un-
der the open-circuit and short-circuit conditions, re-
spectively. The integrated intensity under the short-
circuit condition decreases to 12.7% of that under
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the open-circuit condition. The open-circuit photo-
generated voltage is 0.809V and the short-circuit cur-
rent is 4.88mA. The results mean that most photo-
excited carriers escape from the quantum wells to
generate photo-excited current rather than relax to
the ground state of quantum wells and recombine to
emit light. The dependence of integrated PL inten-
sity and peak wavelength on excitation powers under
the open-circuit and short-circuit conditions is shown
in Fig. 2(b). As the excitation power increases from
23mW to 63mW, the blue shift of the peak wave-
length of PL spectrum, a linearly increasing integrated
PL intensity, and an exponentially increasing open-
circuit photovoltage from 0.778V to 0.809V under the
open-circuit condition are observed. Under the short-
circuit condition, the results present a blue shift of the
peak wavelength, a linear increase of the integrated
PL intensity and a linear increase of short-circuit pho-
tocurrent from 2.56mA to 4.88mA. The PL spectrum
is not observed when excited by the power less than
30mW under the short-circuit condition. The results
confirm that most photo-excited carriers escape the
quantum wells to generate photo-excited current un-
der the short-circuit condition, and the photo-excited
voltage generates under the open-circuit condition and
illumination. Our finding means that quantum wells
is adapted used for solar cells and photodetectors.
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Fig. 3. The inverse linear relationship between the inte-
grated PL intensity and the circuital current with 50mW
and 63mW excitation powers for the sample with p–n
junction. The dependence of integrated PL intensity on
circuital currents is acquired by changing the circuit series
resistance under a certain excitation power.

The photoluminescence under the short condition
has a dramatic decrease compared with that under the
open condition for the sample with the p–i–n struc-
ture, which is totally different from the photolumines-
cence under bias compared with that under the open
condition for n–i–n structural sample. Thermionic
emission is related to band offset in conduction and the
tunneling probability is related to width and height of
the barrier. Due to the fact that two samples have the
same barrier height and thickness, thermionic emis-

sion and tunneling processes cannot be used to explain
the photo-excited carriers escaping from the quantum
well. The photo-excited carriers escaping from the
quantum well are induced by p–n junctions.

To verify the competition between recombination
and escaping of carriers in quantum wells with a p–n
junction, resistors were used to control the current in
circuit. A linear decrease of integrated PL intensity
with current under two excitation powers is shown in
Fig. 3, which implies that escaping of photogenerated
carriers rather than recombination dominates in the
quantum wells with a p–n junction.

As is well known, an electron in the valence band
absorbs a photon with the energy larger than bandgap
of the material, then it should be excited to conduc-
tance band forming a pair of highly excited free elec-
tron and hole left in the valence band. There are two
kinds of paths for highly excited carriers to go forward,
one path is to relax to the ground state of quantum
wells then recombine to emit light, and the other is
escape from quantum wells and generate photocur-
rent. The results present here that the photo-excited
electron in quantum wells selects the first path in the
sample without a p–n junction structure, while it se-
lects the second path in the p–i–n structure under the
close condition. For InGaAs/GaAs quantum wells,
the radiative lifetime of photogenerated electron–hole
pairs usually is in the range of nanoseconds.[28] How-
ever, the escape of carriers from quantum wells is with
a time of the order of femtoseconds.[19] The escape
time is shorter than radiative lifetime, the process of
the free photocarriers escaping the quantum wells pre-
dominates. As is well known, the electron mobility of
GaAs and InGaAs is larger than the hole one, the dis-
tribution of the electric field is almost uniform in the
region of InGaAs quantum wells when the bias applies
to the quantum well without a p–n junction, thus the
drift velocity of electrons is larger than that of holes,
the number of electrons flowing out from the QWs is
larger than that of holes flowing out from the QWs,
a huge positive electric field should be generated in
the region of QWs and should stop the carriers’ es-
cape from the quantum wells. However, the built-in
electric field divides into two slope electric fields for
QWs with a p–n junction, which can be adjusted by
the concentrations of p or n doping, respectively. The
optimizing electric field distribution can balance the
hole velocity and can match the electron velocity to
maintain the same number of electrons and holes flow-
ing out from the region of QWs and electric neutrality
in the region of QWs, thus it is easy for the carriers
to escape from the quantum wells.

The total thickness of quantum wells is 50 nm. The
photocurrent generated by the incidence light with a
power of 63mW is 5.96mA. The quantum efficiency
is 12.8%, and the absorption coefficient is calculated
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to be 2.7× 104 cm−1 at room temperature for the p–
i–n structure sample. The reported absorption coeffi-
cient of InGaAs/GaAs quantum wells is of the order of
103 cm−1.[29] Hence, the ability of light absorption has
been enhanced by a p–n junction. The photo absorp-
tion coefficient is related to the final state of the car-
riers, the final state of carriers in quantum wells with
a p–n junction is on free state under the short-circuit
condition, on the ground state under the open-circuit
condition, the photo absorption coefficient should be
varied under different conditions.

In summary, we have studied the carriers trans-
portation process of quantum well structure with and
without a p–n junction. The photocarriers escape di-
rectly from the quantum wells under the short-circuit
condition with a p–n junction and the photo absorp-
tion coefficient of MQWs is enhanced by a p–n junc-
tion. This finding presented here achieves in depth
comprehension of the quantum well physical charac-
teristics and provides the basic foundation for the ap-
plication of quantum wells into solar cells and photo-
diode detectors.

We thank the Laboratory of Microfabrication, In-
stitute of Physics, CAS for the fabrication of devices.
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