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The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor
S ¼ 1=2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and
numerical methods employed to date. We apply the formalism of tensor-network states, specifically the
method of projected entangled simplex states, which combines infinite system size with a correct
accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order
appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we
demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical
studies and the physical interpretation of this result.
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In one spatial dimension (1D), quantum fluctuations
dominate any physical system and semiclassical order is
destroyed. In higher dimensions, frustrated quantum magnets
offer perhaps the cleanest systems for seeking the same
physics, including quantum spin-liquid states, fractionalized
spin degrees of freedom, and exotic topological properties.
This challenge has now become a central focus of efforts
spanning theory, numerics, experiment, and materials synthe-
sis [1–4]. While much has been understood about frustrated
systems on the triangular, pyrochlore, Shastry-Sutherland, and
other 2D and 3D lattices, it is fair to say that the ground-state
properties of the S ¼ 1=2 kagome Heisenberg antiferromag-
net (KHAF) remain a complete enigma.
An analytical Schwinger-boson approach [5], coupled-

cluster methods [6], and density-matrix renormalization-
group (DMRG) calculations [7–9], including analysis of
the topological entanglement entropy [10], all suggest a
gapped spin liquid of Z2 topology. The most sophisticated
DMRG studies [9,11] estimate a triplet spin gapΔ ≥ 0.05J.
Analytical large-N expansions [12] and numerical simu-
lations by the variational Monte Carlo (VMC) technique
[13,14] suggest a gapless spin liquid with U(1) symmetry
and a Dirac spectrum of spinons. Extensive exact-
diagonalization calculations conclude that the accessible
system sizes are simply too small to judge [15,16]. Debate
continues between the gapped Z2 and gapless U(1) scenar-
ios, with very recent arguments in support of both [17,18],
while a study using symmetry-preserving tensor-network
states (TNS) favors the gapped Z2 ground state [19].
Experimental approaches to the kagome conundrum have
made considerable progress in recent years, but for the
purposes of the current theoretical analysis we defer a
review to Sec. SI of the Supplemental Material (SM) [20].

In this Letter, we employ the projected entangled
simplex states (PESS) description of the entangled
many-body ground state to compute the properties of the
KHAF. Because we consider an infinite system, our results
provide hitherto unavailable insight. As functions of the
finite tensor bond dimension, we find algebraic conver-
gence of the ground-state energy and algebraic vanishing
of a finite staggered magnetization, indicating a gapless
spin liquid. We demonstrate that the phase diagram in the
presence of next-nearest-neighbor coupling contains a
finite region of this spin-liquid phase. Our results suggest
that the physics of the KHAF is driven by maximizing the
kinetic energy of gapless Dirac spinons.
The TNS formalism is based on expressing the wave

function as a generalized matrix-product state (MPS)
[52–54]. As we review in Sec. SII of the SM [20], this
ansatz obeys the area law of entanglement and, crucially,
allows the construction of a renormalization-group scheme
to reach the limit of infinite lattice size. The truncation
parameter is the tensor bond dimension, D. We introduced
the PESS formulation [55] in order to capture the multi-
partite entanglement within each lattice unit, or simplex
[55–57], which is the key element of frustrated systems
and is missing in the conventional pairwise projected
entangled pair states construction. Summarizing the
numerical procedure (Sec. SII [20]), the optimized
PESS approach is a projection technique, with tensor
manipulation performed by higher-order singular-value
decomposition, and freedom to choose the simplex, the
unit cell, and a simple- or full-update treatment of the bond
environment during tensor renormalization, the former
allowing access to larger D but the latter achieving more
rapid convergence.
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However, TNS calculations are a two-step process,
where the wave function is obtained first and then used
to calculate physical expectation values. This latter step
requires projection onto a 1D MPS basis, whose dimension
for convergence is found to scale approximately as Dmps ≈
4D2. Once D≳ 15, the evaluation step becomes the more
computationally intensive problem, and here we implement
new methodology (outlined in Sec. SII [20]) by which we
extend the accessible D range.
We begin by presenting results from the 3-site-simplex

(3-PESS) ansatz for all accessible D values. The ground-
state energy, E0ðDÞ, of the nearest-neighbor KHAF is
shown in Fig. 1(a). At large D, our estimate lies below
those obtained from all known techniques other than
DMRG studies of specific clusters, which are not an upper
bound. We remark that our E0ðDÞ values are significantly
lower than those of an SU(2)-invariant TNS analysis [19].
We find that E0ðDÞ converges algebraically with D, as on
the Husimi lattice [57], indicating a gapless ground state
[58]. The power-law form E0ðDÞ ¼ e0 þ aD−α, shown in
Fig. 1(b), delivers our best estimate of the ground-state
energy, e0 ¼ −0.43752ð6ÞJ. Figure 1(c) illustrates the
convergence of E0ðDmpsÞ for selected values of D; we
note that this part of the process is not variational and
comment in detail in Sec. SII of the SM [20]. Optimized fits

to a regime of exponential convergence in Dmps were used
to extrapolate towards the values of E0ðDÞ shown in
Figs. 1(a) and 1(b), and to determine the associated error
bars, on the basis of which we limit our claims of reliability
to D ≤ 25.
One key qualitative property of our PESS wave function

is a finite 120° magnetic order at all finite D values, as
shown in Figs. 2(a) and 2(b). The order parameter, MðDÞ,
varies algebraically with 1=D over the available D range,
tending to zero as D → ∞, as required of a spin liquid.
Figure 2(c) illustrates the convergence of MðDmpsÞ for
D ¼ 15 and 20, where an algebraic form was deduced from
the truncation error, and reliable extrapolations to large
Dmps were obtained only for D ≤ 20.
The Husimi lattice provides essential confirmation of our

results. It possesses the same local physics as the kagome
lattice, but less frustration from longer paths, and it allows
PESS calculations up to D ¼ 260, yielding accurate
extrapolations to the large-D limit [57]. It confirms the
crucial qualitative statement that magnetically ordered
states have the lowest energies for spatially infinite systems

FIG. 1. Ground-state energy of the KHAF. (a) E0 as a function
of D, shown for the 3-PESS and simple-update method up to
D ¼ 25, 3-PESS by full update to D ¼ 13, and 9-PESS with
simple update to D ¼ 15. Shown for comparison are results from
other numerical studies. (b) E0ðDÞ for the 3-PESS ansatz, shown
as a function of 1=D and compared with results obtained for the
Husimi lattice [57]. (c) Convergence of E0ðDÞ as a function of
Dmps, shown for several values of D.

(a)

(b)

(c)

FIG. 2. Staggered magnetization of the KHAF at finiteD. (a)M
as a function of D, shown for the 3-PESS and simple-update
method up to D ¼ 20, 3-PESS by full update to D ¼ 13, and
9-PESS with simple update to D ¼ 15. Shown for comparison
are results obtained for the Husimi lattice [57]. (b) M as a
function of 1=D0.588, the power-law form obtained for the Husimi
lattice. (c) Convergence ofMðDÞ as a function ofDmps, shown for
D ¼ 15 and D ¼ 20.
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at finite D. It benchmarks the algebraic nature of E0ðDÞ
[Fig. 1(b)] and MðDÞ [Fig. 2(b)], the latter vanishing
exactly at large D. The Husimi MðDÞ sets an upper bound
on the kagome MðDÞ (Sec. SIII of the SM [20]). Our
kagome results lie well below this bound, but with no
evidence for deviation from a similar algebraic form,
reinforcing the conclusion that the ground state of the
KHAF is a gapless spin liquid.
For full rigor we consider every aspect of the PESS

procedure. Full-update calculations confirm the accuracy
of the simple-update approximation for all accessible D
values. E0ðDÞ lies only slightly lower [Fig. 1(a)], with no
change in functional form; similarly, MðDÞ is suppressed
by several percent [Figs. 2(a) and 2(b)], reinforcing the
argument for convergence to M ¼ 0 at large D, but still
shows algebraic behavior. To investigate whether magnetic
order might be artificially enhanced by the 3-PESS ansatz,
in Figs. 1(a), 2(a), and 2(b) we also present results obtained
using a 9-site simplex (9-PESS) [55], which again confirm
the algebraic form of E0ðDÞ and MðDÞ, with no evidence
either of a crossover to exponential behavior of E0ðDÞ or of

a collapse ofMðDÞ to zero at finite D. 3-PESS calculations
may be performed with a unit cell containing any number
of simplices (Sec. SII [20]); our results for 3-, 9-, and
12-site unit cells are identical, again confirming no inherent
bias of this type.
Further essential confirmation is obtained by adding a

next-nearest-neighbor coupling, J2. These calculations are
performed most efficiently with a 9-PESS ansatz and we
reach D ¼ 15 with simple updates. As shown in Fig. 3(a),
E0ðJ2Þ is maximal (the system is most frustrated) close to
J2 ¼ 0 and is not symmetrical about this point. For the
Husimi lattice, E0ðJ2Þ is continuous, with maximal frus-
tration at J2 ≃ 0.04. By contrast, the kagome case shows a
regime of almost constant energy when −0.03≲ J2 ≲ 0.04
[Fig. 3(b)]. To understand the nature of these states, we
consider in Fig. 3(c) the finite-D magnetization and in
Fig. 3(d) MðDÞ for selected values of J2. For the Husimi
lattice, MðJ2Þ is zero only at J2 ¼ 0, where it has a
discontinuity, and [despite the form of E0ðJ2Þ] is almost
symmetrical. For kagome, the expected ordered phases are
the q ¼ 0 structure at J2 > 0 and the
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FIG. 3. Energy and staggered magnetization of the KHAF with next-nearest-neighbor coupling. (a) E0ðJ2Þ calculated with a 9-PESS
usingD ¼ 15. Shown for comparison are results for the Husimi lattice withD ¼ 15 andD ¼ ∞, as well as the VMC results of Ref. [14].
(b) Detail of E0ðJ2Þ near J2 ¼ 0; with increasing D, a cusp-type discontinuity emerges near J2 ¼ −0.03 (red solid line). The shaded
region denotes the location of the continuous transition at small positive J2, deduced from the magnetization of panel (d). (c) MðJ2Þ
calculated using D ¼ 9, 12, and 15, compared with results for the Husimi lattice at D ¼ ∞. Insets represent the
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(left) and
q ¼ 0 ordered phases (right). (d)M as a function of 1=D0.588, with the Husimi result indicating J2 values for whichM may extrapolate to
zero within the error bars.
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J2 < 0 [Fig. 3(c)]. However, MðJ2Þ at finite D continues
to fall through J2 ¼ 0 from above, indicating a region of
q ¼ 0 order at J2 < 0, which is terminated at J2 ≃ −0.03
by a discontinuous jump to
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p

order. From Fig. 3(d),
MðDÞ appears to extrapolate to zero over a range of J2
values, which we estimate from the Husimi magnetization
to be fully consistent with the “plateau” in EðJ2Þ
[Fig. 3(b)].
The gapless spin liquid should exist over a finite range of

J2 if it is a robust quantum ground state. The Husimi case,
with magnetic order at all finite values of jJ2j and a spin
liquid only at the single point J2 ¼ 0, is a type of “phase
diagram” allowed only because of the pathological Husimi
geometry. In the kagome case, indeed we find a finite
disordered regime, bounded by a first-order transition at
J2 ≃ −0.03 and an apparent second-order transition at
J2 ¼ 0.045� 0.01. Evidently the additional quantum fluc-
tuations due to the presence of loops in the kagome
geometry act to create the same gapless spin-liquid ground
state as the nearest-neighbor model (J2 ¼ 0, Figs. 1 and 2).
Our results are in qualitative accord with those proposed in
Ref. [14] on the basis of VMC studies of a finite system,
although quantitatively the range of stability we deduce is
much narrower.
PESS can be used to calculate further ground-state

expectation values. However, the finite MðDÞ means that
the field-induced magnetization contains no information
useful at zero field. Similarly, finite-D correlation functions
have a constant part, which masks the nontrivial power-law
behavior expected of a gapless spin liquid. We have
nevertheless obtained definitive numerical results, in the
thermodynamic limit, for the two key characteristic quan-
tities, E0ðD; J2Þ and MðD; J2Þ. Although our method is
based on gapped states, it is able to indicate its own
“breakdown” in the event of continuing algebraic con-
vergence [58], and thus the conclusion of a gapless spin-
liquid ground state is robust.
To interpret the physical implications of this result, the

leading candidate gapless wave function is the U(1) Dirac-
fermion state proposed in Ref. [12]. Although there exist
gapless Z2 spin-liquid states of the KHAF [59], there is
currently neither numerical evidence [14] nor a physical
argument in support of these. Heuristically, gapped spin
liquids are favored by the formation of low-energy local
states, such as dimer or plaquette singlets, whereas systems
with a net odd-half-integer spin per simplex do not offer
this option. Our results imply that there is no local unit
(such as the hexagon) on the kagome lattice, and instead
the optimal energy is gained by maximizing the kinetic
energy of mobile spinons, leading to the U(1) Dirac-
fermion state [12], or by maximizing the contributions
from gauge fluctuations [60]. The gapless spin liquid is
expected to have long-ranged entanglement and correlation
functions [61], and the U(1) state has no well-characterized
topological order.

Turning to the general question of numerical KHAF
studies, our results constitute a major breakthrough because
of the infinite system size. The fact that all ED and DMRG
studies consistently favor gapped states suggests that
systems finite even in only one dimension are not able
to account appropriately for spinon kinetic-energy contri-
butions. Regarding the question of enforced or emerging
spin symmetries, PESS studies enforcing U(1) [62] or
SU(2) [19] symmetry find gapped states with energies
higher than ours (Fig. 1). In our calculations, it is
straightforward to start with a gapped trial PESS wave
function and show that an ordered state of lower energy
emerges on projection. In fact all starting wave functions
(symmetric, ordered, arbitrary) lead to the same final state
for a given simplex and update type, with E0ðDÞ andMðDÞ
as shown in Figs. 1 and 2. Thus it appears that symmetry-
enforcing studies are finding excited states, and it is likely
that the same applies on finite systems. Indeed it is argued
in Ref. [18] that a gapped Z2 ground state can lie at lower
energy than the gapless U(1) state on a finite system, but
not in the thermodynamic limit. A very recent study using
VMC evaluation of TNS wave functions on finite systems
also supports a U(1) rather than any competing Z2

state [63].
Clearly the KHAF is a problem where competing states

of very different character lie very close in energy. We
deduce that the large-N approach offers the best available
account of quantum fluctuation effects, specifically by
capturing the kinetic-energy gain of mobile spinons. Our
results also demonstrate the qualitative value of the VMC
calculations [14], which arrive at the gapless spin-liquid
ground state by a different route from PESS, without
allowing states of finiteM. It is also essential to benchmark
whether the PESS ansatz is “neutral” in its energy account-
ing, and does not overemphasize gapless or ordered states,
a question we addressed by comparing the 3- and 9-PESS
results in Figs. 1(a) and 2(a).
A further question is whether the algebraic convergence

we observe could cross over to exponential beyond the
range of our PESS calculations. If such a crossover were to
begin atD ¼ 26, it is hard to argue [consider Fig. 1(b)] that
the difference in extrapolated ground-state energies could
exceed ΔE ¼ 0.0001J. One is then faced with the emer-
gence of an extremely small energy scale for no apparent
reason. This minuscule energy would have to be the spin
gap of the corresponding Z2 state, but clearly lies far below
the DMRG gap. ΔE lies well below the “stabilization
energy” of any of the competing states, whether they arise
due to local resonances, spinon kinetic energy, gauge
fluctuations, or any other mechanism.
Turning briefly to experiment, some studies of the

material herbertsmithite, which offers Cu2þ ions in an ideal
kagome geometry, have indeed suggested a continuum of
fractional spin excitations (Sec. SI of the SM [20]). However,
the most recent measurements face competing gapped
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[64,65] and gapless [66,67] interpretations. In addition, it
remains unclear whether, due to interplane disorder and
Dzyaloshinskii-Moriya interactions, this material is provid-
ing a true reflection of kagome physics.
In summary, we have used the method of projected

entangled simplex states to demonstrate that the ground
state of the Heisenberg antiferromagnet for S ¼ 1=2 spins
on the kagome lattice with only next-nearest-neighbor
interactions is a gapless quantum spin liquid. A finite
next-neighbor interaction reveals the presence of a narrow
regime of gapless spin liquid between states of finite 120°
staggered magnetic order. This spin liquid is thought to be
the U(1) Dirac-fermion state, in which the primary driving
force for spin-liquid behavior is the maximization of spinon
kinetic energy.
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