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ABSTRACT: The prediction of the glass-forming ability (GFA) by varying the
composition of alloys is a challenging problem in glass physics, as well as a
problem for industry, with enormous financial ramifications. Although different
empirical guides for the prediction of GFA were established over decades, a
comprehensive model or approach that is able to deal with as many variables as
possible simultaneously for efficiently predicting good glass formers is still highly
desirable. Here, by applying the support vector classification method, we develop
models for predicting the GFA of binary metallic alloys from random
compositions. The effect of different input descriptors on GFA were evaluated,
and the best prediction model was selected, which shows that the information
related to liquidus temperatures plays a key role in the GFA of alloys. On the
basis of this model, good glass formers can be predicted with high efficiency. The
prediction efficiency can be further enhanced by improving larger database and
refined input descriptor selection. Our findings suggest that machine learning is
very powerful and efficient and has great potential for discovering new metallic glasses with good GFA.

Bulk metallic glasses (MGs), as promising materials with
unique mechanical and functional properties, have been

drawing attention since they were first discovered over 50 years
ago.1−3 Up to now, one of the biggest problems that hinders
the development and applications of MG remains to be the
issue of the glass-forming ability (GFA).4 The GFA of an alloy
is most commonly defined as the critical cooling rate above
which the liquid undergoes glass transition into the glassy state
without the formation of crystals. In principle, glass can be
obtained from liquid given a sufficient cooling rate, even for
monatomic metal.5 For industrial purpose, however, most
alloys are not able to form MGs at cooling rates of 101−106 K/
s, which severely limits their applications.4 To design and
develop bulk MGs with good GFA (for bulk MGs, the critical
cooling rate should be below 102 K/s), a lot of effort has been
devoted and various empirical criteria have been proposed for
predicting the GFA in metallic alloy systems.6−10 Some simple
parameters related to the glass transition temperature Tg, such
as a reduced glass transition temperature Trg,

11 parameter Kgl,
12

parameter Tx/(Tg + Tl),
13 and so forth, were proposed to

estimate the GFA of metallic alloys. Other works have linked
the GFA with geometric packing,9,14,15 mixing enthalpy,16

correlation radius,17 and so forth. Three basic empirical rules
had been formulated: multicomponent alloys containing three
or more elements, significant atomic size difference, and large
negative heat of mixing among the major components.18

Although these empirical criteria provide useful information in

development of MGs, no single empirical criterion is able to
satisfactorily explain the GFA of alloys. This is due to the fact
that many variables play important roles in the formation of
MGs, such as the number of the components, the atomic size of
the constituent elements, the composition, chemical inter-
actions, transformation temperatures, and even techniques used
to synthesize MGs.17 However, in each individual criterion, the
analysis either deals with a limited number of variables (data)
or focuses only on some specific alloy systems. Therefore, it is
difficult to determine which of the proposed criteria are really
effective in predicting alloy compositions to develop new MGs.
Thus, many MGs were developed more or less by trial and
error. A recent work by S. Curtarolo19 showed that the number
of possible crystalline phases is an efficient indicator for the
GFA of an alloy. These works revealed the possibility to build a
better model in which different parameters are considered at
the same time. For an ideal model for predicting the formation
of MGs, all available variables should be analyzed.
To build a model for the prediction of the GFA of an alloy is

essentially to find correlation between the GFA and other
composition-related parameters that can be obtained prior to
experiment.20 After decades of development, machine learning
became a promising method for such a purpose.21 Materials
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design that involves machine learning has been used
successfully in various research fields.22−27 Norquist’s work,23

especially, sheds light on the valuable but long-neglected
information concealed in failed experiments. The powerfulness
of machine learning, in these cases, lies in its ability to analyze
large volume and (/or) multidimensional data, which is
perfectly matched for the prediction of the GFA of an alloy.
In this work, we aimed to develop models, using machine

learning, to predict the GFA of an alloy by its composition. Our
results indicate the possibility to pick out alloys with good GFA
from all possible alloy compositions based on pre-existing data.
We started on binary alloys because there is more available
information, most importantly the phase diagrams, for us to
analyze. We performed learning and testing processes and
found that models with different prediction efficiencies can be
developed from different input descriptors. Our results show
that there is a deep and important link between the liquidus
temperature and the prediction of GFA. The work has the
potential to boost the speed of MG research fundamentally and
provide implications for solving the challenging and elusive
issue of GFA.
There are various machine learning approaches to develop

models with the ability to recognize patterns from a data set
and to have predictions over new data.21 In this study, we use
the support vector machine (SVM) method, which is one of the
most popular and powerful techniques for data classifica-
tion.28,29 The SVM method constructs a hyperspace and solves
the classification problem by constructing a flat or curved
surface to best classify data points from different categories. As
a typical supervised learning process, we divided the modeling
process into four sections, that is, database preparation, SVM
learning, model evaluation, and model prediction. Figure 1 is a
flowchart illustrating the whole modeling process.
Studies on the GFA of alloys have continued for decades, and

many MGs have been experimentally synthesized. In order to
build a proper database for SVM, we must have information on
both good glass formers and bad glass formers, so that the
machine can learn the differences to separate them.
Unfortunately, the bad ones are not always reported. Here,
we found, from published papers, 31 binary alloys with known
compositional range to form MG or not to form MG. For each

binary alloy, we collected 91 data points with composition
ranges from 5 to 95% (with an increment of 1%). These data
are used as the training data set.
For a common machine learning process, a subset is

partitioned from these data as an independent testing data
set for evaluation purpose. However, the size of the training
data set here is not large enough for such a procedure. Any
reduction of the training data set is very likely to largely change
the model performance; hence, we have to find another way to
evaluate models. In this work, we use a testing data set that
consists of two groups of data. Group “Target” is a group of
339 binary alloys that are reported to form MG by the melt-
spun technique. These data are all collected from a review
paper by Miracle.30 The other group is named “All” as this
group consists of all possible binary compositions (1131 pairs
with atomic number smaller than 82) with available input data.
In this way, the prediction efficiency of a model is assessed by
its ability to separate data from group Target and group All.
Another part in building a database for machine learning is to

select proper input and output parameters. There are several
GFA-related parameters that could be used as output
parameters. The critical cooling rate is one of the most precise
parameters to characterize the GFA of an alloy; however, it is
very difficult to obtain these data experimentally, especially for
binary glass formers due to their generally worse GFA. On the
basis of this fact, we simplified the problem into a classification
problem by using a criterion to separate alloys into two
categories: good glass formers and bad glass formers. The
criterion is whether the alloy is able to form MG by the melt-
spun technique. There is no information on the margin of error
for this matter. For input descriptors, we selected a total of 11
parameters including 2 atomic weights (aw1, aw2), the mixing
enthalpy (ΔH), 2 atomic radii (r1, r2), 2 liquidus temperatures
for each element (Tliq1, Tliq2), the fictive liquidus temperature
(Tfic), the difference in liquidus temperature (ΔTliq), and 2
contents of each element (c1, c2). The fictive liquidus
temperature is defined as Tfic = Tliq1·c1 + Tliq2·c2, and the
difference in liquidus temperature is defined as ΔTliq = (Tfic −
Tliq)/Tfic, where Tliq is the actual liquidus temperature obtained
from the binary phase diagram. See Supporting Information
section S1 for detailed information on the database.

Figure 1. Overall setup for SVM modeling. Our SVM modeling process consists of four major processes, including building of the data set, the
learning process, model evaluation, and model prediction. (i) The training data set and testing data set include different alloy compositions with
different selected descriptors. (ii) The learning process is SVM with a radial basis function, in which two parameters, C and γ, can be tuned to
develop different models. (iii) The best model is selected from (ii) by two criteria: PTarget > 0.3 and largest E. (iv) The best model is used for
prediction to find new glass formers. Input descriptors are changed to start a new process to assess the effect of different groups of descriptors.
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SVM with a radial basis function kernel (Scikit-Learn
python31) is used to develop models for prediction. Two
SVM parameters, C and γ, can be adjusted to yield different
models. After the machine learning process with the training
data set (see Supporting Information section S2 for training set
accuracy), the model is applied to the testing data set to obtain
PTarget and PAll, which are the probability of finding good glass
formers in the Target group and All group, respectively. PTarget/
PAll indicates the ability to pick out good glass formers from all
possible compositions. However, this parameter does not work
well for situations when both PTarget and PAll are very small,
which might yield large PTarget/PAll. These models are not ideal
for prediction; we also would like the model to cover a larger
amount of data from group Target, which means that the model
captures more characteristics of good glass formers. Hence, we
defined parameter E = PTarget

2/PAll to be the indicator of model
performance. The best SVM model is selected based on two
criteria: (1) PTarget > 0.3 and (2) largest E. Grid searches are run
for every training data set to obtain the best SVM model.
Model predictions of PTarget, PAll, and E with different SVM

parameters are shown in Figure 2a−c for a training data set
with nine input descriptors (without c1 and c2). The evolution
of PTarget and PAll shares a similar trend with the change of C
and γ, and they both become larger with the increase of C and
the decrease of γ. Parameter E, on the contrary, is found to have
a maximum value of 3.96 when C = 2−6 and γ = 22 (marked
with a check mark in Figure 2c). For each training data set, we
are able to select the best SVM model in this way.
Following the training and evaluation protocol, as we

discussed above, models were developed using data sets with
different input descriptors. Model prediction efficiency differs
largely with different input descriptors, as shown in Figure 3. In
Figure 3, All represents the nine input descriptors: aw1, aw2,
ΔH, r1, r2, Tliq1, Tliq2, Tfic, and ΔTliq. We can see that poorer
performance is obtained if we add c1 and c2 into the data sets.
Our interpretation is that although the content of each element
is, of course, very important in designing MGs it might not
directly correlate with GFA. Using these descriptors is
misleading for the machine learning process. We also noticed
that ΔTliq served as the most important descriptor in the
learning process. It is surprising that the SVM model has very
good performance with only ΔTliq as an input descriptor, but
the performance is much worse if all descriptors except ΔTliq
(“All − ΔTliq”) were considered as input. We then tested
different groups of input descriptors and found that the best
SVM model is the one that was trained with two input
descriptors: ΔTliq and Tfic.
Model predictions on each alloy composition are measured

by the decision function PGFA. The larger the PGFA, the better
the GFA of the alloy. The model considers an alloy to be a
good glass former if PGFA > 0. Figure 4 shows the prediction
result from the best SVM model on the testing data set. The
distribution of PGFA on different groups of data is shown in
Figure 4a. We can see that the distribution of predicted PGFA
values on group Target significantly differs from that of the
predicted PGFA values on group All. Such a difference indicates
the ability of the model to pick out good glass formers from all
possible compositions. Figure 4b shows the predicted PGFA with
different input of ΔTliq and Tfic. The best glass formers, based
on model prediction, are the ones located in the red region with
Tfic from 300 to 1000 °C and ΔTliq from 0.2 to 0.6. Data from
group Target are marked as “×” in Figure 4b. It is clear that the
distribution of × and the red region are well correlated.

However, some exceptions are also observed, meaning that the
model is still far from perfect. Although only a small portion of
alloys is predicted to be good glass formers, there are still many
of them not reported yet. Using the SVM model, we obtained a
list of alloys with large predicted GFA that are not included in
our database. Alloys like Fe24Lu76, Ti73Ni27, Co90Mo10,
Co26Lu74, and so forth are predicted to be good glass formers.
One hundred of these alloys are summarized in Figure 5, in
which larger sized words indicate better GFA.
The SVM process handles data in a way that we are not able

to understand the results directly, especially when dealing with
multidimensional data sets. Different input descriptors
contribute to the learning process in a complex way. Given
the current database, which is not ideally large, it is incautious
to draw conclusions by simply comparing results from two
different groups of descriptors. Here, we only stress two main

Figure 2. Predictions from models trained with different parameters.
(a−c) Model predictions of PTarget, PAll, and E. The best model is
identified to be the one with the largest E, which is marked with check
mark in (c).
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interpretations: (1) parameter ΔTliq is the most relevant
descriptor; (2) parameters ΔTliq and Tfic together yield the best
SVM model. The prediction result from our best model is
obviously efficient, as shown in Figure 4. Compared with
traditional analysis of GFA, our model collects information

from as many sources as possible and is capable of exploiting
the information simultaneously.
As shown above, the SVM model that we developed exhibits

promising ability to capture the characteristics of good glass
formers, although only data of binary alloys with good GFA
(they all form MG in a certain composition range) were used
for training. There are still many element pairs that were not
predicted to form MG in any composition. Also, it is worth
pointing out that the training data set consists of data from only
31 pairs of elements. This number could be largely increased if
more experimental data, whether alloys could form MGs or not,
were collected and shared in standard format. A more abundant
database should significantly improve the performance of
machine learning for much better prediction of GFA of alloys.
The improvement in our ways of dealing with data has the
potential to boost material research speed fundamentally.23,32

Our results indicate the strong correlation between ΔTliq and
the GFA of an alloy, which is in accordance with our
expectations. ΔTliq is an indicator of the liquid line in a binary
phase diagram, which includes information on the formation of
crystals from liquid. Because the GFA of an alloy is essentially
its ability to avoid crystallization, ΔTliq should be strongly
related to GFA because it describes the temperature that it can
reach without crystallization. A larger ΔTliq means that the alloy
can be cooled to a lower temperature without crystallizing in
equilibrium states. The correlation between ΔTliq and GFA has
been previously discussed by Donald and Davies33 with a
similar parameter ΔT*.
Although multidimensional data analysis is one of the strong

points of SVM, the best model that we obtained is trained by
only two input descriptors. The fact that input descriptors
except for ΔTliq show no obvious correlation with model
performance does not necessarily mean that these descriptors
are not important in the glass formation process. As we
mentioned above, the formation of glass is a complex process
that involves different parameters in complicated ways. Miracle
studied the GFA of MGs from the perspective of particle
packing and developed a predictive model using multiple
structural constraints.34 Recent work by Curtarolo19 suggested
that a larger number of possible crystalline phases could
introduce structural and energetic “confusion” that obstructs
crystalline growth. However, it could also increase the
possibility of finding one stable phase that lowers the GFA of
an alloy. These results indicate that simple parameters like the
ones that we used in this work might not be good enough for
the SVM method to capture the characteristics of good glass
formers, but they might be if they were modified into
something that relates to GFA in a more direct way. Although
our model was developed to predict the GFA of binary alloys, it

Figure 3. Input descriptors’ assessment. Prediction efficiency,
indicated by E, of SVM models trained from different input
descriptors. Parameter ΔTliq shows the strongest connection with
GFA, and the combination of ΔTliq and Tfic yields the best model
(marked with a check mark).

Figure 4. SVM model predictions. (a) Probability distributions of PGFA
from the prediction of the best SVM model in different data groups.
PGFA > 0 indicates a good glass former. A clear difference in the
distributions indicates the high prediction efficiency of the SVM
model. (b) The mesh grid, colored red and blue, indicates the model
prediction with different values of ΔTliq and Tfic, and the data of group
Target are marked with “×”. It is clear that the data of group Target
are distributed mostly in the red region, indicating the very good
prediction efficiency.

Figure 5. Word cloud depiction of the best glass formers from SVM
model prediction. These alloys are all predicted by our model and not
in our training data set or group Target in the testing data set. Words
in larger font indicate better GFA of the alloy.
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has the potential to be generalized to not only predict GFA of
multicomponent metallic alloys, such as Fe-based alloys, but
also get more insight into the underlying mechanism of the
GFA of metallic alloys.
Ward et al. developed predictive models using mainly

decision trees for predicting the band gap energy of crystalline
materials and the GFA of inorganic materials.27 As another
typical example of using machine learning to make predictions
of material properties, Ward et al. built data sets using 145
attributes, and 10-fold cross-validation was employed to create
a model with high accuracy. Here, we did not perform 10-fold
cross-validation because of unlabeled data in group All. Instead,
we used parameter E as an indicator of model efficiency. The
above results indicate that our algorithm is valid and efficient.
Moreover, in our work, much a smaller number of input
features was considered, and the correlation between different
input features and results were analyzed for better under-
standing of the physical origin of the GFA of metallic alloys.
Although the method and models are different between our
works, both works demonstrate that machine learning is quite
promising for future material discovery and there is still large
space for improvement.
The use of machine learning enabled us to discover the

characteristics of good glass formers through multidimensional
data analysis. Our results indicate the importance of parameter
ΔTliq in the GFA of an alloy, which is in accordance with our
understanding of the glass formation process. Using the SVM
model, new binary alloys with good predicted GFA is
suggested. With improvement of the database, the machine
learning technique has the potential to revolutionize the
discovery of new glass formers. A well-developed predictive
model not only provides us with suggestions for real
experiments but also helps us gain physical insights on the
challenging issue of the GFA.
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