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Abstract

According to transmission cross-coefficient theory, the information limit of non-linear
imaging in high-resolution transmission electron microscopy is, under certain conditions,
far beyond that of linear imaging, which suggests the possibility of using high-frequency
information for structural determination. In this article, we studied the information beyond
the linear information limit by means of multislice method simulation, with AIN as an
example, and more structural information was obtained by using part of the high-
frequency information.
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Introduction

High-resolution transmission electron microscopy (HRTEM)
is a powerful technique to investigate crystal structures. A
widely used performance criterion in HRTEM is the infor-
mation limit of the electron microscope, which is defined as
the inverse of the highest spatial frequency that can be trans-
ferred by the imaging system from the exit plane to the
image plane. It is important, however, that this one-to-one
relationship between the information limit and attainable
resolution applies only in the case of linear imaging with neg-
ligible non-linear interference, which means that specimens
must be very thin, i.e. weak-phase objects.

The contrast transfer function (CTF) of electron
microscopes was thoroughly investigated through trans-
mission cross-coefficient (TCC) theory by K. Ishizuka in

1980 [1], and he found the information limits for linear
and non-linear interferences to be different. More inter-
esting are the experiments with Young’s fringes carried
out by J. Barthel and A. Thust, in which the highest
detected frequencies in diffractograms was found to
extend even beyond the highest transfer frequency of the
inserted objective aperture [2], indicating that the infor-
mation limit of traditional linear imaging is not enough
to explain information transfer by optical systems,
because significant non-linear information is present in
the higher frequencies of the diffractogram [3,4]. Later,
S. Van Aert et al. [5] derived the closed analytical forms
of the information limit for linear and non-linear infor-
mation through channeling theory, assuming zero spher-
ical aberration. Their results show that the information
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limit for the non-linear component may be /2 times lar-
ger than the information limit for the linear one.

Since there is much space between the non-linear struc-
tural information limit and the linear information limit, a
question comes up: whether the non-linear information
can be used to determine structure. In the present work,
the non-linear imaging component was investigated based
on multislice simulation of wurtzite-structure AIN as an
example. Results show that in some special cases, the
phases of some high-frequency non-linear information may
give a good indication of the phases of structure factors,
which can be used to deduce the structure.

Information limit of linear and non-linear
components

First, we briefly introduce TCC theory and demonstrate
the difference between the information limits of linear and
non-linear imaging components. More details can be found
in Refs. [1,6-8].

According to TCC theory, the Fourier transform of the
image intensity, i.e. the diffractogram, will be
K)Q(K)Q*(K ~ K)dK
= LI0(K)PdK + T (K, 0)0(K)

— - —
inK)= [T, K -

+T(0, -K)O* (- ?)

+ ?#?7#0T(K’ -K)o
(KH)O*(K - R)dK'
=1 (K =0)+ (K #0) + L(K # 0), )

in which ‘K’ represents the two dimensional vector _i)n
reciprocal space, ‘** represents the conjugate form, Q(K’)

is the diffracted wave, and O(K) is the Fourier transform
of the object function, T(K’ K -

cross coefficient, a complex function that depends on the

K ) is the transmission

temporal and spatial coherence of the microscope as well
as the spherical aberration C, and, the defocus of the
objective lens, etc.

LK =0) = f? I0(K)PdK Q)

LK #0)=TEK,0)0®X) + T, -K)O*(-K) (3

LK #0) = ?iY;ﬁT(—)K K-Ko®)
O*(K - K)dK

- .
Here, I)(K = 0) represents the transmitted electron
beam, I; (K # 0) represents the linear interference between
the transmitted beam and one of the diffracted electron

beams, and L (I_<) # 0) represents the non-linear interfer-
— —_ -
ence between two diffracted beams, K’ and K" — K.
-

To get the analytical expression of I[[(K # 0) and

- —
L (K # 0), an object function O (K) based on the pseudo-
weak-phase object approximation (PWPOA) was input
into Egs. (3)-(4) [8]. Then
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where Es, Ef and E,, EJ represent the damping envelopes
of the temporal and spatial coherences, respectively; F(K)
represents the crystal structure factor; Af,; is the effective
focus and y,¢ (K ) is the effective CTF [8]; and

2
sin mAnAzK

2

-2\ °
sin mAAzK

2

where A, 7 and Az represent the electron wavelength, num-

SK) = %)

ber of slices and slice thickness of the crystal, respectively.

From Egs. (4), (6) and (7), it can be found that L is
summation of the non-linear interfere_r)lces betwegl Vaii—
ous ‘couples’_o)f diffractions, i.e. F(K}) and F(K, — K)
for different K, and the weight of each non-linear inter-
ference depends on the imaging parameters and crystal
thickness.

From Egs. (5) and (6) the linear and non-linear damp-
ing envelopes due to temporal coherence of the electron
source can be respectively expressed as [8]

17 — 1 —4
EV®) = Es (K, 0) = exp {—E(MD)ZK } ®)
and
Es(K, K - K) = exp {—%(nﬂD)z[u?)Z (K - E)ﬁl},
©)

where ‘D’ represents the focus spread and the super-
script ‘I means the linear information. The reciprocal
2 is used to define the
conventional information limit and will be referred to as

. — |7 _
spatial frequency K for E§(K) = e
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‘the linear information limit’ in the following. When the
non-linear components are concerned, the deir)lping envel-
opes due to temporal coherence Es(K', K — K) (see
—
Eq. (9)) obviously differ from EL(K), especially for high
reciprocal spatial frequencies, just as shown in Fig. 1. That
is, the information limit for non-linear information,
referred to as ‘non-linear information limit,” differs from
the linear information limit.
. —_ = 2 [P
The difference between E;(K', K — K) and E5(K) is
easy to understand. According from Eq. (9), when
—_ —_— =2 >
|K"l = K" = KI{K’| represents the modulus of vector

}(—’)), E(;(Iz7 , K - ?) = 1. This means the temporal coher-
ence envelope takes its maximum value of unity along the
perpendicular bisector of K, as shown in Fig. 2, a phenom-
enon called the ‘achromatic condition’ [1] because the chro-
matic aberration effect disappears at this point.

Simply put, non-linear information limit is higher than
the linear one, and the difference between them is due
mainly to the achromatic condition for non-linear interfer-
ence; thus the non-linear terms carry higher-resolution
information. In the next section, wurtzite-structured AIN is
taken as an example for the study of the non-linear compo-
nent, and the possibility of using the non-linear component
for determining structure is studied.
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Application of the non-linear component

A schematic diagram of an AIN [100] diffractogram is
shown in Fig. 3. As illustrated before, I (?) is negligible at
sufficiently high frequencies because of the strong damping
of E},; thus it is more appropriate to investigate the impact
of I, (f) at high frequencies. Here, reflection 012, which
lies just within the linear information limit (indicated by
the dashed circle in Fig. 3), and reflection 013, which lies
just beyond the linear information limit, are chosen as
examples in our investigation. Moreover, as illustrated by
X.D. Zou et al. [9], good phases are more important than
amplitudes for determining atomic column positions, so in
the following, the phase of the reflections 012 and 013 will
be studied by means of dynamic simulation with varied
imaging conditions and varied thickness.

The simulations of AIN HRTEM images are carried out
along the [100] direction. In this direction, the Al and N
atoms do not overlap, and the atomic distance between
adjacent Al and N atoms is about 1.09 A. The slice thick-
ness (Az) of AIN in the [100] direction is 3.11 A; the radius
of the objective aperture is set as 2 A™'. Imaging parameters
with different effective defocus values around the Scherzer
focus, as shown in Table 1, are chosen for simulations.
Actually, these imaging parameters correspond to a
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Fig. 1. Temporal envelopes for (a) linear, (b) non-linear imaging components with D = 7 nm and (c) linear,
(d) non-linear imaging components with D = 2.5 nm of microscope with E = 200 kV, respectively. Only one

= — >
quadrant of (K’, K — K) space is shown.
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JEOL-2010 microscope, which is equipped with a LaBg fila-
ment and has a linear information limit 0.6 A™! (i.e. about
1.6 A). Phases of reflections in the diffractogram were obtained
from the Fourier transforms of the simulated images, and
the phases of the non-linear component were obtained by
separating the linear and non-linear components [8].

Figure 4(a) shows the variation of a{l;,(012)} —
a{F(012)}
the diffractogram and the corresponding structure factor,

, the phase difference between reflection 012 in

over crystal thickness under different effective defocus

values Af ;. When the crystal is thin, it varies with the sign
- -

of sin(y¢ (K )) for K = 012 as indicated in Eq. (5) (note

- -
that S(K) for K = 012 remains positive throughout our
simulation _range (m < 31), according to Eq. (7)),
because IZ(K) is negligible, as shown in Fig. 4(e), and

>
>

K

— = 5
Fig. 2. Diagram of achromatic condition for Es( K’, K’ — K). The dashed

N
line represents the perpendicular bisector of vector K .
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Fig. 3. Schematic of AIN [100] diffractogram. The dotted circle indicates
the frequency of 0.6 A~".

- -
ln('lﬁéggi:) < 0, meaning that [,,(K) ~ I;(K). With the

crystal getting thicker, a {I;,,(012)} — a {F(012)} becomes
independent of defocus when AIN thickness is above
4.67nm (15 slices) because {5 (012)} becomes dominant
n (I (012)); ke (b G
in Fig. 4(e)). More interesting is that a{[;,(012)}, i.e
a{L(012)}, becomes approximately constant, and is
almost equal to a{F(012)},; as shown by Fig. 4(c),
a{hL(012)} — a{F(012)}.

Similar to reflection 012, a({[;(013)} — a{F(013)}
varies with the sign of sin(y4 (f)) when the crystal is thin,

) becomes positive as shown

as shown in Fig. 4(b), and remains constant with the crys-
tal getting thicker. Furthermore, because reflection 013 is
beyond the linear information limit while 012 is not,
a{hL(013)} becomes dominant more quickly, as shown
Fig. 4(e) and (f); thus a {;,(013)} — a {F(013)} approaches
a constant value more quickly than does a{I,(012)} —
a{F(012)}, as shown in Fig. 4(b). For a{[;;,(013)} —
a{F(013)} remains constant and is not far from zero when
sample 1.55 nm, that
a{h(013)}, i.e. a{L;(013)}, may reflect the structure fac-
tor to some extent (see Fig. 4(d)). In the following we use

thickness is above indicating

the phase of I, (013), which is beyond the information lim-
it, to try to recognize the species of Al and N.

Simulated images of AIN in the [100] zone axis with
different thicknesses under Af,; =
Fig. 5(b)—(f). Just like the image deconvolution [10], the
phase of the artificial structure factgr af{F (R))} can be set

—41nm are shown in

equal to a{Iim(z)} -, ie. a{L(K)} — =z, for reflections
010, 002, 011, and a{F'(012)} is set to be a {L;(012)}
according to their CTF values, and a {F'(013)} is set to be
a{l,(013)} because a{l,m(013) ~ a{F(013)}}, then we
can get a {F’ (K)} from K = 010 to K = 013 from the dif-
fractogram of the simulated image. With the amplitudes of
Ly (E)) retained, artificial potential maps can be obtained
with atomic columns appeanng as black dots by convert-
ing all a{I,m(K)} into a{F’(K)} + 7z, as shown in Fig. 5
(h)=(l), corresponding to Fig. 5(b)-(f), respectively. As
shown by Fig. 5(m)—(r), the intensity profiles correspond-
ing respectively to the framed areas in Fig. 5(g)—(l), the ‘Al
and ‘N’ atomic columns can be separated in the ‘Al-N’
dumbbell when the crystal thickness is above 4 nm. This
means that the application of [,(013) does help us get
structure details with resolution better than the linear
information limit for the simulated linear information limit
is about 1.6 A, not enough to separate the dumbbell.

Table 1. Imaging parameters used for simulation. The effective defocus value ranges from —31 to =51 nm with 2 nm steps

E (kV) a (mrad) Cs (mm) Defocus spread (nm)

Scherzer focus (nm)

Af g (nm) Linear information limit (A™")

200 0.5 0.5 7

—41

-31:-2:-51 0.6

Downl oaded from https://academni c. oup.conifjmcro/article-abstract/doi/210.1093/jm cro/ df x031/4110333/ Appl i cability-of-non-Ilinear-imging-in-high

by guest

on 19 Septenber 2017



Microscopy, 2017

(@) s]=tsss (b) s,
2,

= 2 —-— 31

2 1 =

= 0 = ~— =37

3 +— =39

a -1 Aot

o 72 - 45

—— 47

3] —

0 5 10 15 20 25 30 0 5 10 15 20 25 30
n n

(c) (d) 5
2

- N W

Fig. 4. Variation of phase differences over crystal thickness for different effective focus values

Afer. (@) a{lm(012)} — a{F(012)}, (b) a{lm(013)} — a{F(013)}, (c) a{L(012)} — a{F(012)},
(d) @£ (013)} — a{F(013)}, (e) In 'lﬁ(‘g:j))l' and (f) In 'l’,i(‘g];’l' . “n" represents the number of

slices, and slice thickness 4z= 3.11A.

0.3 nm 3.4 nm 4.1 nm 6.5 nm 9.6 nm

(M) pixel (nN) pxer (0) piet  (P) pixer () e () Pl

Fig. 5. (a) and (g) Projected potential maps of AIN [100] with atoms shown as black dots; (b)-(f) simu-
lated images of AIN [100] with different thicknesses under Afe = —41 nm (other imaging parameters
are the same as shown in Table 2); (h)-(I) resulted maps corresponding to (b)-(f) by converting
a{lm(K)} to a{F(K)}, respectively; solid arrows in (k) and (I) indicate extra bright contrasts that do
not correspond to atomic columns. (m)-(r) Intensity profiles of the framed areas in (g)-(l), respectively,
along the direction indicated by dotted arrows.

In addition, note that ‘N’ columns are lighter than ‘Al’ col- light atomic columns appearing with lower contrast than
umns in the resulting maps shown in Fig. 5(j), but become heavy ones in thin samples may appear darker when sample
darker than ‘Al’ in Fig. 5(k) and (1). This phenomenon, i.e. thickness is above a critical value, accords with the image
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contrast variation illustrated in PWPOA [11], and can help
us in atomic species recognition [12,13]. Besides, some
extra areas of contrast, indicated by arrows, do not corres-
pond to atomic columns but arise from strong non-linear
information when the sample is thick [8].

Moreover, note that the distance between the Al and N
atoms in the reconstructed map shown in Fig. 5 is not
exactly same as that in the potential map, and similarly,
the contrast in the reconstructed map is not linear with the
atomic number, which is due to two reasons: first, the
highest-frequency reflection used in the reconstruction, 013
(which has the reciprocal spatial frequency of 0.708 A~"),
is not enough to separate the dumbbell with the AI-N inter-
atomic distance 1.09 A; second, the amplitudes and phases
of the reflections in the diffractogram we used are not
exactly equal to those of the corresponding structure fac-
tors. Even so, with the help of PWPOA and the nonlinear
contribution, more structural information can be obtained.

Briefly, if we know the examined crystal structure, like
in the previously shown example of AIN, we can directly
determine whether the phase of high-frequency reflections
accords with the phase of the structure factor, in an appro-
priate range of de_f)ocus and sample thickness. If the answer
is positive, a {I(K)} may be used for structural determin-
ation, for instance, determination of polarity here; thus

more structural information can be obtained.

Discussion

So far, the origin of this phenomenon, i.e. a{lz(?)} ~
a{F(K)} in AIN when the crystal is not thin, is still not
clear. Here, we try to understand it by means of Cochran’s
equation [14],

a(FE)} ~ a{F(K)} + a{FK - K)}, (10)

. — —
which means that the structure factors F(K), F(K}) and

- —
F(K — Kj;) may accord with a special relation in some
cases, e.g. in certain projections of a crystal with simple
structure or a protein crystal [14].

If we consider only the ‘quasi-achromatic condition,’[6]
ie. IK!l ~ IK, — Kl, meaning that K/ is adjacent to the

—

perpendicular bisector of K (see Fig. 2), we can make

approximations as

Py
Sil’l(MnAZUz(X_K) )

—_— —
S(Ky=—7"—"—"—F55~*SK, - K)y= ———5——
Sin(ﬂ,{Az K, ] sin( n/lAz(K.;—K)Z)
2 2
(11
and

— — =
COS{/Yeff(Kx) _){eff(KJ/c - K)} ~ 1 (12)
Then L, (E) (see Eq. (6)) can be simplified as

— - - - -
L(K) = 6*EFE{F(K)F(K = K)S* (KDl _

(St

- - -—_ —
+ Y78 262 EFEFF(K)F(K — K)S*(KY)
77

- - @ —
=A, X {F(K;)F(K - K)

.
K=
—

= o
+ 27;#% 2F(K)F(K — K3)

b

[N

(13)

where
N
A, = 62EFEXS2(K)). (14)

Then, according to Cochran’s equation (see Eq. (10))
and the simplified Iz(f) (see Eq. (13)), and considering
that A, is a non-negative value, the phase of IZ(E) can
reflect the phase of F(E), ie.

a{L(EK)} ~ a{FEK)). 15)

Ne_v)ertheless, it should be pointed out that a {L (?)} ~
a{F(K)} can be found, up to now, only for non-aberration-
corrected TEM imaging, because the non-linear component
is the summation of the non-linear interferences between
various ‘couples’ of reflections, and things that are simpler
for the non-aberration-corrected imaging of few reflections
should be taken into consideration, as will be elucidated in
the following.

- > o

Figurg 6 shows the variations of Es(K', K — K)
E. (K, K — ?) for K = 012 and 013 as a function of f’),
with Fig. 6(a) and (c) showing the non-aberration-
corrected imaging case and Fig. 6(b) and (d) showing the
aberration-corrected imaging case. As for our simulation in
this work (refer to Fig. 6(a) and (c)), considering that 001
and 003 are distinction reflections and the linear informa-
tion limit is 0.6 A™" (which can be considered as a virtual
aperture), Eq. (13) can be rewritten as

L(012) = A, x {2F(010)F(002)} (16)
and

L(013) ~ A, x {2F(011)F(002)} a7
for reflections 012 and 013 _in AIN, respectively. Therefore,
it is clear that only when K’ is adjacent to the perpendicu-

. hd . .
lar bisector of K, should the non-linear interferences
- - =
between beams K’ and K’ — K be taken into consideration,
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Fig. 6. Variations of E5(K', K" — K)E,(K', K — K) for K = 012 ((a) and (b)) and 013 ((c) and (d)) under differ-
ent imaging parameters: (a) and (c) Cs = 0.5mm, a = 0.5mrad and D=7 nm, with Af = —41nm (Scherzer
focus); (b) and (d) Cs = 0.0156mm, a = 0.05 mrad and D=2.5nm, with Af = -7nm (Scherzer focus). AIN
reflections are indicated by spots. The perpendicular bisectors of 012 and 013 are indicated by dotted lines.

which accords well with the approximation of the quasi-
achromatic condition [6].

Comparing Fig. 6(a) and (b) or (c) and (d), it can be
found that any decrease of the imaging parameters Cs, a
and D, will contribute more non-linear interference for a
specific reflection. In this case, therefore, the phase of I, (R))
does not have a simple relation with the phase of F (R)), SO
it is hard for us to make use of it.

Briefly, the phase of the non-linear information of
reflection 013 for AIN is found to be close to the phase of
the structural factor under the non-aberration-corrected
condition, so the non-linear information can be used dir-
ectly in determining structure, and here the polarity of AIN
was determined. Nevertheless, more work needs to be
done to understand this phenomenon deeply.

Concluding remarks

The linear information limit and the non-linear informa-
tion limit of HRTEM imaging differ significantly, which
enables a question of whether the non-linear information is
useful for structural determination, so in this paper the
information beyond the linear information limit is studied
by means of a multislice simulation with wurtzite-
structured AIN as the model. For non-aberration-corrected

imaging, the phase of the non-linear information of reflec-
tion 013 is found to be close to the phases of the structure
factor when the sample is thick. With the help of the non-
linear component, Al and N atoms in the projection of
[110] can be separated, indicating that higher-resolution,
even atomic-resolution, structural information can be
obtained by conventional TEM. This paper offers a new
way to employ non-aberration-corrected TEM, but such
mechanisms in electron microscopy or crystallography

remain open issues.
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