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We construct a two-dimensional lattice model of fermions coupled to Ising ferromagnetic critical
fluctuations. Using extensive sign-problem-free quantum Monte Carlo simulations, we show that the
model realizes a continuous itinerant quantum phase transition. In comparison with other similar itinerant
quantum critical points (QCPs), our QCP shows a much weaker superconductivity tendency with no
superconducting state down to the lowest temperature investigated, hence making the system a good
platform for the exploration of quantum critical fluctuations. Remarkably, clear signatures of non-Fermi
liquid behavior in the fermion propagators are observed at the QCP. The critical fluctuations at the QCP
partially resemble Hertz-Millis-Moriya behavior. However, careful scaling analysis reveals that the QCP
belongs to a different universality class, deviating from both ð2þ 1ÞD Ising and Hertz-Millis-Moriya
predictions.
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I. INTRODUCTION

Understanding the behavior of gapless fermionic liquids
in the vicinity of a quantum phase transition is at the
heart of strongly correlated electron systems, dating back
to the celebrated Hertz-Millis-Moriya framework [1–3].
In particular, the question of Fermi-liquid instabilities
at a magnetic (quantum) phase transition [4–9] and its
applications to heavy-fermion materials [10,11] and
transition-metal alloys (such as cuprates and pnictides
[12,13]) is of vital importance and of broad interest to the
condensed matter and high-energy physics communities.
On the other hand, to be able to obtain the understanding

of quantum critical phenomena in itinerant electron systems
is extremely challenging. Recently, extensive research
efforts have been devoted to this question, utilizing
advanced renormalization group analysis, including the
two-dimensional (2D) Fermi surface coupled to a Uð1Þ
gauge field, to Ising-nematic, or to spin-density-wave
bosonic fluctuations [14–22]. Other approaches include
dimensional regularization [23,24] and working in the
limit of a large number of boson flavors [25]. Although
important insights have been revealed from these studies,
many fundamental questions still remain open. For exam-
ple, will anomalous dimensions arise at such an itinerant
quantum critical point (QCP)? The Hertz-Millis-Moriya

theory predicts mean-field scalings. However, utilizing the
effective field theory derived in Ref. [17], it was shown
that divergence at four-loop order can lead to anomalous
dimensions deviating from mean-field exponents [21]. In
addition, the stability of these quantum critical points is
also an open questions; e.g., will nonanalyticities in the
momentum and frequency dependence of the theory lead to
an instability towards a fluctuation-induced first-order
transition or a fluctuation-induced second-order transition
[26,27]? Moreover, various studies have suggested that
near such a quantum critical point, critical fluctuations may
trigger some other instability, resulting in a new phase that
covers the QCP and masks the quantum critical region [28].
Experimentally, a ferromagnetic QCP was reported in a
heavy-fermion metal [11].
Since analytical approaches are facing difficulties study-

ing itinerant QCPs in a controlled manner, here, we study
such a QCP by utilizing unbiased numerical calculations,
i.e., the determinant quantum Monte Carlo (QMC) tech-
nique, which has been demonstrated as a very effective tool
for such problems [29–37]. For the numerical studies on
QCPs in itinerant fermionic systems, one major challenge
lies in the fact that critical quantum fluctuations often trigger
strong effective attractions between fermions, resulting in
instabilities in the particle-particle channel. For example, in
the recent studies on Ising nematic and charge-density-wave
(CDW) QCPs, superconducting domes are observed cover-
ing the QCPs [29–33,35]. Although it is a very intriguing
phenomenon that a QCP can induce unconventional super-
conductivity, for the study of quantum criticality itself, the
induced superconducting dome makes it difficult to obtain
direct information about the critical point for the following
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two reasons. (1) To accurately measure the critical expo-
nents, it is important to examine the close vicinity of the
QCP,which becomes challenging if theQCP is buried inside
a newquantumphase. (2) It is known that quantumcriticality
is one source for non-Fermi liquid behaviors. In order
to understand and characterize such a non-Fermi liquid
induced by a QCP, it is important to suppress other ordering
in the quantum critical region. As a result, obtaining a
pristine QCP without other induced instabilities becomes
crucial for studying theseQCPs,which is onemain objective
of this paper.
In this paper, we construct a model of 2D fermions

interacting with gapless ferromagnetic (Ising) fluctuations
and use the determinant QMC technique to solve this
ð2þ 1ÞD problem exactly [29–37]. Our QMC results are
consistent with such a pristine continuous quantum phase
transition in an itinerant ferromagnet in ð2þ 1ÞD, with no
superconducting ordering at any coupling strengths and
down to the lowest temperature that we can access. The
absence of superconductivity allows us to study the close
vicinity of the QCP, where we found clear signatures of
non-Fermi liquid behavior in the fermion propagators,
induced by critical fluctuations. Furthermore, we find that
because of the coupling between fermions and bosonic
modes, the ferromagnetic QCP is different from an ordinary
ð2þ 1ÞD Ising transition [38], but it also deviates from the
predictions of the Hertz-Millis-Moriya theory [6]. Hence,
our results support the existence of a ferromagnetic QCP
with markedly non-Fermi liquid behavior. These results
broaden the theoretical understanding of itinerant quantum
criticality and make connections to the existing experiment
phenomena.

II. MODEL AND METHOD

We consider a two-dimensional lattice model of itinerant
fermions coupled to an Ising ferromagnet with a transverse
field [Fig. 1(a)]. The Hamiltonian is comprised of three
parts,

Ĥ ¼ Ĥf þ Ĥs þ Ĥsf; ð1Þ

Ĥf ¼ −t
X
hijiλσ

ĉ†iλσ ĉjλσ þ H:c:; ð2Þ

Ĥs ¼ −J
X
hiji

ŝzi ŝ
z
j − h

X
i

ŝxi ; ð3Þ

Ĥsf ¼ −ξ
X
i

szi ðσ̂zi1 þ σ̂zi2Þ: ð4Þ

The fermionic part Ĥf describes spin-1=2 fermions on a
square lattice with two independent orbitals per site
(λ ¼ 1, 2). It includes a nearest-neighbor hopping term
that preserves the spin and orbital symmetries, where i and
j label the sites, while σ and λ are the spin and orbital
indices, respectively. We work in the grand canonical
ensemble, where the fermion density is set by the chemical
potential μ. All energy scales are measured in units of t. In
addition, each site of the square lattice has an Ising spin
ŝzi ¼ �1, whose quantum dynamics are governed by a
ferromagnetic transverse-field Ising model Ĥs. The Ising
spins and the fermions are coupled via an on-site Ising term
Ĥsf, where σ̂

z
iλ ¼ ðn̂iλ↑ − n̂iλ↓Þ=2 is the z component of the

fermion spin at orbit λ on site i.
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FIG. 1. (a) Sketches of our model shown in Eq. (1). Two bands or orbits (λ ¼ 1, 2) of fermions move in a square lattice; at each site, the
fermion spin is coupled to an Ising-gauge variable on the same lattice; and the Ising spins are subject to a ferromagnetic interaction J
among themselves and a transverse magnetic field h. The quantum fluctuations of the transverse-field Ising model furthermore introduce
effective interactions among the fermions. (b) h − T phase diagram of our model in Eq. (1). The phase boundaries (orange data points)
for coupling ξ ¼ 1 and μ ¼ −0.5 (fermion density hniλi ≈ 0.8) are the thermal transition points TNðhÞ from the ferromagnetic phase
(FM) to the paramagnetic phase (PM). The FM phase is further highlighted by the shaded blue area. For comparison, we also plot the
phase boundary without coupling (grey data points), i.e., that of the ð2þ 1ÞD transverse-field Ising model. The coupling changes the
position of the QCP (black dot to red dot along the h axis) as well as the power law of the phase boundary, which is described by critical
exponents ν and z [TNðhÞ ∼ jh − hcjzν] with νz ¼ 0.63 for ð2þ 1ÞD Ising at ξ ¼ 0 and TNðhÞ ∼ jh − hcjc with c ¼ 0.77ð4Þ for FMQCP
at ξ ¼ 1. The insets are plots of the low-energy spectral weight,G½k; τ ¼ ðβ=2Þ�, in the FM phase (left) and the PM phase (right), shown
for L ¼ 24. Here, results from several different sets of twisted boundary conditions are superimposed (see Appendix B).
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While, generically, models describing ferromagnetic
transitions in fermionic systems suffer from the sign
problem, here, the absence of the sign problem is guaran-
teed by the introduction of the two orbitals λ ¼ 1 and 2.
The two-orbital model is invariant under the antiunitary
symmetry iτyK, where τy is a Pauli matrix in the orbital
basis and K is the complex conjugation operator; thus, it is
free of sign problems [39]. The details of the DQMC
implementation are presented in Appendix A.
The Hamiltonian in Eq. (1) possesses an SUð2Þ ×

SUð2Þ × Uð1Þ ×Uð1Þ × Z2 symmetry, where the two
SUð2Þ symmetries are independent rotations in the orbital
basis for spin up and spin down, the two Uð1Þ symmetries
correspond to conservation of particle number with spin up
and spin down, and the Z2 symmetry interchanges spin up
and spin down while flipping the Ising spins sz → −sz.
As h and T are reduced, the system undergoes a PM-FM

phase transition, spontaneously breaking the Z2 symmetry.
In the absence of coupling between the Ising spins and the
fermions, the transition belongs to the Ising universality
class [40]. However, in the presence of the coupling ξ
between the Ising spins and the fermions, the system
becomes strongly correlated near the ferromagnetic QCP.
Here, we focus on the properties of this exotic itinerant
paramagnetic-ferromagnetic transition.

III. PHASE DIAGRAM

For ξ ¼ 0, the Ising spins are decoupled from the
fermions, and the phase transition is governed by the
transverse-field Ising model. The phase diagram is shown
in Fig. 1(b), where the phase boundary is marked by
grey data points. Our numerical studies confirm that the
phase boundary ends at a QCP at T ¼ 0 with ð2þ 1ÞD
Ising universality class [40]. Near the QCP, the transition
temperature follows the scaling relation, TNðhÞ∼ jh−hcjνz
with hc ¼ 3.04ð2Þ and νz ¼ 0.63, consistent with the
literature [34,38].
We now study the itinerant PM-FM transition by turning

on the coupling between the fermions and the Ising spins.
We begin by setting the coupling strength ξ ¼ 1 and
chemical potential μ ¼ −0.5, which gives rise to a fermion
density hniλi ≈ 0.8. As shown in Fig. 1(b), turning on the
coupling shifts FM phase boundary (orange data points) to
higher values of T and h. At this coupling strength, down to
the lowest temperature that we have accessed, β ¼ 100
(T ¼ 0.01), we observe no signature of any additional
ordered phases near the QCP. We identify the finite-
temperature ferromagnetic transition by a finite-size
scaling analysis of spin susceptibilities, as explained in
Appendix C. Extrapolation towards zero temperature indi-
cates that the itinerant PM-FM quantum phase transition
occurs at hc ¼ 3.270ð6Þ and is of second order, but the
scaling behavior near the QCP deviates strongly from that
of the ð2þ 1ÞD Ising universality class. For example, as
shown in Fig. 1(b), the transition temperature TN scales as

TNðhÞ ∼ jh − hcjc with hc ¼ 3.270ð6Þ and c ¼ 0.77ð4Þ.
Note that because of the itinerant nature of the QCP, the
exponent c is no longer expected to obey the relation
c ¼ zν [6].
Because of the nonzero coupling ξ, the Fermi surface

structure changes across the FM transition. The fermionic
low-energy spectral weight shown in the inset of Fig. 1(b),
extracted from the imaginary time Green’s function
Gðτ ¼ β=2Þ [30,41], reveals the location of the Fermi
surface. In the PM phase (h > hc), fermions with up and
down spins share the same Fermi surface because of the
spin degeneracy (Ising symmetry) of the Hamiltonian [right
inset of Fig. 1(b)]. This degeneracy is lifted in the FM phase
(h < hc) because of spontaneous symmetry breaking, and
thus, the Fermi surface splits [left inset of Fig. 1(b)].
At the QCP, low-energy fermionic excitations near the

Fermi surface become strongly coupled with the critical
bosonic spin fluctuations, offering an ideal platform for
investigating the itinerant FM QCP. Below, we demonstrate
that this QCP is stable down to low-energy scales and,
more interestingly, that it is characterized by a dramatic
breakdown of Fermi-liquid behavior.

IV. NON-FERMI LIQUID BEHAVIOR

One of the key theoretical predictions for an itinerant
QCP is that the critical bosonic fluctuations induce strong
damping of the fermions, resulting in a non-Fermi liquid
where the low-temperature fermionic quasiparticle weight
vanishes at the Fermi surface [14,16–18,22–24,42].
Following Ref. [43], we measure the quasiparticle weight
from the Matsubara-frequency self-energy

ZkF
≈

1

1 − ImΣðkF;iω0Þ
ω0

; ð5Þ

where Σ is obtained from our QMC simulations and kF is
the momentum at the Fermi surface (FS). In our finite-
temperature simulations, the Matsubara frequencies take
discrete values, ωn ¼ πð2nþ 1ÞT. As an estimator for ZkF

,
we use the first Matsubara frequency, ω0 ¼ πT in Eq. (5).
The results are shown in Fig. 2(a) for h ¼ hc (squares)

and h > hc (circles). Here, we plot the quasiparticle weight
at two different momentum points on the Fermi surface,
i.e., kF along the kx direction (θ ¼ 0) and along the kx ¼ ky
direction (θ ¼ ðπ=4Þ). In the paramagnetic phase (h > hc),
ZðTÞ remains close to unity at low temperatures, indicating
well-defined quasiparticles on the Fermi surface, as
expected in a Fermi liquid. In contrast, at the QCP
(h ¼ hc), ZðTÞ is suppressed with decreasing temperature
and it extrapolates to zero at T → 0, which is the key
signature of a non-Fermi liquid. This is one of the key
findings of this study.
As shown in Fig. 2(a), at the QCP, as T → 0, ZðTÞ

decreases faster for kF along the diagonal direction
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(θ ¼ ðπ=4Þ) in comparison with other parts of the FS (e.g.,
θ ¼ 0). This anisotropy is due to the anisotropy of the
Fermi surface. The fermion density in our simulation is
around 0.8, which is not far from perfect nesting (at half-
filling). This near-nesting Fermi-surface geometry results
in soft fermion-bilinear modes around Q ¼ ðπ; πÞ, which
we have directly observed by measuring the fermion spin
susceptibility as shown in Appendix H. These soft modes
have a finite gap, and thus they are not the origin of the non-
Fermi liquid behavior. However, scattering with these soft
modes presumably introduces additional dampings for the
fermions. Such scattering processes are stronger (weaker)
for kF near the diagonal direction θ ¼ ðπ=4Þ (θ ¼ 0),
where 2kF is close to (far away from) Q, and thus can
lead to the observed anisotropy in ZðTÞ.
In Fig. 2(b), we show the imaginary part of the self-

energy, ΣðωnÞ ¼ G−1
0 −G−1 [where GðωnÞ andG0ðωnÞ are

the fermionic Green’s function, and the Green’s function
of the noninteracting system, respectively] as a function
of the Matsubara frequency ωn. In the paramagnetic phase
(circle symbols), −ImðΣÞ approaches zero linearly as
ωn → 0, as expected for a Fermi liquid. Such a behavior
is not seen at the QCP, however, where we observe an
increase of −ImðΣÞ upon decreasing ωn, indicating a
strong damping of the fermions at low frequencies. One
possible mechanism for such surprising frequency depend-
ence is related to thermal fluctuations of the FM order
parameter, as shown in Appendix I.
The fermion Green’s functions, ImGðkF;ωnÞ, are

presented in Fig. 2(c). Note that −ImGðkF;ωnÞ is related
to the single-fermion spectral function AðkF;ωÞ through
−ImGðωnÞ ¼ R ½ðdωÞ=π�½ωn=ðω2

n þ ω2Þ�AðkF; ωÞ. The
fact that −ImðGÞ increases with decreasing ωn indicates
that, both for h ¼ hc and h > hc and to the lowest
temperature we have accessed, there is no visible suppres-
sion of the fermionic spectral weight at low frequency, i.e.,
no sign of an opening of a gap in the fermionic spectrum (at
least down to frequencies of the order of ω ∼ πT). A similar
conclusion can be reached by noting that −ImΣ is never
much larger than ω0; i.e., the self-energy never dominates
over the bare frequency dependence of the Green’s func-
tion. This observation is consistent with the fact that there is
no signature of a nearby superconducting phase for any
value of h, as shown in Sec. VI and Appendix G. Similarly,
there is no signature of any other competing phase that
emerges close to the QCP (see Appendix H).

V. QUANTUM CRITICAL SCALING ANALYSIS

Near the quantum critical point, the bosonic critical
modes become strongly renormalized by the coupling to
the gapless fermionic degrees of freedom (d.o.f.). As a
result, the universality class of the quantum critical point
is different from that of an ordinary Ising transition in
(2þ 1) dimensions. Our QMC results indicate that the
behavior at the QCP resembles the behavior predicted by
Hertz-Millis theory but also deviates from it in a signifi-
cant way. Below, we first summarize the Hertz-Millis
predictions and then present a modified Hertz-Millis
scaling formula, which fits our QMC data for the Ising
spin susceptibility at all the momenta and frequencies
simulated.
TheHertz-Millis-Moriya theory isbasedonquantumdynam-

icsobtainedfromtherandomphaseapproximation(RPA)[1–3].
Within this approximation, the Ising spin susceptibility,
χðh; T; q; ωnÞ ¼ ð1=L2Þ R dτ

P
ije

iωnτ−iqrijhszi ðτÞszjð0Þi,
takes the following form near the QCP,

χðh; T;q;ωnÞ

¼ 1

ctT2 þ chjh − hcj þ cqq2 þ cωω2 þ Δðq;ωnÞ
; ð6Þ
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FIG. 2. (a) ZkF
ðTÞ at FM QCP (hc ¼ 3.27, squares) and in the

PM phase (h ¼ 3.60, circles). The left inset is the G½k; ðβ=2Þ� at
the FS for T ¼ 0.05, while the right inset is for T ¼ 0.1. Although
there is anisotropy in ZkF

at different parts of the FS, the
quasiparticle weight in the kx and kx ¼ ky directions both
approach zero at FM QCP, indicating a non-Fermi liquid behavior
for the entire FS. The data in the PM phase show the quasiparticle
weight approaching a constant (very close to 1), indicating the
system is a Fermi liquid. Panel (b) shows −Im(ΣðkF;ωnÞ) at FM
QCP (h ¼ hc, square symbol). It increases as ωn → 0 (signifying
the system at QCP loses its quasiparticleweight with a power law),
a non-Fermi liquid behavior, while in the PM phase (h ¼ 3.60,
circle symbol), the imaginary part of the self-energy approaches
zero linearly as ωn → 0—a Fermi-liquid behavior. (c) Imaginary
part of the single-fermion Green’s function at the FM QCP
(h ¼ 3.27, square symbol) and in the PM phase (h ¼ 3.60, circle
symbol). No signature of the gap formation is observed.
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where ct, ch, cq, cω are constants. Here, cqq2 þ cωω2 comes
from the bare action of the Ising d.o.f., and theΔðq;ωnÞ term is
the contribution of the fermionic fluctuations. For an isotropic
2D Fermi fluid, and for q and ωn much smaller than the Fermi
momentum and energy, respectively,

Δðq;ωnÞ ¼ cHM
jωnjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
n þ ðvfqÞ2

q ; ð7Þ

where cHM is a constant and vf is the Fermi velocity.
A key property of Δðq;ωnÞ is its singular behavior in
the limit q → 0, ω → 0. Depending on whether one
first takes the long-wavelength (q → 0) limit or the
low-energy (ω → 0) limit, Δðq;ωnÞ converges to dif-
ferent values, limq→0limωn→0Δðq;ωnÞ ∼ ωn=q → 0, while
limωn→0limq→0Δðq;ωnÞ ¼ cHM. This singularity is of great
importance for the quantum dynamics at the QCP. It leads to
the following properties:

χðh ¼ hc; T ¼ 0;q;ωn ¼ 0Þ−1 ¼ cqq2; ð8Þ

χðh ¼ hc; T ¼ 0;q ¼ 0;ωnÞ−1 ¼ cHM þ cωω2
n: ð9Þ

Beyond the RPA level, the scaling relation above can be
modified by higher-order terms, and the scaling analysis in
Ref. [2] suggests that the exponent forT shifts from 2 to 1 up to
logarithmic corrections.
Although these two relations differ by a constant (cHM),

note that the q and ωn dependence has the same scaling
exponent. The reason for this behavior is that at q ¼ 0 and
small ωn (or at ωn ¼ 0 and small q), Δðq;ωnÞ becomes
independent of q or ωn, respectively. Thus, the ωn or q
dependence in χ−1 is dominated by the bare action of the
Ising d.o.f. The fact that the exponents characterizing the ω
and q dependence are the same reflects the emergent
Lorentz symmetry of the bare Ising action.
Our QMC results share some characteristics with

this predicted form but with anomalous scaling
dimensions. As shown in Figs. 3(a) and 3(b), we
indeed find that limq→0limωn→0χ

−1ðq;ωnÞ differs from
limωn→0limq→0χ

−1ðq;ωnÞ by a constant cHM ¼ 0.20ð4Þ
as predicted by the RPA. The ferromagnetic susceptibility
is found to be well described by the following formula:

χðh;T;q;ωnÞ

¼ 1

ctTat þ chjh− hcjγ þ ðcqq2 þ cωω2Þaq=2 þΔðq;ωnÞ
;

ð10Þ

with an anomalous exponent aq ¼ 1.85ð3Þ. This is differ-
ent both from the exponent for an Ising transition in (2þ 1)
dimensions, 1.96, and from the Hertz-Millis value of 2.

The presence of an anomalous exponent is another key
finding of this study.
The functional form in Eq. (10) is analogous to the RPA

prediction [Eq. (6)], but it allows for non-mean-field
exponents (at, γ, and aq). This form is found to fit all
the numerical data points [Fig. 3(c)].
Note that Eq. (10) contains Δðq;ωnÞ, which has the

form of a free-fermion susceptibility. However, as will be
shown below, within numerical resolution, as long as Δ
captures the singular behavior at q → 0 and ω → 0, the
quality of the fit of χðh; T;q;ωnÞ is not sensitive to the
detailed functional form of Δðq;ωnÞ. More importantly,
our key conclusions, e.g., the anomalous dimension
η ¼ 2 − aq ¼ 0.15, are fully independent of the particular
choice of Δðq;ωnÞ. Therefore, here we use the RPA form
[Eq. (7)], where, for simplicity, we set vf to 2.
By fitting with χðh; TÞ at q ¼ 0 and ωn ¼ 0, we find

that ct ¼ 0.13ð1Þ, at ¼ 1.48ð4Þ, ch ¼ 0.7ð1Þ, γ ¼ 1.18ð4Þ;
details can be found in Appendix D. As shown above,
by fitting with χ at q ¼ 0 or ω ¼ 0 [Figs. 3(a) and 3(b)],
we find aq ¼ 1.85ð3Þ, cq ¼ 1.00ð2Þ, cω ¼ 0.10ð2Þ, and
cHM ¼ 0.20ð4Þ. With all the fitting parameters fixed, we
can use Eq. (10) to collapse all χ data for all q, ωn, h, and T.
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FIG. 3. (a) Inverse spin susceptibility at ωn ¼ 0 as a function of
jqj (data points with L ¼ 24, 28 and T ¼ 0.125). The red line
shows the fitting with χ−1 ¼ cqqaq , and we get aq ¼ 1.85ð3Þ. The
black dashed line shows the slope aq ¼ 2. (b) Inverse spin
susceptibility at q ¼ 0 as a function of ωn (data points with
L ¼ 20, 24, and 28 for T ¼ 0.1, with L ¼ 20 for T ¼ 0.025). The
red curve shows the fitting with χ−1 ¼ cHM þ cωω

aω
n . (c) Data

collapse for Ising susceptibility against the functional Eq. (10),
where F−1¼ctTatþchjh−hcjγþðcqq2þcωω2Þaq=2þΔðq;ωnÞ.
The dark violet squares (3946 in total, made up of T ¼ 1.0,
0.83, 0.67, 0.5, 0.4, 0.3, 0.25, 0.2, 0.17, 0.13, 0.1;
h ¼ 3.27,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4.0; and L ¼ 24) are for data
with zero frequency, while the light blue circles (6096 in total,
made up of L ¼ 20with T ¼ 0.1, 0.05, 0.033, 0.025, 0.014, 0.01,
and L ¼ 24, 28 with T ¼ 0.1, 0.05) are for data with frequency
dependence. The red line with y ¼ x serves as the baseline for
comparison of QMC data with the functional approximation.
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The results are presented in Fig. 3(c). Clearly, all the data
collapse onto the same curve, especially at small q, ωn, low
temperature T, and h ∼ hc.
ForΔðq;ωnÞ, we find that as long as limωn→0Δðq;ωnÞ¼0

and limq→0Δðq;ωnÞ ¼ cHM ¼ 0.20ð4Þ, modifying the
functional form of Δðq;ωnÞ has little impact on χ within
numerical error bars of the QMC data. This uncertainty in
Δðq;ωnÞ prevents us from obtaining detailed information
about the dynamics at the QCP (e.g., the precise value
of the dynamical critical exponent z). However, since by
definition Δðq;ωnÞ vanishes at ωn ¼ 0, all the conclusions
regarding the static limit (ωn ¼ 0), including the anoma-
lous dimensions η ¼ 2 − aq ¼ 0.15 obtained from the q
dependence in χðq;ωn ¼ 0Þ, are independent of the details
of Δðq;ωnÞ.

VI. SUPERCONDUCTIVITY

We now discuss the superconducting properties close to
the FM QCP. Unlike previous QMC studies of quantum
criticality in metals (such as the Ising-nematic, SDW, and
other QCPs [29–33,35]), the FM QCP shows a substantial
separation of scales between the onset of superconducting
correlations and the phenomena described thus far, i.e.,
non-Fermi liquid behavior and quantum critical scaling,
thus making this system an ideal platform for the inves-
tigation of quantum fluctuations close to criticality.
As described in Appendix E, the spin fluctuations induce

an attractive interaction in the spin-triplet channel. The two-
band structure of the model allows for a number of distinct
superconducting order parameters, of which we find that
the strongest pairing tendencies occur in the orbital-singlet,
spin-triplet channel, with the order parameter

Δi;σ ¼ ci1σci2σ; ð11Þ
where σ ¼ ↑, ↓ is the spin index. Indeed, this channel is
found to be the leading instability in a weak-coupling,
mean-field analysis (see Appendix E). The two components
Δ↑ and Δ↓ are related by the Z2 (spin-flip) symmetry of the
model and are therefore of equal magnitude in the mag-
netically disordered phase. The order parameter transforms
as a scalar under lattice rotations and reflections; hence, we
expect single-fermion excitations to be fully gapped in the
superconducting state.
Because fermions in our model only preserve a Uð1Þ

spin rotational symmetry, a finite-temperature triplet order-
ing is, in principle, allowed, in contrast to 2D systems with
SUð2Þ spin rotational symmetry where triplet pairing may
only occur at zero temperature. As shown in Appendix F,
the two-component nature of the order parameter allows,
in principle, for more exotic phases such as a charge-4e
superconductor (4e SC) and a spin-nematic (SN) phase
[44–47]. We have found no numerical evidence for the
existence of these phases, and therefore, we focus on the
triplet, charge 2e superconductor described above.

To probe for superconducting tendencies near theQCP,we
explore three parameter sets: fξ ¼ 1.0; μ ¼ −0.5; J ¼ 1.0g,
fξ ¼ 1.5; μ ¼ −2; J ¼ 0.5g, and fξ ¼ 3.0; μ ¼ −2;
J ¼ 0.5g. First, the finite-temperature FM-to-PM phase
transitions are identified by finite-size scaling of the Ising
spin susceptibilities, as discussed in Appendix D. Then, as
depicted in Fig. 4, the FMQCPs are located by extrapolating
the finite-temperature phase boundary towards T ¼ 0. As
expected, the larger the coupling ξ, the higher the critical
field hc at the FM QCP.
Next, we calculate the pairing correlations for all pairing

channels, with on-site and nearest-neighbor form factors
(see Appendix G). Among all the available channels, only
the order parameter defined in Eq. (11) has pairing
correlations peaked at the QCP. We conclude that it is
the only channel that is substantially enhanced by critical
FM fluctuations.
Figure 5 shows the pairing structure factor C ¼

½1=ð2L2Þ�PijσhΔ†
iσΔjσi. At all couplings, we find a peak

of the pairing correlations at the QCP. At ξ ¼ 1 and
ξ ¼ 1.5, the pairing correlations do not grow with the
system size, indicating we are far from a superconducting
transition. At the strongest coupling, ξ ¼ 3, C grows, albeit
very slowly, with L, indicating that the correlation length of
the superconducting order parameter is moderately large.
Although pairing correlations in this channel are

enhanced close to the QCP, long-range or quasi-long-range
superconducting order never develops down to T ¼ 0.025
for any of the three parameter sets. This conclusion is
corroborated by an analysis of the superfluid density,
shown in Appendix G.
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FIG. 4. Estimation of the FM QCP for larger coupling. There
are three parameter sets in total: fξ ¼ 1.0; μ ¼ −0.5; J ¼ 1.0g,
fξ ¼ 1.5; μ ¼ −2; J ¼ 0.5g, and fξ ¼ 3.0; μ ¼ −2; J ¼ 0.5g.
The finite-temperature phase boundaries are determined from
the Ising spin susceptibilities, as discussed in Appendix D. The
QCPs are denoted by the colored arrows. Close to each FM QCP,
we scan h to measure various superconductivity instabilities. The
results are shown in Fig. 5.
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VII. DISCUSSION

In this work, we have constructed a lattice model
that realizes a pristine ferromagnetic QCP in an itinerant
Fermi system. At the QCP, clear non-Fermi liquid
behavior is observed. The static (ωn ¼ 0) ferromagnetic
susceptibility obeys scaling with an anomalous dimension
η ¼ 2 − aq ¼ 0.15, which deviates from both the ð2þ 1ÞD
Ising value (η ¼ 0.036) and the mean-field value expected
from Hertz-Millis theory (η ¼ 0).
The ωn dependence of the bosonic susceptibility is highly

nontrivial. In particular, the long-wavelength limit (q → 0)
and the low-frequency limit (ωn → 0) do not commute. To
fully characterize the quantumdynamics at theQCP,we need
to obtain detailed information about Δðq;ωnÞ in Eq. (10),
especially in the low-energy limit. The presence of an
anomalous dimension in aq and in transition temperature
TN suggests that Δ probably also deviates from the Hertz-
Millis form,which has a dynamic critical exponent z ¼ 3 and
thus predicts mean-field exponents. At the qualitative level,
our conclusions and the observation of anomalous dimen-
sions are in good agreement with the four-loop scaling
analysis in Ref. [21]. However, although our studies reveal
direct information on the qualitative features of Δðq;ωnÞ
(i.e., the singular behavior in the limit q → 0, ωn → 0), the
detailed functional form is beyond the resolution set by finite-
size and finite-temperature effects of our QMC study.
It is interesting to contrast the results of the present study

with those obtained for a related (but different) problem of
an itinerant Ising-nematic QCP [30,35]. The two problems
have essentially the same description within Hertz-Millis
theory. Similarly to our results for an Ising ferromagnetic
QCP, the Ising nematicQCP displays strong deviations from

Fermi-liquid behavior. A key difference, however, is that in
the FMQCP, Fermi-liquid behavior is lost everywhere along
the Fermi surface; i.e., there are no “cold spots” with long-
lived quasiparticles. Furthermore, near the FM QCP, strong
deviations from Fermi-liquid behavior were found at tem-
peratures much larger than any scale associated with super-
conductivity. In the Ising-nematic problem, the Ising order
parameter correlations also show a singular behavior in the
ðq → 0;ωn → 0Þ limit. However, in the FM case presented
here, the fermionic magnetic susceptibility is exactly con-
served, unlike the Ising-nematic case where an approximate
conservation was found. An additional key difference is the
anomalous exponents detected in the present work.
Perhaps the most striking difference between the two

models lies in their superconducting properties. While the
Ising-nematic QCP was found to be strongly unstable
towards s-wave superconductivity [35], the leading super-
conducting instability in the FM case is described by a
two-component, spin-triplet order parameter, with the
possibility of exhibiting interesting, unconventional phases
such as a charge-4e superconductor.
On the experimental side, our results may shed some new

light on the study about 2D or quasi-2D metallic materials
with Ising magnetic order, like Fe1=4TaS2 [48] and
CeCd3As3 [49].

ACKNOWLEDGMENTS

The authors thank F. Assaad and S. Kivelson for helpful
discussions. X. Y. X. and Z. Y.M. are supported by the
Ministry of Science and Technology of China under Grant
No. 2016YFA0300502, the National Science Foundation of
China under Grants No. 11421092 and No. 11574359, and
theNational Thousand-Young-Talents ProgramofChina.We
thank the following institutions for allocation of CPU time:
the Center for Quantum Simulation Sciences in the Institute
of Physics, Chinese Academy of Sciences; the Tianhe-1A
platform at the National Supercomputer Center in Tianjin;
and the Gauss Centre for Supercomputing e.V. [50] for
providing access to the GCS Supercomputer SuperMUC at
Leibniz Supercomputing Centre (LRZ, [51]). K. S. is sup-
ported by the National Science Foundation under Grants
No. PHY-1402971 at the University of Michigan and the
AlfredP. SloanFoundation.Y. S. andE. B.were supported by
the Israel Science Foundation under Grant No. 1291/12, by
the US-Israel BSF under Grant No. 2014209, and by aMarie
Curie reintegration grant. E. B. was supported by an Alon
grant. Y. S. and E. B. thank S. Lederer and S. Kivelson for a
collaboration on related topics.

APPENDIX A: DETERMINANTAL QUANTUM
MONTE CARLO IMPLEMENTATIONS

The determinantal quantum Monte Carlo (DQMC)
formalism starts with the partition function of the original
Hamiltonian. To efficiently evaluate the trace in the
partition function, discretized imaginary time is used and
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FIG. 5. Static pairing-correlation function C ¼ ð1=L2ÞhΔ̂†Δ̂i
for order parameters defined in Eq. (11). For fξ ¼ 1.0; μ ¼ −0.5;
J ¼ 1.0g, no enhancement of pairing correlation functions
is observed in any pairing channel down to T ¼ 0.025. For
fξ ¼ 1.5; μ ¼ −2; J ¼ 0.5g and fξ ¼ 3.0; μ ¼ −2; J ¼ 0.5g, the
pairing order parameters Δ↑ and Δ↓ show enhanced correlation
near the QCP, in agreement with theoretical analysis. No
enhancement is observed in other pairing channels.
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β ¼ MΔτ (Δτ ¼ 0.05). As the studied model contains both
fermion and Ising d.o.f., the trace will involve both a sum
over Ising spin configurations and a determinant after
tracing out the fermion d.o.f.

Z ¼ Tr½e−βĤ�
¼

X
sz
1
���szN¼�1

TrFhsz1 � � � szN jðe−ΔτĤÞMjsz1 � � � szNi: ðA1Þ

Let S ¼ ðsz1 � � � szNÞ denote the Ising spins; then,

Z ¼
X

S1���SM
TrFhS1je−ΔτĤjSMihSMje−ΔτĤjSM−1i

� � � hS2je−ΔτĤjS1i: ðA2Þ
Now we can trace out the fermion d.o.f. and obtain the
configurational weight,

ωC ¼ ωTI
C ωF

C ðA3Þ
with the Ising part

ωTI
C ¼

�Y
τ

Y
hi;ji

eΔτJs
z
i;τs

z
j;τ

��Y
i

Y
hτ;τ0i

Λeγs
z
τ;is

z
τ0 ;i

�
; ðA4Þ

where Λ2 ¼ sinhðΔτhÞ coshðΔτhÞ, γ ¼ − 1
2
ln ðtanhðΔτhÞÞ.

For the fermion part, we have

ωF
C ¼ det ð1þBM � � �B1Þ: ðA5Þ

As an antiunitary symmetry iτyK (where τy is a Pauli
matrix in the orbital basis and K is the complex conjugation
operator) makes the Hamiltonian invariant, the fermion part
weight can be further rewritten as

ωF
C ¼

����
Y
σ

detð1þ B1σ
M � � �B1σ

1 Þ
����
2

; ðA6Þ

where

Bλσ
τ ¼ exp ð−ΔτKλσ þ Δτξdiagðsz1;…; szNÞÞ; ðA7Þ

withKλσ the hopping matrix for orbital λ and spin σ. It turns
out that both the fermion weight and the Ising weight are
always positive; thus, there is no sign problem. To system-
atically improve the simulation, especially close to the
(quantum) critical point, we have implemented both a local
update in DQMC and a space-time global update [34]. In the
global update, we use the Wolff algorithm [52] to propose
space-time clusters of the Ising spins and then calculate
the fermion weight to respect the detailed balance as the
acceptance rate of the update. Further attempts, with the
recently developed self-learning determinantal quantum
Monte Carlo scheme [53–55], which can greatly reduce
the autocorrelation at the (quantum) critical point and speed
up the simulation with theOðNÞ fold, to access larger L and
lower T are in progress.

APPENDIX B: Z-DIRECTION FLUX

To reduce spurious finite-size effects, we have used the
techniques introduced in Ref. [56]. The basic idea is to
introduce an effective z-direction flux by multiplying the
hopping parameter by Peierls phase factors, i.e.,

−tĉ†iλσ ĉjλσ → −teiϕ
λσ
ij ĉ†iλσ ĉjλσ;

with ϕλσ
ij ¼ ½ð2πÞ=Φ0�

R rj
ri A

λσðrÞ · dr.
To make sure the model remains free of the sign

problem, we take

ϕ1↑
ij ¼ ϕ1↓

ij ¼ −ϕ2↑
ij ¼ −ϕ2↓

ij ; ðB1Þ

therefore, the applied flux is not a true magnetic field, as it
couples differently to fermions of different flavors.
Translational invariance imposes restrictions on the

magnitude of the effective magnetic field, namely, Bλσ ¼
nðΦ0=L2Þ, with n an integer andΦ0 the flux quanta. We use
the Landau gauge AλσðrÞ ¼ −Bλσyx̂ in the bulk of the
system, whereas special care is taken at the “edges”,

ϕλσ
iðx;y¼LÞ;jðx;y¼1Þ ¼

2π

Φ0

BλσLx; ðB2Þ

ϕλσ
iðx;y¼1Þ;jðx;y¼LÞ ¼ −

2π

Φ0

BλσLx: ðB3Þ

While applying a flux in the z direction dramatically
improves the convergence to the thermodynamic limit, it
also breaks translation symmetry, making it impossible to
extract the momentum dependence of fermionic correla-
tions. Whenever such information is needed [such as for
the momentum-resolved, singlet-particle Green’s function
GkðωnÞ], we apply a flux in the x or y direction, which is
equivalent to twisting the boundary conditions. Just as in
the case of the z-directed flux, choosing Eq. (B1) ensures
the absence of the sign problem [57]. We have used six
kinds of twisted boundary conditions, (0,0), ðπ=2; 0Þ,
ðπ=2; π=2Þ, ðπ; 0Þ, ðπ; π=2Þ, and ðπ; πÞ; thus, we get 16
times higher resolution of momentum.

APPENDIX C: THERMAL PHASE TRANSITION

The thermal phase boundary in Fig. 1(b) of the main text
is controlled by the 2D Ising critical exponents γ ¼ 7=4
and ν ¼ 1, implying that the zero-frequency and zero-
momentum Ising spin susceptibility around the finite-
temperature critical field hN satisfies

χðh; T; 0; 0Þ ¼ Lγ=νfððh − hNÞL1=νÞ: ðC1Þ

Here, the Ising spin susceptibility is defined as
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χðh; T;q; iωnÞ ¼
1

L2

X
ij

Z
β

0

dτeiωnτ−iq·rijhszi ðτÞszjð0Þi:

ðC2Þ

Figure 6(a) illustrates the behavior of χðh; T; 0; 0Þ at
fixed temperature T ¼ 0.5 as a function of transverse field;
Fig. 6(b) is the data collapse according to Eq. (C1), from
which we can obtain hNðT ¼ 0.5Þ ≈ 3.06. Because of the
coupling between the fermions and the Ising spins, the
fermions go through the same finite-temperature phase
transition, as shown in Fig. 7(a). The fermionic spin
susceptibility χFðh; T; 0; 0Þ, where

χFðh; T;q;ωnÞ ¼
1

L2

Z
dτ
X
ijλλ0

eiωnτ−iqrijhσziλðτÞσzjλ0 ð0Þi;

ðC3Þ
behaves much like χðh; T; 0; 0Þ, and a data collapse, shown
in Fig. 7(b), gives rise to the same hNðT ¼ 0.5Þ ≈ 3.06.

APPENDIX D: QUANTUM CRITICAL
SCALING ANALYSIS OF χ ðh;T;0;0Þ

In the main text, we have discussed the dynamic Ising
spin susceptibility, χðh; T;q;ωnÞ, and performed the quan-
tum critical scaling analysis. Here, we reveal more details.
According to Eq. (10) in the main text, at q ¼ 0 and

ωn ¼ 0, we have

χðh; T; 0; 0Þ ¼ 1

ctTat þ chjh − hcjγ
: ðD1Þ

We detect the power in T by measuring χðh ¼ hc; T; 0; 0Þ,
and Fig. 8 shows the fitting of χðh ¼ hc; T; 0; 0Þ−1 ¼ ctTat .
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The fit gives rise to ct ¼ 0.13ð1Þ and at ¼ 1.48ð4Þ. We
further detect the power in transverse field h by fitting
χðh; T; 0; 0Þ−1 − χðhc; T; 0; 0Þ−1 ¼ chjh − hcjγ , as shown
in Fig. 9. The fit gives rise to ch ¼ 0.7ð1Þ and γ ¼ 1.18ð4Þ.

APPENDIX E: EFFECTIVE ATTRACTION
AND BCS ANALYSIS

In this section, we examine the effective attraction
induced by the Ising-field fluctuations. Away from the
critical point, the Ising spins are gapped, and we can
therefore integrate them out, obtaining an effective four-
fermion interaction,

Sint ¼ −
ξ2

2

Z
dτdτ0

X
ijλλ0

σziλðτÞχðh; T; ri − rj; τ − τ0Þσzjλ0 ðτ0Þ:

ðE1Þ

This interaction contains two types of terms: (a) attractions,
e.g., nλ↑nλ0↑, and (b) repulsions, nλ↑nλ0↓. Focusing on
instabilities in the particle-particle channel, only attractive
interactions will be considered. We are therefore restricted
to pairing of fermions of equal spin. Within the BCS
approximation, to gain the most free energy, a nodeless
order parameter is preferable. Thus, to satisfy the Pauli
principle, the order parameter must transform as a singlet
under orbital rotations. This implies that the effective
attraction favors pairing in the channels Δi;σ ¼ ci1σci2σ
as well as their linear superpositions. These are the pairing
channels that are most favored by the ferromagnetic
fluctuations. As shown in Sec. VI of the main text, our
QMC results show that, indeed, pairing correlations in
these channels are enhanced near the FM QCP.

APPENDIX F: POSSIBLE
SUPERCONDUCTING PHASES

The two-component nature of the superconducting order
parameter Eq. (11) may give rise to a number of exotic
phases. Although our numerical data do not show evidence
of such phases, in this section we describe how these phases
could be detected. We restrict our attention to the para-
magnetic phase since the two components, Δ↑, Δ↓, are
related by the Z2 symmetry of the model. Define
Δσ ¼ Δeiθσ , and switch to the charge-spin basis,

θ↑ ¼ θc þ θs;

θ↓ ¼ θc − θs: ðF1Þ

Neglecting amplitude fluctuations, the classical phase
action is therefore S ¼ Sc þ Ss, with

Sc;s ¼
1

2

Z
d2rKc;sð∇θc;sÞ2: ðF2Þ

The possible phases (apart from a disordered phase) are as
follows:
(1) Charge-4e superconductor: θc is quasi-long-range

ordered, while θs is short ranged. An appropriate
order parameter is Δ↑Δ↓ ∝ ei2θc , whose correlations
go as hðΔ†

↑Δ
†
↓ÞðrÞðΔ↓Δ↑Þð0Þi ∝ r−½4=ð2πKcÞ�.

(2) Spin-nematic: θs is quasi-long-range ordered,while θc
is short ranged. The order parameter isΔ†

↑Δ↓ ∝ e−i2θs ,

whose correlations go as hðΔ†
↑Δ↓ÞðrÞðΔ†

↓Δ↑Þð0Þi ∝
r−½4=ð2πKsÞ�.

(3) Triplet superconductor: Both sectors have quasi-
long-range order. Here, Δ↑ has power-law correla-
tions, hΔ†

↑ðrÞΔ↑ð0Þi ∝ r−f½1=ð2πKcÞ�þ½1=ð2πKsÞ�g.
The phase diagram of the same model (in different

physical contexts) has been studied in Refs. [44–46]. To
determine the phase diagram, we consider the criteria for
stability against the appearance of a single vortex. In this
model, there are three kinds of vortices:
(1) A vortex of one spin species and an antivortex in

the other. Across the branch cut, θc → θc, θs →
θs þ 2π.

(2) A vortex of both spin species. Across the branch cut,
θc → θc þ 2π, θs → θs.

(3) A vortex of one of the spin species. Across the
branch cut, θc → θc þ π, θs → θs þ π.

The phase diagram can be derived from considering the free
energy of a single unpaired vortex, given by F ¼ E − TS.
(As in the usual Berezinski-Kosterlitz-Thouless transition,
such an analysis reproduces the phase diagram from a more
rigorous renormalization group treatment.) The stability
condition is F > 0. The energy of a vortex of type 3 is

E3 ¼
1

2
ðKc þ KsÞ

Z
d2r

�
π

2πr

�
2

¼ π

4
ðKc þ KsÞ log

�
L
a

�
;

where L is the system size and a is some short-range cutoff.
Similarly, E2 ¼ πKs logðL=aÞ and E1 ¼ πKc logðL=aÞ.
The entropy is the same in all cases, TS ¼ logðL2=a2Þ.
The resulting phase diagram is given in Fig. 10.
The stiffnesses Kc and Ks can be extracted from certain

current-current correlation functions [58],

Kc ¼
β

4
ðδΛ↑↑ þ δΛ↓↓ þ 2δΛ↑↓Þ;

Ks ¼
β

4
ðδΛ↑↑ þ δΛ↓↓ − 2δΛ↑↓Þ: ðF3Þ

Here,

δΛσ;σ0 ¼ lim
L→∞

�
Λxx
σ;σ0

�
qx ¼

2π

L
; qy ¼ 0

�

− Λxx
σ;σ0

�
qx ¼ 0; qy ¼

2π

L

��
; ðF4Þ
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where

Λxx
σ;σ0 ðqx; qyÞ ¼

1

L2

Z
dτ
X
ijλλ0

eiqðri−rjÞhjxiλσðτÞjxjλ0σ0 ð0Þi;

and jxiλσ ¼ iteiϕ
λσ
i;iþx̂ c†iλσciþx̂;λσ þ H:c: is the current density

for fermions of orbital λ and spin σ.

APPENDIX G: SUPERFLUID DENSITY
AND PAIRING CORRELATIONS

In this appendix, we provide further details on the
numerical evidence for superconductivity.
To identify the leading pairing channel, we considered

all possible on-site and nearest-neighbor pairing order
parameters and computed the pair structure factor for each
channel. In all channels other than the orbital-singlet, spin-
triplet channel defined in Eq. (11) of the main text, we find
a weak response with no substantial system-size depend-
ence or enhancement close to the FM QCP (not shown).
To test whether there are possible superconductivity

instabilities close to the QCP, we measured the superfluid
densities ρc and ρs, which are related to the stiffnesses Kc
and Ks defined in Eq. (F3). Here, ρc;s ¼ Kc;s=β. In Fig. 11,
we show the temperature dependence of ρc þ ρs. For both
sets of parameters, ρc þ ρs < ð8=πÞT at the largest system
size, and it decreases with the system size, implying the
absence of quasi-long-range superconducting order down
to T ¼ 0.025 (see Fig. 10). Note that upon increasing the
coupling strength and decreasing temperature, the finite-
size estimates for the superfluid density grow. It is likely
that there is a transition to a superconducting phase at
higher coupling strengths or lower temperatures.
For completeness, in Figs. 12 and 13, we show ρc, ρs,

respectively.

FIG. 10. Phase diagram of the phase action Eq. (F2), illustrating
the SN phase, the charge-4e SC phase, and the triplet super-
conducting phase.
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FIG. 11. Temperature dependence of ρc þ ρs at QCP for
different system sizes and different couplings.
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FIG. 12. Temperature dependence of ρc at QCP for different
system sizes and different couplings.
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FIG. 13. Temperature dependence of ρs at QCP for different
system sizes and different couplings.
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APPENDIX H: FERMION SPIN SUSCEPTIBILITY

In Fig. 2(a) of the main text, we discussed the anisotropy
of the quasiparticle fraction ZkF

ðTÞ along the θ ¼ 0 and
θ ¼ ðπ=4Þ directions, and we associate such anisotropy
to the soft fermion-bilinear mode around Q ¼ ðπ; πÞ in
the fermion spin susceptibility, besides the dominant
Q ¼ ð0; 0Þ ferromagnetic fluctuations. Here, we show
the fermion spin susceptibility [Eq. (C3)] in Fig. 14 and
reveal that it is indeed the case.
Figure 14 shows the fermion spin susceptibility at

h ¼ hc, T ¼ 0.05 from an L ¼ 24 system. The strongest
intensity is naturally at Q ¼ ð0; 0Þ; however, near
Q ¼ ðπ; πÞ, there are soft modes (the signal is very weak,
and we have to fix the intensity range to less than 1 and take
a logarithm of the original data).

APPENDIX I: SELF-ENERGY

As shown in Fig. 2 in the main text, the imaginary part of
the fermionic self-energy −ImΣðωnÞ increases in magni-
tude as the frequency is lowered. While such behavior is
expected in a superconducting state, the superconducting
fluctuations were found to be extremely weak. Here, we
speculate about the possible mechanism for such behavior.
Close to the classical Ising transition, the dynamics of

the order parameter are slow. We focus on the classical
fluctuations of the Ising spins, i.e., their static configura-
tions. For each such static configuration, one may solve the
fermionic part of the Hamiltonian and obtain the single-
particle Green’s function. Let us further assume that the
fluctuations are extremely sharply peaked at q ¼ 0. Then,
in a Monte Carlo simulation, the configurations alternate
between static, nearly spatially uniform configurations of
Ising spins. Most importantly, the sign of the order
parameter changes between these configurations, or else

the system is, by definition, in the ordered phase. Hence,
neglecting all other interaction effects, the fermionic
Green’s function takes the form

Gðk; iωnÞ ≈
1

2

�
1

iωn − ϵk − Δ
þ 1

iωn − ϵk þ Δ

�
; ðI1Þ

where Δ is the magnitude of the local ferromagnetic order
parameter. If ϵk ≪ Δ, ω, at the nominal Fermi surface
(ϵk ¼ 0), we find that

−ImΣðiωnÞ ¼ Im½G−1ðk; iωnÞ� − ωn ¼
Δ2

ωn
;

which increases rapidly as the frequency is lowered. If Δ
were large, compared, e.g., to temperature, it would be
possible to measure it by other means. This would also
imply jImΣðiω0Þj ≫ ω0 ¼ πT. Small gaps, however, are
difficult to detect.
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