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1.  Introduction

All hexaborides possess the same crystal structure that is 
simply constructed with a framework of B6 octahedrons 
and the rare-earth ions isolated in the interstitials of the 

framework [1], as shown in figure 1. Experimental measure-
ments demonstrate that the RB6 structure is quite sturdy, and 
the interstitial spaces of the B6 framework are rather large 
to host a variety of rare earth ions in a broad range of sizes. 
This is the reason why all rare earth hexaborides, including 
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Abstract
Finding the exotic phenomena in strongly correlated electron systems (SCESs) and 
understanding the corresponding microphysics have long been the research frontiers of 
condensed matter physics. The remarkable examples for the intriguing phenomena discovered 
in past years include unconventional superconductivity, heavy Fermion behaviors, giant 
magneto-resistance and so on. A fascinating type of rare earth hexaboride RB6 (R  =  Sm, 
Yb, Eu and Ce) belongs to a strongly correlated electron system (SCES), but shows unusual 
ambient-pressure and high-pressure behaviors beyond the phenomena mentioned above. 
Particularly, the recent discovery of the coexistence of an unusual metallic surface state and 
an insulating bulk state in SmB6, known to be a Kondo insulator decades ago, by theoretical 
calculations and many experimental measurements creates new interest for the investigation 
of the RB6. This significant progress encourages people to revisit the RB6 with an attempt 
to establish a new physics that links the SCES and the unusual metallic surface state which 
is a common feature of a topological insulator (TI). It is well known that pressure has the 
capability of tuning the electronic structure and modifying the ground state of solids, or even 
inducing a quantum phase transition which is one of the kernel issues in studies of SCESs. In 
this brief review, we will describe the progress in high pressure studies on the RB6 based on 
our knowledge and research interests, mainly focusing on the pressure-induced phenomena 
in YbB6 and SmB6, especially on the quantum phase transitions and their connections with 
the valence state of the rare earth ions. Moreover, some related high-pressure results obtained 
from CeB6 and EuB6 are also included. Finally, a summary is given in the conclusions and 
perspectives section.
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the ones with Y, La and the elements from Ce to Lu with 
4 f-electrons in the periodic table can be formed. It is sug-
gested that this structural peculiarity should be taken as one 
of the basic starting points to explain some of the anomalies 
in the RB6 systems.

The compounds RB6 are typical strongly correlated 
electron systems (SCESs). Since their electron structure is 
featured by incompletely filled d- or f-electron shells with 
narrow energy bands, the behavior of the electrons in RB6 
cannot be described effectively in terms of the non-interact-
ing entities [2]. In the vicinity of the Fermi level, the rare-
earth hexaborides generally have three types of electronic 
bands [3], namely, the R 5d band, the R 4 f band and the 
B 2p band. The physical behavior of RB6 is cooperatively 
determined by the relative energy levels to the Fermi level 
and the width of these bands, which is mainly governed by 
the delicate interplays among the spin, orbital, charge and 
lattice degrees of freedom. As containing f-electrons in their 
configurations, these hexaborides may exhibit a variety of 
exotic electron correlation behaviors [4]. In particular, theo-
rists predict that they may host the novel topological elec-
tronic states that are different from the usual topological 
insulators (TIs) without f-electrons [5–7], which needs to be 
further confirmed by more convictive experimental results 
[8–11].

In past years, a lot of progress has been made on hexaboride 
studies, including the discovery of superconductivity in YB6 
[12], very low work functions used as a thermionic emitter in 
monovalent metal LaB6 [13], dense Kondo system behavior 
and electric quadrupole ordering in CeB6 [14, 15], low-car-
rier-density magnetism with a narrow semiconducting gap in 
EuB6 [16] and nonmagnetic narrow gap in YbB6 [17], mixed 
valence and Kondo insulating property in SmB6 [18, 19].  
Particularly, a new electronic state with a possibly nontrivial 
metallic surface and insulating bulk has been found in SmB6 
[20], which brings new excitement in the condensed mat-
ter physics community and consequently attracts consider-
able attention from theoretical and experimental scientists to 
revisit the subgroup of RB6 (R  =  Sm, Yb, Eu, Ce).

A remarkable feature of these RB6 is that their valence 
states are usually unstable in different temperature ranges 
at ambient pressure or in different pressure ranges at fixed 
temperature [21]. This leads people to consider that the unsta-
ble valence state in RB6 intimately connects to their exotic 
behaviors observed in different experimental investigations. 
Usually, external control parameters, such as pressure or 
magnetic field, can tune the ground state of a correlated 
electron system from one to another, which is known as the 
quantum phase transition (QPT) [22, 23]. Studies on the 

Figure 1.  Schematic crystal structure of RB6. In crystallographic description, RB6 takes the body center cubic structure in space group 
Pm3m, in which rare earth ion R (dark pink) and B6 octahedron (green) are arranged in a CsCl-like packing.

Figure 2.  A sketch of the diamond anvil cell used for high pressure 
studies. Two diamond anvils are glued on the supporting plates 
oppositely. The sample is located in the hole of a gasket which is 
placed between the culets of the anvils. A tiny ruby ball is put next 
to the sample to determine the pressure applied.
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QPT by controlling these external parameters can yield great 
opportunities to find novel properties, which may be differ-
ent from those connecting with the QPT induced by chemical 
doping at ambient pressure.

Some exotic states of the RB6 can be induced by pressure 
via generating volumetric compression, in turn to give rise 
to a change of the electron structure accordingly. In general, 
pressure can tune the mean valence of rare earth ions between 
di-valence (without magnetism) and tri-valence (with magnet-
ism) in SmB6 or YbB6 because pressure can shrink the volume 
of the f-electron shell to change the configurations from f  6 
(with larger volume) to f  5 (with a smaller volume) for Sm ions 
and from f 14 (with a larger volume) to f 13 (with a smaller vol-
ume) for Yb ions, respectively [24]. Therefore, we can know 
that the populations of their magnetic ions and d-electrons can 
be enhanced simultaneously with increasing pressure, which 
is different from the other rare earth hexaborides. For exam-
ple, the pressure-induced valence changes from tri-valence 
(with a larger-volume) to tetra-valence (with a smaller-vol-
ume) for Ce ions in CeB6 and from di-valence to tri-valence 
for Eu ions in EuB6 take place due to the changes of f 1-to-f  0 
and f 7-to-f  6, respectively. These changes are accompanied by 
the alternation from magnetic ions to non-magnetic ions [24]. 
As a result, upon increasing pressure, the population of the 
magnetic ions is reduced while the population of d-electrons 
is increased. It is seen that the pressure-induced changes in the 
populations of magnetic ions and d-electrons are quite differ-
ent between SmB6 (or YbB6) and CeB6 (or EuB6). Thus, the 
diverse contributions of the valence states in determining the 
electronic structure and the corresponding properties in the 
pressurized RB6 systems with different f-electron configura-
tions are understood basically. However, there is still a lack 
of reports on high pressure experimental investigations on the 
valence state in RB6 above 10 GPa [25]. The recent progress 
reported by Zhou et al [26] demonstrates the pressure-induced 
valence increase in YbB6 up to 28 GPa by x-ray absorption 
measurements.

2.  Related high pressure methods

Advanced high pressure techniques can provide a tunable 
pressure range from ambient pressure to more than 300 GPa 
(1 GPa  =  109 Pa) for high pressure studies on matters. The 
high pressure techniques commonly adopted in the related 
studies of the hexoborides mainly include the in situ high- 
pressure measurements of resistance, Hall coefficient, synchro-
tron radiation x-ray diffraction (XRD) and x-ray absorption. 
Some aspects of these techniques are described as follows.

2.1.  High-pressure transport measurements at low 
temperature

A few types of high pressure apparatus have been developed 
and employed for low temperature transport measurements. 
A piston-cylinder tungsten anvil cell is commonly used for 
high pressure studies below ~3 GPa [27] and a toroid tungsten 
anvil cell can reach up to 8 GPa [28]. However, the diamond 
anvil cell (DAC) can be used in a vast pressure range up to 
240–250 GPa for transport measurements [29–32] and above 
300 GPa for optical measurements [33–36], because diamond 
is such a material which is the hardest and chemically inert 
to most of the matters. Moreover, due to its light and com-
pact body, DAC has good integratability with the cryostat like 
3He/4He dilution refrigerators.

The main consideration for reaching a higher pressure 
regime lies in the quality and alignment of the diamond 
anvils. Therefore, the single crystal diamonds without inclu-
sion should be selected as the anvils, and a perfect alignment 
for the two culets of the anvils is required in order to achieve 
a higher pressure in the DAC [37–40]. Diamond anvils sitting 
atop of a supporting plate is shown in figure 2.

One of the difficulties for the high-pressure transport 
measurements is the preparation for the four electrodes on the 
tiny culet of a diamond anvil. The development of a micro-
fabrication technique allows us to prepare the fine electrodes as 

Figure 3.  (a) Photograph showing arrangement of four standard electrodes fabricated on the culet of the diamond anvil for in situ high 
pressure resistance measurements. (b) Configuration of Van der Pau type of four electrodes on the culet of the diamond anvil, adopted  
for in situ high pressure Hall coefficient measurements.
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shown in figure 3. It demonstrates the typical arrangements of 
four electrodes on the culet with a diameter as small as 80 μm,  
the size similar to the diameter of a human being’s hair, for 
resistance measurement and Hall coefficient measurement, 
respectively.

2.2.  High pressure XRD and absorption measurements

Diamond is transparent for the electromagnetic wave with a 
wide range of energy, therefore the DAC has the great advan-
tage to be adopted to many types of spectroscopic measure-
ments, such as the synchrotron XRD and x-ray absorption 
spectroscopy measurements, which can help us to know the 
information about the crystal structure and valence state of 
the system investigated. In the recent decades, the develop-
ments in a variety of high pressure techniques have resulted in 
a wealth of new information about the unexpected behaviors 
of the RB6 systems [24, 26, 41–43].

3.  High pressure studies on the hexaborides

One of the recent remarkable advances in the field of strongly 
correlated electron physics is the finding of the coexistence 
of an insulating bulk and a metallic surface in the rare-earth 
hexaboride SmB6 [44–48], which is one of the common fea-
tures for a non-trivial topological state [49]. Consequently, 
these hexaborides are expected to bridge the physics between 
strongly correlated electron materials and TIs. As one of the 
powerful tools, the high pressure method is frequently applied 
in the other most famous strongly correlated systems to find 
new phenomena (such as heavy Fermion behavior and high-
Tc superconductivity) and to help understanding their phys-
ics. Naturally, the high pressure studies on these hexaborides 
are specially needed for establishing this link. Generally, the 
ambient-pressure information of the system investigated is 
fundamentally important to reveal its pressure-induced phe-
nomena, therefore, in each subtopic of this section, we will 
first introduce some related results obtained at ambient pres
sure, and then the results achieved at high pressure together 
with simple discussions accordingly.

3.1.  Pressure-induced exotic insulator–metal transition  
in SmB6

After discovery more than 40 years ago [50, 51], SmB6, as 
a prototypical Kondo insulator with strongly correlated 
f-electrons, is found to have an exotic metallic surface state 
connected with an insulating bulk state by measurements of 
angle-resolved photoemission spectroscopy (ARPES) [44, 45, 
52, 53], scanning tunneling microscopy (STM) [10, 47, 54], 
thickness tuning transport [20, 55–57], field dependence of 
magnetroresistance [58–61], ionic irradiation surface [62] and 
neutron scattering [63]. In particular, the discoveries of the 
unconventional Fermi surfaces revealed by the quantum oscil-
lation patterns for the SmB6 in a strong magnetic field [64, 65] 
provide a new perspective to help understand the physics of 
this unique hexaboride.

The temperature dependence of the ambient-pressure elec-
trical resistance of SmB6 can be described as transforming 
from a poor metallic state at room temperature to a Kondo 
insulating state with a small energy gap (14–20 meV) due to 
the hybridization of localized 4 f-elecrons with conduction 
electrons at temperature below ~100 K, and then to a saturated 
resistance state (featured by the puzzling resistance plateau) 
below the temperature 3–5 K [9, 44, 66, 67]. This resistance 
plateau has been suggested to be originated from the existence 
of an in-gap state [67–69]. This in-gap state with a scale of 
3–5 meV has been identified by experimental measurements, 
which is ascribed to reside in the hybridization gap [70, 71].

In recent studies, the phenomena of bulk quantum oscilla-
tions with characteristics of an unconventional Fermi liquid 
are observed in SmB6 [64, 65]. Li et al revealed two Fermi 
surfaces on the (1 0 0) surface plane and one Fermi surface on 
the (1 0 1) surface plane by means of torque magnetometry, 
and demonstrated the 2D nature of the conducting electronic 
states of SmB6. Tan et al found that the quantum oscillation 
amplitude of SmB6 strongly increased at low temperatures, 
although its quantum oscillation frequency characteristic of 
a large 3D conduction electron Fermi surface was similar to 
another two metallic rare earth hexaborides such as LaB6 and 
PrB6 [65]. These findings yield a new puzzle. As emerging 
in the same low temperature range, the quantum oscillation 
anomaly (the new puzzle) and the resistance plateau (the old 
puzzle) possibly share the same origination. Recent invest
igations propose that the surface Kondo breakdown is respon-
sible for the metallic surface state [72, 73], which may be 
associated to these two puzzling behaviors.

Figure 4.  Temperature dependence of resistivity at different 
pressures in SmB6, demonstrating an insulator–metal transition 
at 4 GPa. Reproduced with permission from [76]. Copyright 2003 
American Physical Society.

Rep. Prog. Phys. 79 (2016) 084503
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Many high-pressure studies on SmB6 have been carried out 
[41, 42, 74–79] before the prediction that SmB6 is a candidate 
of topological Kondo insulator. Several high-pressure electrical 
resistivity measurements found the same phenomena of an exist-
ing resistance plateau at temperature below 3–5 K, a narrow-gap 
in the temperature range below 15 K and a hybridization gap 
at temperature below 100 K at pressure below 4 GPa [74–77]. 
However, the resistance plateau can be fully suppressed at pres
sure ~4 GPa, meanwhile a remarkable resistance drop appears, 
as shown in figure 4. The resistance drop at 4 GPa suggests that 
SmB6 undergoes an insulator–metal transition. From the resis-
tivity data, Gabáni et al estimated the pressure dependence of 
activation energy, demonstrating pressure-induced simultane-
ous changes of the two energy scales [76]. The coexistence of 
the two gaps in the ambient-pressure SmB6 is supported by the 
results obtained recently from ARPES studies [44,45, 52, 53], 
i.e. the hybridization gap lies in 10–20 meV and the in-gap state 
is at 3–5 meV below the Fermi surface.

Related efforts indicated that the metallic phase emerging 
at ~4 GPa showed a non-Fermi-liquid behavior in the temper
ature range 1.5 K–4 K [76]. At pressure above 6 GPa, a Fermi-
liquid state clearly presents. However, it is noteworthy that 
there exists a continuous change tendency for its R–T curves 

above 4 GPa, which leads us to propose that the ground state 
of the metallic phase near 4 GPa probably is also in a Fermi 
liquid state. To prove this, the high-pressure resistance meas-
urements in a Helium-3 refrigerator are needed.

High-pressure 149Sm nuclear forward scattering of syn-
chrotron radiation measurements were performed by Barla 
et al [78]. The results showed that SmB6 undergoes a trans
ition from a paramagnetic state to an ordered magnetic state at 
~6 GPa. The ordered state was found to persist up to ~25 GPa, 
as shown in figure 5. This magnetic ordered state in pressur-
ized SmB6 was supported by high pressure specific heat meas-
urements, and a homogeneous magnetic state occurring only at 
pressure above 10 GPa was suggested [80]. To clarify whether 
the pressure-induced insulator–metal and the nonmagnetic–
magnetic transitions are related to a structure phase transition, 
high-pressure synchrotron XRD measurements were per-
formed by Nishiyama et  al [41]. They found that the ambi-
ent-pressure crystal structure of SmB6 is stable up to 10 GPa. 
Extended high-pressure measurements by Paraskevas et  al 
revealed that no first-order phase transition was observed up to 
39 GPa at 300 K and 16 GPa at 10 K, but lattice modifications 
were observed at a critical pressure of ~7 GPa in both cases 
[42]. Based on these results, they concluded that the pressure-
induced metallization and lattice modifications in SmB6 are 
associated with the emergence of a long-range ordered magn
etic phase. However, it should be emphasized that SmB6 is a 
mixed valence compound and the valence state of the Sm ions 
is sensitive to pressure, temperature or doping. The extrapola-
tion from the high pressure results suggested that the trivalent 
state of the Sm ions in SmB6 may show up at the pressure as 
high as above 20 GPa [25, 81]. More importantly, it was also 
found that the mean valence of SmB6 is reduced from 2.59 
at 300 K to 2.53 at ~2 K, which matches up with its temper
ature dependence of resistivity [82]. The recent high pressure 
x-ray absorption results measured by the authors’ group indi-
cate that, upon increasing pressure, the mean valence of SmB6 
enhances from 2.56 at ambient pressure to nearly 3 at ~10 GPa 
[83]. All these results consistently indicate that the valence 
state plays a vital role in developing the exotic phenomenon of 
SmB6. As the connections among the pressure-induced valence 
change, evolution of two energy gaps and magnetic ordering 
are still not clear, further experimental and theoretical studies 
with more attention on the valence state are urgently needed.

3.2.  Pressure-induced exotic states in YbB6

As a sister compound of SmB6, YbB6 crystallizes in the same 
crystal structure of SmB6 and possesses the same sets of low-
energy bands (Yb 5d, Yb 4 f and B 2p), but presents very dif-
ferent electronic structures due to the fact that Yb has a fully 
filled 4 f shell while Sm has a nearly half-filled 4 f-shell. The 
crucial factor that makes the divergence between YbB6 and 
SmB6 stems from the difference of their electronic struc-
tures. On the (0 0 1) natural cleavage surface of the YbB6 
sample, the lowest 4 f flat band is about 1 eV below the Fermi 
energy (EF), while that of SmB6 is only 15 meV below the 
EF. As a result, the ambient pressure YbB6 exhibits semi-
conductor behavior [84], in stark contrast to that showed in 

Figure 5.  Pressure and volume dependences of (a) the average 
magnetic hyperfine field Bhf at 3 K, of (b) the average electric 
quadruple interaction ΔEQ at 3 K, and of (c) the magnetic transition 
temperature Tm (circles) and specific heat (triangles). Reproduced 
with permission from [78]. Copyright 2005 American Physical 
Society.
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the Kondo insulator SmB6. Theorists predicted that YbB6 
and SmB6 are all candidate materials for the new class of 
TIs with f-electrons. However, measurements of ARPES on 
YbB6 suggest that its electronic state should originate from 
the hybridization between Yb d-orbitals and B p-orbitals  
[3, 85–87]. Remarkably, very recent results from theoretical 
and ARPES studies on the (1 1 0) surface termination argue that 
the ambient-pressure YbB6 is a non-Kondo and non-TI [88].

The obtained ambient pressure results give rise to a new 
interest on whether the semiconductor-likeYbB6 can be pres-
surized into a possibly topological non-trivial Kondo insulator 
as SmB6. Recently, the authors’ group reports their invest
igations by a comprehensive in situ high pressure measure-
ments of transport, XRD and x-ray absorption [26] on the 
high quality single crystal YbB6 provided by Fisk’s lab at the 
University of California (Irvine) [20, 55]. They find two pres
sure-induced QPTs (figure 6), i.e. from a topologically trivial 
semiconductor (TT-S) to an intermediate semimetal (SM) at 
~10  GPa and then from the SM to a possible topologically 
non-trivial high-pressure (TNT-HP) gapped phase above 
15 GPa. In the high pressure gapped phase, YbB6 significantly 
displays a resistance plateau at low temperature, similar to 
what has been seen in the possibly topological Kondo insu-
lator SmB6. Importantly, the resistance plateau observed in 
YbB6 shows the same positive megnetoreisistance behavior 
as SmB6, suggesting that the resistance plateau phenomenon 
in pressurized YbB6 may also originate from the surface [20].

XRD experiments rule out the possibility of a pressure-
induced structural transition in YbB6, thus the authors propose 
that the new gapped state emerged at high pressure in YbB6 
stems from electron–electron interactions. The data reported 
also show that the onset temperature (T *) of the resistance 
plateau varies with pressure and shifts to higher temperatures 
upon increasing pressure, which is in contrast to the behavior 
of SmB6 [67].

To further clarify the underlying mechanism for the pres
sure-induced QPTs and the nature of the two gapped phases, 
they performed high-pressure x-ray absorption measurements 

(figure 7) and find that the mean valence (v) remains nearly 
unchanged below 10 GPa, but it increases remarkably at pres
sure greater than 15 GPa where the YbB6 enters the high pres
sure gapped state. These results reveal the sensitive response 
of the electron state to the valence change in YbB6, and more 
significantly the formation of its resistance plateau is inti-
mately connected to the valence state, similar to that of SmB6. 
Therefore, the phase evolution in the pressurized YbB6 may 
be resulted not only from the interplay of all the three elec-
tron orbitals [89] but also from the complicated interactions 
involving the pressure-induced valence instability.

Recent theoretical studies on the electronic structure for 
pressurized YbB6 propose that the YbB6 subjected to pressure 
above 15 GPa may be a p–d overlap SM with small Yb mixed 
valency [88]. This interesting high-pressure gapped phase 
with the famous feature of the resistance plateau deserves fur-
ther investigations.

3.3.  Unexpected valence stability of rare earth ions in CeB6 
and EuB6

As one of the typical dense Kondo compounds, CeB6 at ambi-
ent-pressure displays a magnetic order which is considered 
to stem from the 4 f 1 configuration of Ce3+ ions. In general, 
application of external pressure can alter the valence of Ce 
ions with the tendency from Ce3+ to Ce4+. This change can 
drive the system converting from a state with higher population 
of magnetic ions toward a state with lower ones. Therefore, 
according to the Doniach diagram [90], the primary effect 
of high pressure on the CeB6 is that the f–d hybridization is 
enhanced [91]. It is conceivable that sufficient high pressure 
may succeed in transforming CeB6 into a possibly topological 
Kondo insulating state similar to that of SmB6. Motivated by 
whether the CeB6 can be pushed into a possibly topological 
insulating state under pressure, Shilling’s group performed 
high-pressure resistance measurements on single crystal CeB6 
over the temperature range 1.3–295 K [43]. They did not 
observe an insulating phase and the low-temperature resist
ance plateau at pressure up to 122 GPa. Synchrotron XRD 
measurements performed by the same group indicated that no 

Figure 6.  Phase diagram of the pressure dependence of activation 
energy gap (εa) for YbB6. The acronyms TT-S and TNT-HP phases 
stand for the topologically trivial semiconducting state and the 
possibly topological non-trivial high-pressure gapped phase, 
respectively. SM represents the semimetallic state. The data are 
derived from [26].

Figure 7.  Pressure dependence of mean valence determined from 
XAS data. The insets display XAS of Yb measured at ambient 
pressure and 28.2 GPa, respectively. The data are derived from [26].

Rep. Prog. Phys. 79 (2016) 084503
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pressure-induced structure phase transition is found in CeB6 
up to 85 GPa. These diffraction results provide very important 
information on the structural stability against pressure, which 
may help to understand the puzzling physics in SmB6.

Another interesting hexaboride EuB6, with divalent Eu ions, 
behaves like a semi-metal and it is the only rare-earth hexa-
boride with ferromagnetic order [92]. Electron paramagnetic 
resonance (EPR) experiments reveal that the dominant interac-
tion in EuB6 is Ruderman–Kittel–Kasuya–Yosida (RKKY)-like 
[93, 94]. In 1997, Cooley et al measured the electrical resistiv-
ity for single crystal EuB6 in the temperature range from 1.2 
to 300 K at high pressure (0–16.9 GPa) [95]. They found that 
the room temperature resistivity is dramatically reduced with 
increasing pressure, meanwhile the transition temperature of 
the ferromagnetic order is strongly enhanced. As a result, they 
argued that the magnetic order is driven by the RKKY interac-
tion between the localized Eu moments and the very dilute con-
duction electrons. With increasing pressure, the band overlap is 
enhanced, leading to an increase in carriers at the Fermi surface.

For the question of why no resistance plateau behavior 
was found in pressurized CeB6 or EuB6, some rough analy-
sis combined with our most recent experimental results are 
given here. In fact, the pressure-induced valence change is 
frequently observed in Ce or Eu-containing compounds, 
which yields many interesting phenomena [96–98]. However 
the most recent high pressure x-ray absorption measurements 
performed by the authors’ group at Shanghai Synchrotron 
Radiation Facilities demonstrate that the valence state of the 
rare earth ions in CeB6 or EuB6 is highly stable [99]. In this 
study, they found that the valence of Ce3+ or Eu2+ remains 
unchanged up to 25 GPa, while at the same beamline this group 
found the pressure-induced valence change of the rare earth 
ions in EuFe2As2 and CeFeAsO1−xFx. Their results showed 
that the mean valence of Eu ions in EuFe2As2 alters from 2 
to 2.3 at ~10 GPa [96], and that of Ce ions in CeFeAsO1−xFx 
changes from 3 to 3.1 at ~11 GPa [97]. Therefore, it can be 
learnt that the valence state of Ce ions in pressurized CeB6 or 
Eu ions in pressurized EuB6 is protected by the rigid B6 frame-
work. In addition to the stable valence state, the configuration 
of the f electrons for Ce ions in CeB6 or for Eu ions in EuB6, as 
described in the introduction, may be one of the reasons why 
the resistance plateau phenomenon cannot emerge in these 
two hexaborides at high pressure.

4.  Conclusions and perspectives

The family of rare earth hexaborides is one of the fascinating 
SCESs and has versatile abilities to host a plethora of inter-
esting physical phenomena that attract considerable attention 
from scientists. In this family, RB6 (R  =  Sm, Yb, Eu and Ce) 
show interesting behaviors. In particular for SmB6, the most 
remarkable low-temperature phenomena include its resistance 
plateau and anomaly quantum oscillation, named as the twin 
puzzles of SmB6. Now, the concept of the ‘surface state of 
TI’ is expected to be applied in deciphering these puzzles. 
Exploring how the ambient-pressure crystal/electronic struc-
ture and the corresponding properties evolve with external 
pressure and analyzing them in a comprehensive fashion are 

always helpful in understanding the physics behind, and also 
can provide opportunities to find new phenomena. Through 
this brief review on both the high-pressure induced phenom-
ena and the ambient-pressure behaviors in the RB6, some main 
points and related perspectives are given below.

	 (i)	The unusual behaviors of the mixed-valence compound 
RB6 (R  =  Sm, Yb) are governed by their unstable valence 
state, because the valence state tightly connects with 
almost all the factors controlling the electronic structure 
of the system, including the f-electron configuration, the 
densities of magnetic ions and conduction electrons, the 
hybridization strength of f–d orbital electrons (Kondo 
effect) and the corresponding energy gap, etc. Therefore, 
we propose that a deeper analysis on the relations between 
the valence state and the transport/spectroscopy properties 
may be a pathway to uncover the twin puzzles in SmB6.

	(ii)	After disappearance of the resistance plateau and occur-
rence of insulator–metal transition in SmB6 at ~4 GPa, its 
R–T curve exhibits a linear behavior in the temperature 
range 1.5–4 K. However, considering that the change 
tendency of the R–T curves measured at pressure above 
4 GPa is in a continuous way, we propose that the ground 
state of the metallic phase near 4 GPa probably is also in 
a Fermi liquid state.

	(iii)	For the resistance plateau observed in pressurized YbB6, 
it will be of great significance to confirm whether it 
shares the same origination as that of SmB6, if yes, what 
is the difference between them. Further investigations are 
needed to clarify this issue.

	(iv)	The sturdy structure of the B6 framework provides a unique 
environment for the rare earth ions. It is noteworthy that 
the pressure-induced change of the valence state with a 
general tendency from 2+  to 3+  in SmB6 or YbB6 yields 
more magnetic rare earth ions (Sm3+ with 4 f 5 configura-
tion and Yb3+ with 4 f 13 configuration respectively) and 
more 5d conduction electrons simultaneously. While 
for CeB6 or EuB6, the pressure-induced valence change 
results in more 4 f  0 nonmagnetic ions (Ce4+) in CeB6 
or 4 f  6 (Eu3+) in EuB6 and the 5d conduction electrons. 
These facts may help to understand the diverse behaviors 
of SmB6 (or YbB6) and CeB6 (or EuB6). Therefore, it can 
be proposed that the B6 framework prevents the valence 
state of the rare earth ions in CeB6 and EuB6 from the 
effect of pressure. This may lead to the unexpected sta-
bility of the valence state in CeB6 and EuB6.
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