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The law of statistical physics dictates that generic closed quantum many-body systems initialized in
nonequilibrium will thermalize under their own dynamics. However, the emergence of many-body
localization (MBL) owing to the interplay between interaction and disorder, which is in stark contrast to
Anderson localization, which only addresses noninteracting particles in the presence of disorder, greatly
challenges this concept, because it prevents the systems from evolving to the ergodic thermalized state. One
critical evidence of MBL is the long-time logarithmic growth of entanglement entropy, and a direct
observation of it is still elusive due to the experimental challenges in multiqubit single-shot measurement
and quantum state tomography. Here we present an experiment fully emulating the MBL dynamics with a
10-qubit superconducting quantum processor, which represents a spin-1=2 XY model featuring program-
mable disorder and long-range spin-spin interactions. We provide essential signatures of MBL, such as the
imbalance due to the initial nonequilibrium, the violation of eigenstate thermalization hypothesis, and,
more importantly, the direct evidence of the long-time logarithmic growth of entanglement entropy. Our
results lay solid foundations for precisely simulating the intriguing physics of quantum many-body systems
on the platform of large-scale multiqubit superconducting quantum processors.
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Introduction.—A central assumption of statistical
mechanics is that generic closed quantum systems driven
out of equilibrium will thermalize to the ergodic state,
which has no quantum correlations [1–4]. One exception
was demonstrated by Anderson [5], who argued that
disordered systems featuring single-particle localization,
known as Anderson localization, can fail to thermalize.
Systems exhibiting Anderson localization require noninter-
acting particles with low excitation energies and have been
widely studied in a number of works [6–12]. However, in
quantum many-body systems featuring interacting particles
and high energy excitations where Anderson localization is
no longer applicable, there emerges a new phase of
localization, many-body localization (MBL) [13], which
also prevents the systems from thermalizing and breaks
down ergodicity. The MBL phase resembles the Anderson
localization phase in that both phases explicitly go against
the eigenstate thermalization hypothesis (ETH), which
implies that entanglement entropy violates volume law
[14,15]. Nevertheless, the MBL phase has very different
dynamical properties [16], and a unique signature of MBL
is the long-time logarithmic growth of entanglement
entropy, which correlates with a slow evolution toward
equilibrium as resulting from dephasing caused by inter-
actions between particles [17–20].
Recent experimental progresses have allowed the reali-

zation of MBL in a controllable manner on various

artificially engineered platforms, which have facilitated
the detailed investigations of thermalization and MBL in
quantum many-body systems covering a wide range of
aspects, such as the emergence of the disorder-induced
insulating state [21], the breaking down of ergodicity [22],
the difference between Anderson localization and MBL in
optical lattice [23], and the localization-delocalization
transition in a three-dimensional system with nuclear
magnetic resonance [24]. Moreover, the long-time loga-
rithmic growth of entanglement entropy, the hallmark of
MBL, is indirectly shown by measuring the quantum Fisher
information in a disordered spin chain with ten trapped ions
[25]. However, a direct observation of the MBL hallmark
requires the capability of performing fast and accurate
quantum state tomography (QST) on the many-body
system, which has yet to be achieved.
Here we present an experiment of fully emulating the

MBL dynamics with a superconducting quantum proces-
sor, which represents a spin-1=2 XY model featuring
tunable disorder and long-range spin-spin interactions.
Our processor chip integrates ten frequency-tunable trans-
mon qubits that are interconnected by a central bus
resonator R, with the circuit architecture introduced in
Fig. 1 and elsewhere [26]. Some prominent characteristics
of this experimental platform for MBL are as follows. First,
the frequency and the state of each qubit can be individually

PHYSICAL REVIEW LETTERS 120, 050507 (2018)

0031-9007=18=120(5)=050507(6) 050507-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.050507&domain=pdf&date_stamp=2018-02-02
https://doi.org/10.1103/PhysRevLett.120.050507
https://doi.org/10.1103/PhysRevLett.120.050507
https://doi.org/10.1103/PhysRevLett.120.050507
https://doi.org/10.1103/PhysRevLett.120.050507


manipulated via its own control lines, and the qubit-qubit
interaction within an arbitrary two-qubit pair can be
mediated by detuning their frequency from that of the
resonator R, so that both the disorder and the long-range
interactions are programmable. This is a necessary con-
dition for MBL since the XY model becomes nonintegrable
with the nonvanishing long-range interactions. Second, the
fast and accurate QST as demonstrated for up to ten
superconducting qubits in Ref. [26] allows us to record
the dynamics of entanglement entropy, making it possible
for observing the aforesaid MBL hallmark. Third, with the
recent advances in coherence, scalability, and controllabil-
ity for superconducting quantum circuits [26–33], the
platform becomes well suited for simulating and exploring

MBL and other intriguing but intractable questions of
quantum many-body systems [34].
Hamiltonian.—In our superconducting quantum proces-

sor, the resonator mediated superexchange interactions
within arbitrary two-qubit pairs give an effective
Hamiltonian as (see Fig. 1, Ref. [26], and Supplemental
Material [35]),

H
ℏ
¼

X
i<j

Jijðσþi σ−j þ σ−i σ
þ
j Þ þ

X
i

ðhi þ δhiÞσþi σ−i ; ð1Þ

where σ�i are the raising (lowering) operators, hi is the
strength of the inherent transverse magnetic field, δhi is the
random disordered potential of the ith spin, and Jij is the

(a)

(b)

(c)

FIG. 1. Experimental setup. (a) Diagram of the 10-qubit superconducting quantum processor. The qubits, shown as atoms with spins
initialized in alternate orientations, are arranged along a circular chain with the nearest-neighbor couplings represented by red wavy
lines, which are calibrated in a separate measurement as discussed in the Supplemental Material (the coupling for Q5 and Q6 is smaller
than others) [35]. The long-range, i.e., beyond nearest-neighbor, spin-spin interactions are enabled by the central bus resonator R that
couples to each individual qubit as illustrated by curved connecting lines. (b) Pulse sequences for emulating MBL. All ten qubits are
initialized at their respective idle frequencies by applying π pulses (dark-color sinusoids) to the even-site qubits to prepare the initial state
j0101010101i, following which the rectangular pulses are applied to quickly bias all qubits to nearby Δ=2π ¼ −650 MHz. Individual
Qi is offset from Δ by a small amount of δhi;k ∈ ½−δh; δh�, where δhi;k is randomly chosen but fixed for the kth pulse sequence (see the
bottom right panel for the enlarged view of the pulse segment enclosed by dashed lines), and the ensemble of the k ¼ 1–30 pulse
sequences effectively emulates the random disordered potential δhi. After the 10-qubit system evolves for a specific time from 0 to
1000 ns under the square pulses, all qubits are biased back to their respective idle frequencies for the 10-qubit joint read-out, which
returns binary outcomes of the ten qubits: We run all the k ¼ 1–30 sequences, each being executed for 3000 times, to count 210

probabilities of fP00…0; P00…1;…; P11…1gk for k ¼ 1–30. Mean of the k ¼ 1–30 probability ensemble captures the effect of the random
disorder. If the N-qubit QST is necessary, we insert tomographic rotation pulses (light-color sinusoids) to the involved qubits before the
N-qubit joint read-out to obtain all tomographic probabilities, 3N more than aforesaid, to calculate the N-qubit density matrix for the kth
sequence. (Top right) The circular spin chain arranged in one dimension for illustrating the quantity δhi;k. (c) The spin-spin coupling
matrix Jij for Δ=2π ¼ −650 MHz. Only nearest-neighbor couplings are positive, while all other interaction terms are negative, which
do not decay over distance.
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coupling strength between the ith and jth spins. The
Hamiltonian is an effective XY model, which conserves
the total number of spin excitations [39].
As shown in Fig. 1, Jij contains two parts, the nearest-

neighbor direct coupling term λci;iþ1, and the superexchange
interaction JSEij . Most λci;iþ1=2π are around 1.8 MHz (see
Supplemental Material [35]), which play a leading role

compared with the corresponding superexchange inter-
actions. The superexchange interaction JSEij between arbi-
trary two qubits Qi and Qj arises only if the two qubits are
biased to the same detuning, i.e., Δi ¼ Δj, with a magni-
tude ∝ 1=Δi. In this experiment, all qubits are detuned to
Δ=2π ≈ −650 MHz; therefore, JSEij =2π range from −0.33
to −0.64 MHz. The spin-spin coupling matrix Jij is shown
in Fig. 1(c). The inherent magnetic field strength hi
(∝ 1=Δi) remains constant in the experiment (see
Ref. [26] and Supplemental Material [35]). δhi denotes
the on site disordered potential taken from a uniform
random distribution with δhi ∈ ½−δh; δh�. This disorder
is generated by applying the frequency shift of δhi to Qi,
for i ¼ 1–10, on top of the large detuning Δ, where
δh ≪ Δ, so that the coupling matrix Jij in Fig. 1(c) remains
invariant. Experimentally, evolution of the system toward
either thermalization or the MBL phase is controlled by the
disorder strength δh (see Fig. 1).
Imbalance.—Emergence of imbalance and ergodicity

breaking are important signatures for the system crossing
from the thermalized phase to the MBL phase. In the
experiment, we initialize the system by preparing a 10-
qubit Néel ordered state, jψ0i ¼ j0101010101i, with j0i
representing the ground state of a qubit on odd number sites
and j1i representing the excited state on even number sites.
We study the ergodic properties via tracing the system
imbalance due to the Néel nonequilibrium, defined as
I ¼ ½ðNe − NoÞ=ðNe þ NoÞ�, where Ne (No) is the total
number of excitation quanta on the even (odd) number sites.
We apply the pulse sequence as shown in Fig. 1(b) and

record the system dynamics with the 10-qubit joint read-
out. At long times around 250 ns or above, the system
reaches a quasisteady state. Figures 2(a) and 2(b) show the
time evolutions of the j1i-state probabilities of individual
qubits, which approach 0.5 for all qubit sites after t ≈
250 ns in the absence of disorder, but maintain almost the
original values in the presence of a strong disorder
(δh=2π ≈ 12 MHz). In Fig. 2(c), it is seen that imbalance
I reaches a quasi-steady-state value at ≈250 ns for all
disorder strengths. The quasi-steady-state I is zero for
δh ≈ 0, but remains nonzero and becomes larger as the
disorder strength increases, signaling the entrance to the

(a)

(c) (d)

(b)

FIG. 2. Dynamics of imbalance for the system initialized in
j0101010101i. (a),(b) The time evolutions of the excited-state
(j1i-state) probabilities Pi (color bar on the far right) for Qi
(indexed as qubit number i) when there is no disorder with δh ≈ 0
and a strong disorder with δh=2π ≈ 12 MHz, respectively. All
probabilities are after read-out correction [40]. (c) Time evolu-
tions of the system imbalance I at different disorder strengths δh
as listed. (d) The quasi-steady-state imbalance I (top) and
standard deviation δn of the j1i-state probability distributions
taken at 1000 ns as functions of δh, showing that the system
thermalizes for no disorder, but starts to enter the MBL phase
with increasing disorder strength. Error bars are 1 SD calculated
from all probability data of the k ¼ 1–30 pulse sequences. The
transition looks a bit continuous for our 10-qubit system, but
numerical simulations involving up to 20 qubits show that it
becomes more pronounced and the associated critical disorder
strength can be identified when the qubit number increases.

(a) (b)

FIG. 3. Subsystem density matrices for test of ETH. Shown are the experimental initial density matrices in absolute value for the
2-qubit subsystems in (a) and 5-qubit subsystems in (b), in comparison with those probed at 1000 ns when the system evolves to either
the thermalized state (δh ≈ 0) or the MBL phase (δh=2π ≈ 12 MHz). Density matrix data of the 1-qubit subsystem Q3 at a few selected
evolution times can be found in the Supplemental Material [35].
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MBL phase that breaks down ergodicity. The maximum
evolution time is much shorter than the qubit coherence
times, and we have postselected the qubit probabilities that
conserve the total excitations to guarantee that our exper-
imental system is an effectively closed quantum system
(see Supplemental Material [35]).
The quasi-steady-state imbalance can be taken as an

order parameter to quantify the crossover from the
ergodic thermal phase to the nonergodic MBL phase
tuned by the disorder strength δh, as shown in

Fig. 2(d). We also measure the standard deviation δn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
10
i¼1½Pið0Þ − PiðδhÞ�2

q
of the j1i-state probability dis-

tributions between the ideal thermal state with Pið0Þ ¼ 0.5,
for i ¼ 1–10, and the quasisteady state as a function of the
disorder strength δh, which works as a sensitive detector to
witness the crossover.
Eigenstate thermalization hypothesis.—In the absence of

disorder, the initial Néel state evolves to the thermal state,
which satisfies ETH and ensures that any resulting sub-
system is a completely mixed state described by a gener-
alized Gibbs ensemble with an infinite temperature (see
Supplemental Material [35]). In contrast, in the presence of
a strong disorder, ETH fails and the reduced density matrix
of an arbitrary subsystem retains the initial form.
Using the multiqubit QST, we show in Fig. 3 the

averaged norms of the subsystem density matrices at 0
and 1000 ns for two cases: one in the absence of disorder
with δh ≈ 0 and the other in the presence of a strong
disorder with δh=2π ≈ 12 MHz. For subsystems with one,
two, and five qubits, the experimental data all agree
reasonably well with the expected thermal equilibrium
when δh ≈ 0, but retain the initial form when
δh=2π ≈ 12 MHz, the latter of which clearly violates ETH.
Entanglement entropy.—The dynamics of entanglement

entropy for an isolated system is a well-defined signature
for differentiating between thermalization, Anderson
localization, and MBL. Here we focus on the evolution
of the half-chain entanglement entropy using QST for the
system initialized in the Néel ordered state. With inter-
particle interactions but no disorder, the system is quickly
thermalized and its entanglement entropy saturates to the
maximum (thermal) entropy that depends on the system
size and satisfies volume law [4]. With strong disorder but
no interparticle interactions, there arises Anderson locali-
zation, and entanglement entropy quickly saturates to a
constant that is independent of the system size and much
smaller than the maximum entropy [19]. With both strong
disorder and interparticle interactions, the system enters the
MBL phase, where the disorder prevents the particle
transport and leads to a slow growth of entanglement
entropy compared with that of the thermal phase, but the
interparticle interactions contribute to the transport of phase
correlations so that entanglement entropy persistently
increases logarithmically in time compared with that of
Anderson localization [17–19,41,42].

For a realistic quantum system, decoherence has to be
taken into account, and the influence of dissipation on MBL
has been investigated in Refs. [20,43]. Without loss of
generality, here we quote the five qubits fQ3; Q4; Q5;
Q6; Q7g as subsystem A and the rest of the qubits as
subsystem B and study the evolution of the half-chain
entanglement entropy S ¼ −trðρA ln ρAÞ, where ρA is the
reduced density operator of subsystem A by tracing out the
subsystemB (see SupplementalMaterial [35] for a similar set
of experimental data with another choice of the subsystems).
Figures 4(a) and 4(b) show the time evolutions of the

half-chain entanglement entropy at different disorder

(a) (b)

(c) (d)

FIG. 4. Half-chain entanglement entropy for the 5-qubit
subsystem fQ3; Q4; Q5; Q6; Q7g, of which the density matrices
are obtained by QST. (a),(b) The entanglement entropy S as
functions of the evolution time, in linear scale and in
logarithmic scale, respectively, at different disorder strengths
δh as labeled. (c) Site-averaged S at around 1000 ns as
functions of the number of sites (qubits) N at different disorder
strengths δh as indicated, which are calculated by taking the
average of the entanglement entropies of all N-site choices
(N ≤ 5) out of the directly measured 5-qubit subsystem. Dots
connected by dashed lines are experimental data. The solid line
shows S ¼ N ln 2. (d) Entanglement entropy S as functions of
the evolution time for comparison between MBL and Anderson
localization (AL) with the disorder strength δh=2π ≈ 12 MHz.
Dots are experimental data, and lines are numerical simulation
results as indicated (see Supplemental Material [35]). Error bars
are 1 SD calculated from all tomography data of the k ¼ 1–30
pulse sequences. Since there is no straightforward method for
calculating the entanglement entropy S of a mixed state [44],
here we estimate S using the subsystem density matrix with the
assumption that the 10-qubit system remains in a pure state.
The apparent increase of S under decoherence is due to an
imperfection of such a pure-state assumption. We further verify
with numerical simulations that the residual excited state
population in each qubit, typically 0.01 or less due to unwanted
excitations [26], has minimal impact on the signature of the
long-time logarithmic growth of S in the MBL phase.
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strengths as indicated. As expected, for all disorder
strengths, S grows quickly and linearly in time at the
beginning and then enters a slow growth period. For strong
disorder strengths such as δh=2π ≈ 8 and 12 MHz, S
appears to grow logarithmically in time during the whole
process. Figure 4(c) shows the site-averaged entanglement
entropy at ≈1000 ns as functions of the number of sites N
for different disorder strengths. For δh ≈ 0 and N ≤ 4, the
site-averaged entanglement entropy is close to thermal
entropy N ln 2, which satisfies volume law. However, for
strong disorder such as δh=2π ≈ 12 MHz, it falls signifi-
cantly below thermal entropy and therefore violates volume
law. Figure 4(d) shows the difference between MBL and
Anderson localization. When the coupling strengths Jij
contain only nearest-neighbor terms, the Hamiltonian
in Eq. (1) can be mapped to a noninteracting fermionic
model (see Supplemental Material [35]) and the strong
disorder gives rise to Anderson localization, where entan-
glement entropy saturates quickly (green line). In contrast,
the MBL phase demonstrates the long-time logarithmic
growth of entanglement entropy, as directly observed
experimentally (dots), which is in excellent agreement
with the numerical simulation taking into account
decoherence (red line).
In conclusion, we have presented key evidence for MBL

and thermalization in a long-range interacting many-body
system controllably induced by strong disorder and no
disorder, respectively. Our implementation is based on a
10-qubit superconducting quantum processor, which pro-
vides tunable disorder and all-to-all qubit-qubit inter-
actions. The interactions do not decay over distance and
thus are nonlocal, so that the MBL phase achieved in our
setup can be viewed as supplemental to the generally
studied “finite range” situation [45]. Furthermore, we have
directly observed the long-time logarithmic growth of
entanglement entropy, the hallmark of the MBL phase.
Our demonstration shows that superconducting quantum
processors can work precisely in simulating various in-
triguing phenomena of quantum many-body systems.
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