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Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious.
On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a
key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive
whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we
unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity
for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility
of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic
heterogeneity for all liquids studied, together with a characteristic temperature associated with the same
dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic
heterogeneity is more informative than expected.
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Nowadays, various theoretical and empirical equations,
e.g., mode coupling (MC), Vogel-Fulcher-Tammann (VFT),
Elmatad-Chandler-Garrahan (ECG), Avramov-Milchev
(AM), and Mauro-Yue-Ellison-Gupta-Allan (MYEGA)
forms [1–6], are proposed to fit the structural relaxation
time of glass-forming liquids τðTÞ, as a function of temper-
ature T, and to interpret the glass transition in different
theoretical frameworks. Despite the diversity of the
fitting functions, the kinetic fragility [7], m ¼ ∂ðlog τÞ=
∂ðTg=TÞjT¼Tg

, with Tg being the glass transition temper-

ature, is commonly employed to evaluate the deviation of
τðTÞ from the Arrhenius behavior [1], which proposes a
useful classification of liquids along a “strong” to “fragile”
scale [7]. Thus, the scaling collapse of discrete τðTÞ data in
various glass-forming liquids is believed to be an effective
way to simplify the elusive glass transition [1–3]. Although
great efforts have been devoted [8–11], it is still unclear
whether there is a general and simple description (without
introducing adjustable free parameters) of τðTÞ for glass-
forming liquids with vastly different m.
In the past decades, one grail in the study of glasses is the

finding of dynamic heterogeneity referring to the spatio-
temporal fluctuations in local dynamics [12–14]. The
growth of the dynamic heterogeneity and its dynamic
correlation length [15–17] as T decreases toward the glass
transition provides a possible approach to understand the
dramatic slowdown of dynamics during vitrification. Thus,
more attention [18–28] has been attracted to investigate the
correlation between structural relaxation and dynamic

heterogeneity in glass-forming liquids. The critical issue
nowadays is that experimental and numerical studies
[19–24] have showed that dynamic heterogeneities in state
points under isochronal condition (i.e., constant τ) can be
either invariant or variant. Recently, attempts have been
made to search for the general relation between structural
relaxation and dynamic heterogeneity [18,26,27], but there
seems to be no consensus on it [20,24,25,28]. Furthermore,
the concept of fragility is believed to be correlated well
with dynamic heterogeneity in model glass-forming liquids
[29,30], while an experimental study [15] reported that
there was no convincing correlation between them. To our
knowledge, even in model glass formers where a precise
quantification of dynamic heterogeneity is feasible, the
directly quantitative evidence for the correlation between
fragility and dynamic heterogeneity is still lacking.
In this Letter, we reveal the underlying connection between

dynamic heterogeneity and structural relaxation by introduc-
ing a characteristic time scale hidden in state points with an
identical dynamic heterogeneity in different model glass-
forming liquids. This time scale corresponds to the kinetic
fragility of glass-forming liquids and bridges structural
relaxation and dynamic heterogeneity by achieving fantastic
scaling collapses. Moreover, a rather general description of
τðTÞ for various glass-forming liquids can be achieved from
the viewpoint of a constant dynamic heterogeneity condition
without introducing any free parameter.
We perform extensive molecular dynamics simulations

in the NPT (constant number of particles N, pressure P,
and temperature T) ensemble in six potential models [31]:
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harmonic (Harm), Hertzian (Hertz), 12-6 repulsive
Lennard-Jones (RLJ), 36-6 RLJ, 12-6 Lennard-Jones
(LJ), and embedded atom method (EAM) potentials. We
measure the self-part of the intermediate scattering function
[35] Fsðk; tÞ ¼ 1

N h
P

N
j¼1 expfik⃗ · ½r⃗jðtÞ − r⃗jð0Þ�gi, where

r⃗jðtÞ is the location of particle j at time t, jk⃗j takes
approximately the value at the first peak of the static
structure factor [36], and h:i denotes the time average. The
structural relaxation time τ is defined by the relation [31]
Fsðk; τÞ ¼ e−1. Dynamic heterogeneity is quantified by
the time-dependent non-Gaussian parameter [12,25,37]
α2ðtÞ ¼ 3

5
hΔr4i=hΔr2i2 − 1, where Δr is the displacement

of a particle during time t. In the Supplemental Material
[31], we also show results regarding dynamic heterogeneity
characterized by the four-point dynamic susceptibility χ4
[17,23,38].
Figure 1(a) shows the Angell plots of τ versus Tref=T for

six glass-forming systems with different potentials and
pressures. Tref is a reference temperature at which τ ¼ τg
is sufficiently large in the endurable time window of
simulation and identical for all systems, which is treated
here as Tg to calculate the kinetic fragility m. Two systems
have identical m if their curves in Fig. 1(a) coincide, and a
steeper curve represents a more fragile liquid with a largerm.
Systems with different potentials could exhibit the same m,
as illustrated by the collapse of curves with harmonic and
Hertzian potentials at the same pressures. With increasing
pressure, the kinetic fragility increases, consistent with
previous simulation studies [29,39,40], whereas the pressure
dependence of fragility in most real liquids [41–43] is
different from model ones. Therefore, by varying the
pressures and potentials, we are able to investigate systems
with vastly different values of m [31] (the range of m is still
not as large as that in real materials [41–43]).
On approaching the glass transition, α2ðtÞ exhibits a

nonmonotonic t dependence with a maximum α2;max

occurring at t ¼ τα2;max
(see examples in Fig. S2 in the

Supplemental Material [31]). As expected [12,25,37], both
α2;max and τα2;max

increase when T decreases. Figure 1(b)

shows the correlation between α2;max and τ for the same
systems shown in Fig. 1(a). For each system, α2;max

increases with increasing τ, indicating that dynamic hetero-
geneity grows with the slowdown of structural relaxation
during vitrification [14–17]. Along with Figs. 1(a) and 1(b)
shows that, under the isochronal condition, one system with
a larger m exhibits a larger α2;max. Therefore, more fragile
liquids are more heterogeneous in dynamics [29,30]. More
importantly, systems with the same m also exhibit identical
α2;maxðτÞ, which implies that the kinetic fragility is very
likely to be the long-sought key parameter to connect
structural relaxation and dynamic heterogeneity.
Figure 2(a) shows that we can collapse the α2;maxðτÞ

curves for all systems investigated onto a single master
curve when τ is scaled by τ�, and hence

α2;max ¼ fτðτ=τ�Þ; ð1Þ

where fτ is piecewise [see fitting lines in Fig. 2(a)]. Here,
the scaling parameter τ� is a system-dependent character-
istic time scale for all systems to have the same α2;max,
i.e., under the iso-α2;max condition. We choose a Hertzian
system at T¼1.46×10−4 and P ¼ 5.00 × 10−3 as a refer-
ence state, for which τ�≈3.25×103 and α2;max ≈ 1.67.
The scaling collapse is obtained by shifting all other curves

FIG. 1. (a) Angell plots of structural relaxation time τ versus
scaled reciprocal temperature Tref=T for systems with different
potentials and pressures. Tref is determined according to
τðTrefÞ ¼ τg ≈ 2.16 × 104. (b) Correlation between τ and α2;max.
Symbols in (a) and (b) have the same meanings.

FIG. 2. (a) Maximum non-Gaussian parameter α2;max versus
reduced structural relaxation time τ=τ�, with τ� being the
characteristic time scale under the iso-α2;max condition (α2;max≈
1.67 here). The solid lines are fits to α2;max ∼ ðτ=τ�Þν, with ν ¼
0.8 (black line) and ν ¼ 0.3 (red line). (b) Correlation between τ�
and kinetic fragilitym, wherem is calculated at Tg ¼ Tref as set in
Fig. 1(a). The black solid line is a fit to τ� ∼m−γ , where γ ¼ 3.3.
(c) Universal scaling between τ and τα2;max

. The solid lines are fits
to τ=τ� ∼ ðτα2;max

=τ�Þβ, where β ¼ 1.2 (black line) and β ¼ 1.5
(red line). (d) α2;max versus scaled reciprocal temperature T�=T,
with T� being the characteristic temperature. The black and red
solid lines are fitting curves consistent with the VFT fitting in
Fig. 3 and power-law fittings in Fig. 2(a) [Eq. (4) can be derived
from Eqs. (1) and (5)]: α2;max¼0.093exp½1.285=ðT=T�−0.705Þ�
and α2;max ¼ 0.299 exp½0.482=ðT=T� − 0.705Þ�, respectively.
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onto that of the reference state. Surprisingly, Fig. 2(b)
shows that τ� ∼m−γ , so Eq. (1) can be rewritten as

α2;max ¼ fmðτmγÞ; ð2Þ

where γ varies with the time τg used to evaluatem. As shown
in Figs. 1(a) and 2(b), here we choose τg ≈ 2.16 × 104 and
γ ≈ 3.3 andm takes values from 2.5 to 32.4 (in Fig. S3 of the
Supplemental Material [31], we show another example with
γ ≈ 4.5 and m ∈ ½7.9; 54.6�, when τg ¼ 106 is chosen).
Recent studies [19–24] showed that whether dynamic
heterogeneities at constant τ vary depends on different
control parameters, e.g., the softness of atomic interactions
[19], pressures [20,22], and density scaling [23,24].
However, to our knowledge, it remains unknown whether
there is a single parameter that controls the correlation
between dynamical heterogeneity and τ in different glass
formers. Our findings in Figs. 1 and 2 suggest that it is the
kinetic fragility that couples with the characteristic time scale
hiding behind the iso-α2;max condition and plays a key role
in establishing the general relation between α2;max and τ.
Thus, Eq. (2) reveals quantitatively the underlying correla-
tion between dynamic heterogeneity and structural relaxa-
tion in glass-forming liquids.
It is interesting to compare experimental results with ours.

Some experimental studies [15,44] reported no convincing
(or weak) correlation between fragility and dynamic hetero-
geneity from an indirect measure of χ4, which is contrary to
the obvious correlation shown in Fig. 2(b). Further studies
are thus required to resolve the disagreement between
experiments of real materials and simulations of model
glass formers and to examine the generality of the correlation
between fragility and dynamic heterogeneity observed here.
Although both τ and τα2;max

increase upon cooling, they
are usually not linearly related; i.e., the characteristic times
for structural relaxation and establishment of α2;max decou-
ple [25,37]. As shown in Fig. S4 of the Supplemental
Material [31], the τ versus τα2;max

curves for systems with
different fragilities deviate a lot. A scaling collapse of
τðτα2;max

Þ has been achieved by simply adjusting a system-
dependent scaling factor to rescale τα2;max

[25]. However, the
physical meaning of the manipulative scaling factor is
unclear. Interestingly, when we plot τ=τ� against τα2;max

=τ�,
as shown in Fig. 2(c), curves for all systems studied
collapse onto the same master curve,

τ=τ� ¼ Hðτα2;max
=τ�Þ; ð3Þ

where H is also piecewise. Since τ� is intrinsically
equivalent to m, the decoupling relation between τ and
τα2;max

is controlled as well by the kinetic fragility, which is
another robust evidence confirming that the kinetic fragility
is the key to connecting structural relaxation and dynamic
heterogeneity.

Now we have seen the essential role of the kinetic
fragility or the characteristic time scale in unifying the
relationship between structural relaxation and dynamic
heterogeneity. This further stimulates our ambition to find
a general description of τðTÞ. Note that τ� hides behind an
identical α2;max, which couples with a system-dependent
temperature T�. Now that we have shown the importance of
τ�, it is interesting to know whether T� is crucial as well.
Similar to what has been done for Fig. 2(a), we shift all

α2;maxðTÞ curves (see examples in Fig. S5 in the
Supplemental Material [31]) to that of the Hertzian one
at P ¼ 5.00 × 10−3 and take the Hertzian state at T ¼ T� ¼
1.46 × 10−4 and P ¼ 5.00 × 10−3 as the reference. This
leads to a nice scaling collapse,

α2;max ¼ fTðT�=TÞ; ð4Þ

as shown in Fig. 2(d). Equation (4) verifies that T� is indeed
the characteristic temperature we are looking for. Like fτ in
Eq. (1) and H in Eq. (3), fT in Eq. (4) is piecewise as well.
Similarly, piecewise behaviors can also be observed when
χ4;max (the maximum of χ4) is plotted as a function of τ or T
[26,27,31]. The initial power-law and then a logarithmic
growth of χ4;max with τ can be predicted, respectively, by
mode coupling and random first order transition theories,
though details regarding the crossover between the two
regimes of growth are still puzzling [14]. Since α2;max

grows less strongly than χ4;max with τ or T (see Fig. S10 in
the Supplemental Material [31]), it may be interesting to
check whether theories that can predict behaviors of
χ4;maxðτÞ are also applicable to α2;maxðτÞ.
Unlike that τ� has a one-to-one correspondence with m,

we find no direct correlation between T� and m; e.g., two
systems with LJ 12-6 potential at P ¼ 6 and P ¼ 10,
respectively, have equal m but pretty different values of T�
[31]. Equation (4) hints that, although T� is sensitive to
system parameters (interaction potentials, pressures, etc.), it
may be coupled to other characteristic temperatures, e.g.,
the glass transition temperature, which is crucial to estab-
lish the general description of τðTÞ for various systems
shown in the following.
Now we are going to move one step further to discuss

the scaling collapse of τðTÞ. To unify in the same framework
different dynamic slowdown invarious glass-forming liquids,
people have tried to manipulate the scaling collapse of
dynamics in different ways. An excellent scaling collapse
of τðTÞ in Lennard-Jones systems has been achieved by
using a density scaling function [8]. However, the density
scaling procedure usually yields different scaling curves for
different systems and fails in some systems, e.g., systems
with harmonic potentials studied here. Moreover, it has been
shown that existing methods to achieve scaling collapse of
τðTÞ for specific systems cannot be simply generalized to
other systems [9–11]. Interestingly, the combination of
Eqs. (1) and (4) can lead to thegeneral scaling relationof τðTÞ,
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τ=τ� ¼ f−1τ ½fTðT�=TÞ� ¼ FðT�=TÞ: ð5Þ

Therefore, by introducing τ� and T�, the long-sought scaling
collapse of τðTÞ for various systems is straightforward, as
corroborated inFig.3.Toourknowledge, so far, therehasbeen
no work to successfully collapse τðTÞ for so many systems
with vastly different potentials and over so wide
a range of pressures and fragilities without introducing addi-
tional or arbitrary parameters. The scaling collapse shown in
Fig. 3 only involves characteristic scales associated with an
identical dynamic heterogeneity, which have clear physical
meanings. Dynamic heterogeneity is believed to be important
in understanding the glass transition, which is directly and
confirmatively evidenced here by the scaling collapses shown
in Figs. 2 and 3.
Next, we study the functional form for FðxÞ in Eq. (5).

As mentioned earlier, there are multiple functions proposed
to fit τðTÞ. In the inset to Fig. 3, we show that VFT, MC,
ECG, AM, and MYEGA forms can all fit τðTÞ well for a
single system. However, when we try to fit the master curve
in the main panel of Fig. 3 using these five forms, only VFT
can fit the whole curve nicely, while the other four forms
can only fit the high T�=T part well, which mainly contains
more fragile liquids within the simulation time window.
Though the VFT form can describe our master curve well, it
should also be noted that the VFT description of τðTÞ is

challenged in an experimental study [45], where ultra-
viscous molecular liquids were studied.
Our numerical studies of different model glass formers

unravel a general description of the dynamics during
vitrification. For the underlying connection between
dynamic heterogeneity and structural relaxation, the key
is the awareness of the importance of the constant dynamic
heterogeneity condition and the characteristic scales hiding
behind it. By introducing the characteristic time scale and
temperature under the iso-α2;max condition, scaling collap-
ses regarding the structural relaxation and dynamic hetero-
geneity can be generally described. It reveals the long-
sought general description of the relationship between
structural relaxation time and temperature without intro-
ducing any adjustable parameter in various glass formers.
Since the characteristic time scale is equivalent to kinetic
fragility, it is suggested that the kinetic fragility serves as
the link between structural relaxation and dynamic hetero-
geneity. Moreover, our major conclusions hold as well if
dynamic heterogeneity is quantified by dynamic suscep-
tibility, as discussed systematically in the Supplemental
Material [31]. Our work suggests that dynamic hetero-
geneity plays a more important role than expected in
studying the nature of the glass transition.
Though our major findings do not rely on whether

dynamic heterogeneity is measured by α2;max or χ4;max, it
should be noted that α2;max and χ4;max (see comparison
between α2;max and χ4;max in Fig. S10 of the Supplemental
Material [31]), as well as the size of cooperatively
rearranging regions proposed in the Adam-Gibbs model
[46], are only qualitatively equivalent measures of dynamic
heterogeneity, because quantitative inconsistencies of their
temperature dependence can be observed [47]. This can
also to some extent be implied by the observation that
τα2;max

ðτÞ is piecewise, while τχ4;max
∼ τ [15,23] [see Figs. S4

and S6(b) of the Supplemental Material [31]] with τχ4;max

being the time when χ4;max occurs.
Our findings here are based on numerical studies of

molecular glass formers, and the glass transition temper-
ature defined here is higher than experiment [3,27,48],
which thus calls for further experimental verification of
our findings. To our knowledge, the development of an
estimate of χ4;max in Ref. [15] has advanced greatly the
experimental studies of dynamic heterogeneity in real
materials. Since α2;max is also important in measuring
dynamic heterogeneity from our study, it will be mean-
ingful to devise an experimentally measurable estimate
of α2;max. Probing dynamic heterogeneity precisely is
challenging in experiments of molecular glass formers
[14,15,20,22,27], while it is feasible in experiments of
colloids [49–51]. Recent studies [10,49] have demonstrated
that some behaviors of colloidal and molecular glass
formers show remarkable similarities, and hence it is
intriguing to see whether the scenarios reported here can
also be observed in colloidal experiments.

FIG. 3. Scaled structural relaxation time τ=τ� versus scaled
reciprocal temperature T�=T for all systems studied. Black solid
curve is the VFT fit: y ¼ 0.00337 exp½1.606=ðx − 0.705Þ�, where
x ¼ T=T� and y ¼ τ=τ�. Red dashed curve is a fit to the MC
form: y ¼ 0.00314ðx − 0.809Þ−3.441. Blue dashed-dotted curve
indicates the ECG fit: y ¼ 0.373 exp½95.845ðx−1 − 0.917Þ2�.
Navy dashed-dotted-dotted curve is a fit to the AM form:
y ¼ 0.00943 exp½ð1.284=xÞ5.542�. Magenta dotted curve is the
MYEGA fit: y ¼ 0.00782 exp½ð0.0730=xÞ expð4.052=xÞ�. (Inset)
τðTÞ for a Hertz system at P ¼ 5 × 10−7, whose corresponding
scaled data lie in the shadowed region in the main panel. Note that
the curve in the inset can be fitted well with all the above five
forms before scaling. After scaling, it lies in the region where
only VFT works in the main panel.
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