中国科学院物理研究所
北京凝聚态物理国家研究中心
L01组供稿
第29期
2018年05月25日
拓扑光子晶体实验进展:理想外尔点和节线锁的发现
  近期,中国科学院物理研究所/北京凝聚态物理国家研究中心光物理重点实验室L01组和英国合作者首次实验发现了理想外尔点及其螺旋表面态,结果在Science杂志上发表[Science 359, 1013 (2018)]。同时L01组又首次实验发现了节线锁的光子能带结构及其鼓面表面态,结果在Nature Physics杂志上发表[Nature Physics 14, 461 (2018)]。
  外尔点是三维能带的线性简并点,倒空间的拓扑荷。2015年,外尔点几乎同时分别由中国科学院物理研究所和普林斯顿大学的研究团队各自独立在电子体系(Phy. Rev. X. 5,031013, Science. 347,294),以及光物理L01组的陆凌研究员在MIT期间在光子体系(Science. 349,622)中实验得到,掀起了外尔点的研究热潮。随后,各种新的外尔材料及物理体系大量涌现。然而,已发现材料体系中的外尔点都不理想,所有外尔点的能量并不一致,或者在同一能量还存在其他的能带。非理想外尔材料将大大限制对外尔物理的研究及其在器件中的表现。针对此问题,清华大学和南京大学曾提出过在光子体系和电子体系中实现理想外尔点的理论预言(Phys. Rev. A. 93, 061801; Nat. Commun. 7, 11136)。
  另外,弧状表面态是鉴定外尔材料的一个重要特征,但这只是等能面的拓扑表面态形状,外尔点的全局表面态由中国科学院物理研究所T03组的方辰特聘研究员理论指出是一个定义在二维布里渊区上的三维螺旋面,其旋转的奇点即为Weyl点在表面的投影(Nat. Phys. 12, 936),而目前人们只从实验上观测到了费米弧,整体的三维空间螺旋表面态还未在实验上证实。
  陆凌研究员于2016年从MIT回到中国科学院物理研究所工作,作为光物理实验室L01组组长与刘荣鹃副研究员、博士生阎清晖、T03组的方辰特聘研究员,英国伯明翰大学的张霜教授和博士生杨镖、郭清华等合作,在拓扑光子晶体中理论设计并实验实现了理想的外尔点,而且得到了时间反演对称性保护下最少个数的四个外尔点,同时也第一次完整地在实验上观测到外尔体系表面态的三维螺旋面结构,该工作于2018年1月在线发表在科学杂志上,英国的团队在这项工作中做出了主要贡献。
  理想外尔点的光子晶体设计如图1a左下角插图所示,为互联马鞍型金属结构的原包,不但在倒空间中有四个等频外尔点,而且其周围没有其他平庸能带存在(图1a)。在实验上,他们通过测量角分辨的透射谱,从不同的角度测得该结构的投影能带,结果与理论计算的投影能带一致(图1c),从而验证了理想外尔点的存在。外尔体系另外一个重要的拓扑特征为表面态。如图1b所示,此结构的四个外尔点中相邻的外尔点呈现不同的手性,连接体态的表面态呈现三维螺旋面结构。进一步扫描测量表面场,并对之进行傅里叶变换,可得到不同频率的体态和表面态的分布图(图1d)。可清晰的看到,四个呈椭圆状的体态沿对角线对称分布,而表面态连接相邻的具有相反拓扑荷的体态,且随着频率呈连续的螺旋状演化,因此证实此体系的表面态呈三维螺旋面结构,与理论计算一致。至此,第一次从实验上证实了关于螺旋表面态的预言。这一理想外尔点的发现,为研究外尔体系和设计新颖的拓扑器件提供了理想的光子平台,同时拓展了人们对外尔体系表面态的整体认识。
  外尔点的存在不需要任何对称性条件,需要的是破缺时间和空间反演对称性中的至少一个,所以在大部分有时间和空间反演对称性的材料体系中,两个能带的线性简并都不可能是外尔点,而是以线简并的形式出现。与外尔点相比,线简并可以有更加丰富的倒空间构型,比如可形成如图2所示的节线环(nodal ring)(图2a),节线锁(nodal chain)(图2b),节线链(nodal link)(图2c),以及节线结(nodal knot)(图2d)等。目前,虽然有一些节线环的材料被报道,但是都不理想,而节线锁、链、结还没有相关实验的报道。陆凌研究员刚回国就和联培生阎清晖及刘荣鹃副研究员开展了在光子晶体中实现节线锁的实验工作,并在理论上获得了清华大学高等研究院汪忠研究员及其博士后严忠波的帮助,其他的合作人员L01组的聘用人员刘博远和浙江大学的陈红胜教授也都在此工作中作出了重要贡献。
  实际上,节线锁和其他三类线简并构型不同,它需要除了空间时间反演之外的额外对称性的保护,如镜面或滑移对称性。L01团队从理论上设计了如图3a所示的金属网状的三维光子晶体,此结构在倒空间中的能带形成两种不同的环状线简并,这两种线简并环连接环又进一步构成节线锁结构(图3c)。实验上,采用铝合金材料,通过机械加工,逐层堆积得到金属网三维光子晶体。然后通过角分辨透射谱的实验测量,得到不同角度投影的体态色散曲线,与理论计算的不同角度的投影体态色散曲线一致(图3 d)。另外,节线材料的拓扑表面态是一个鼓面,它起止于节线体态在表面的投影,即局限于节线的投影范围内。通过扫描表面电场的强度和相位,并做傅里叶变换,可以直接得到表面态的色散曲线,清晰地观测到了呈现鼓面状的表面态(图3 e),与理论计算一致。这一工作首次在实验上实现了复杂的节线拓扑结构:节线锁,为进一步研究节线锁材料的物性提供了实验平台,也为其他节线拓扑结构的发现提供了思路和方法。
  上述两个工作都是在微波波段进行,根据麦克斯韦方程的尺寸不变性,上面的结构设计及相关计算和测试结果都可适用于电磁波的任何波段,因此,都可扩展的太赫兹波段、红外和可见光波段,有利于在微波器件及各种光学元件设计中的应用。
  以上工作得到了来自科技部重点研发计划2017YFA0303800, 2016YFA0302400,自然科学基金委11721404, 11674189, 61625502, 61574127的资助。
  论文链接:1. 2018_science_aaq1221
       2. 2018_NaturePhys_s41567-017-0041-4
图1 a: 互联的马鞍形金属光子晶体的原包及其能带结构;b: 四个外尔点周围螺旋状表面态的示意图,红色和蓝色的外尔点表示不同手性的外尔点;c: 角分辨透射谱测量和理论计算的不同角度的投影能带; d: 通过对表面场进行傅里叶变换,测量和理论计算的不同频率的体态和表面态。
图2 线简并构型分类,来自合作者汪忠的文章Phys. Rev. B 96, 201305R (2017)。
图3 a: 金属网结构三维光子晶体示意图; b: 金属网结构三维光子晶体的体态能带及其相应的态密度分布; c: 能带的节线锁结构; d: 角分辨谱测量得到和理论计算的不同角度的投影能带; e: 理论计算和表面场扫描实验测量得到的表面态色散曲线。