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Generative modeling, which learns joint probability distribution from data and generates samples
according to it, is an important task in machine learning and artificial intelligence. Inspired by probabilistic
interpretation of quantum physics, we propose a generative model using matrix product states, which is a
tensor network originally proposed for describing (particularly one-dimensional) entangled quantum states.
Our model enjoys efficient learning analogous to the density matrix renormalization group method, which
allows dynamically adjusting dimensions of the tensors and offers an efficient direct sampling approach for
generative tasks. We apply our method to generative modeling of several standard data sets including the
Bars and Stripes random binary patterns and the MNIST handwritten digits to illustrate the abilities,
features, and drawbacks of our model over popular generative models such as the Hopfield model,
Boltzmann machines, and generative adversarial networks. Our work sheds light on many interesting
directions of future exploration in the development of quantum-inspired algorithms for unsupervised
machine learning, which are promisingly possible to realize on quantum devices.
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I. INTRODUCTION

Generative modeling, a typical example of unsupervised
learning that makes use of a huge amount of unlabeled data,
lies at the heart of the rapid development of modern machine
learning techniques [1]. Different from discriminative tasks
such as pattern recognition, the goal of generative modeling
is to model the probability distribution of data and thus be
able to generate new samples according to the distribution.
At the research frontier of generative modeling, it is used for
finding good data representation and dealing with tasks with
missing data. Popular generative machine learning models
include Boltzmann machines (BM) [2,3] and their general-
izations [4], variational autoencoders (VAE) [5], autoregres-
sive models [6,7], normalizing flows [8–10], and generative
adversarial networks (GAN) [11]. For generative model

design, one tries to balance the representational power and
efficiency of learning and sampling.
There is a long history of the interplay between gen-

erative modeling and statistical physics. Some celebrated
models, such as the Hopfield model [12] and Boltzmann
machine [2,3], are closely related to the Ising model and its
inverse version, which learns couplings in the model based
on given training configurations [13,14].
The task of generative modeling also shares similarities

with quantum physics in the sense that both of them try to
model probability distributions in an immense space.
Precisely speaking, it is the wave functions that are modeled
in quantumphysics, andprobability distributions aregiven by
their squared norm according to Born’s statistical interpre-
tation. Modeling probability distributions in this way is
fundamentally different from the traditional statistical physics
perspective. Hence, we may refer to probability models that
exploit quantum state representations as “Born machines.”
Various Ansätze have been developed to express quantum
states, such as the variational Monte Carlo [15], the tensor
network (TN) states, and recently artificial neural networks
[16]. In fact, physical systems like quantum circuits are also
promising candidates for implementing Born machines.
In the past decades, tensor network states and algorithms

have been shown to be an incredibly potent tool set for
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modeling many-body quantum states [17,18]. The success
of TN description can be theoretically justified from a
quantum information perspective [19,20]. In parallel to
quantum physics applications, tensor decomposition and
tensor networks have also been applied in a broader context
by the machine learning community for feature extraction,
dimensionality reduction, and analysis of the expressibility
of deep neural networks [21–26].
In particular, the matrix product state (MPS) is a kind of

TN where the tensors are arranged in a one-dimensional
geometry [27]. The same representation is referred to as
tensor train decomposition in the applied math community
[28]. Despite its simple structure, the MPS can represent a
large number of quantum states extremely well. MPS
representation of ground states has been proven to be
efficient for one-dimensional gapped local Hamiltonians
[29]. In practice, optimization schemes for MPS such as
the density-matrix renormalization group (DMRG) [30]
have been successful even for some quantum systems in
higher dimensions [31]. Some recent works extended the
application of MPS to machine learning tasks like pattern
recognition [32], classification [33], and language model-
ing [34]. Efforts also drew a connection between
Boltzmann machines and tensor networks [35].
In this paper, building on the connection between

unsupervised generative modeling and quantum physics,
we employ MPS as a model to learn the probability
distribution of given data with an algorithm that resembles
DMRG [30]. Compared with statistical-physics-based
models such as the Hopfield model [12] and the inverse
Ising model, MPS exhibits a much stronger learning
ability, which adaptively grows by increasing the bond
dimensions of the MPS. The MPS model also enjoys a
direct sampling method [36] much more efficient than that
of the Boltzmann machines, which require a Markov chain
Monte Carlo (MCMC) process for data generation. When
compared with popular generative models such as GAN,
our model offers a more efficient way to reconstruct and
denoise from an initial (noisy) input using the direct
sampling algorithm, as opposed to GAN, where mapping
a noisy image to its input is not straightforward.
The rest of the paper is organized as follows. In Sec. II,

we present our model, training algorithm, and direct
sampling method. In Sec. III, we apply our model to three
data sets: Bars and Stripes for a proof-of-principle dem-
onstration, random binary patterns for capacity illustration,
and the MNIST handwritten digits for showing the gen-
eralization ability of the MPS model in unsupervised tasks
such as reconstruction of images. Finally, Sec. IV discusses
future prospects of the generative modeling using more
general tensor networks and quantum circuits.

II. MPS FOR UNSUPERVISED LEARNING

The goal of unsupervised generative modeling is to
model the joint probability distribution of given data. With

the trained model, one can then generate new samples from
the learned probability distribution. Generative modeling
finds wide applications such as dimensional reduction,
feature detection, clustering, and recommendation systems
[37]. In this paper, we consider a data set T consisting
of binary strings v ∈ V ¼ f0; 1g⊗N , which are potentially
repeated and can be mapped to basis vectors of a Hilbert
space of dimension 2N .
The probabilistic interpretation of quantum mechanics

[38] naturally suggests modeling data distribution with a
quantum state. Suppose we encode the probability distri-
bution into a quantum wave function ΨðvÞ; measurement
will collapse it and generate a result v ¼ ðv1; v2;…; vNÞ,
with a probability proportional to jΨðvÞj2. Inspired by the
generative aspects of quantum mechanics, we represent the
model probability distribution by

PðvÞ ¼ jΨðvÞj2
Z

; ð1Þ

where Z ¼ P
v∈V jΨðvÞj2 is the normalization factor. We

also refer to it as the “partition function” to draw an analogy
with the energy-based models [39]. In general, the wave
function ΨðvÞ can be complex valued, but in this work, we
restrict it to be real valued. Representing probability density
using the square of a function was also put forward by
previous works [32,40,41]. These approaches ensure the
positivity of probability and naturally admit a quantum
mechanical interpretation.

A. Matrix product states

Quantum physicists and chemists have developed many
efficient classical representations of quantum wave func-
tions. A number of these developed representations and
algorithms can be adopted for efficient probabilistic mod-
eling. Here, we parametrize the wave function using MPS:

Ψðv1; v2;…; vNÞ ¼ TrðAð1Þv1Að2Þv2 � � �AðNÞvN Þ; ð2Þ

where each AðkÞvk is a Dk−1 by Dk matrix, and D0 ¼ DN is
demanded to close the trace. For the case considered here,
there are 2

P
N
k¼1Dk−1Dk parameters on the right-hand side

of Eq. (2). The representational power of MPS is related
to von Neumann entanglement entropy of the quantum
state, which is defined as S ¼ −TrðρA ln ρAÞ. Here, we
divide the variables into two groups v ¼ ðvA; vBÞ, and ρA ¼P

vBΨðvA; vBÞΨðv0A; vBÞ is the reduced density matrix of a
subsystem. The entanglement entropy sets a lower bound
for the bond dimension at the division S ≤ lnðDkÞ. Any
probability distribution of an N-bit system can be described
by a MPS, as long as its bond dimensions are free from any
restriction. The inductive bias using MPS with limited bond
dimensions comes from dropping off the minor compo-
nents of the entanglement spectrum. Therefore, as the bond
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dimension increases, a MPS enhances its ability to para-
metrize complicated functions. See Refs. [17,18] for recent
reviews on MPS and its applications on quantum many-
body systems.
In practice, it is convenient to use MPS withD0¼DN ¼1

and, consequently, reduce the leftmost and rightmost matri-
ces to vectors [30]. In this case, Eq. (2) reads schematically

ð3Þ

Here, the blocks denote the tensors and the connected lines
indicate tensor contraction over virtual indices. The dangling
vertical bonds denote physical indices. We refer to
Refs. [17,18] for an introduction to these graphical notations
of TN. Henceforth, we shall present formulas with more
intuitive graphical notations wherever possible.
The MPS representation has gauge degrees of freedom,

which allows one to restrict the tensors with canonical
conditions. We remark that, in our setting of generative
modeling, the canonical form significantly benefits from
computing the exact partition function Z. More details
about the canonical condition and the calculation of Z can
be found in Appendix A.

B. Learning MPS from data

Once the MPS form of wave function ΨðvÞ is chosen,
learning can be achieved by adjusting parameters of the
wave function such that the distribution represented by
Born’s rule Eq. (1) is as close as possible to the data
distribution. A standard learning method is called “maxi-
mum likelihood estimation,” which defines a (negative)
log-likelihood function and optimizes it by adjusting the
parameters of the model. In our case, the negative log-
likelihood (NLL) is defined as

L ¼ −
1

jT j
X

v∈T
lnPðvÞ; ð4Þ

where jT j denotes the size of the training set. Minimizing
the NLL reduces the dissimilarity between the model
probability distribution PðvÞ and the empirical distribution
defined by the training set. It is well known that minimizing
L is equivalent to minimizing the Kullback-Leibler diver-
gence between the two distributions [42].
Armed with canonical form, we are able to differentiate

the negative log-likelihood (4) with respect to the compo-
nents of an order-4 tensor Aðk;kþ1Þ, which is obtained by
contracting two adjacent tensors AðkÞ and Aðkþ1Þ. The
gradient reads

∂L
∂Aðk;kþ1Þwkwkþ1

ik−1ikþ1

¼ Z0

Z
−

2

jT j
X

v∈T

Ψ0ðvÞ
ΨðvÞ ; ð5Þ

where Ψ0ðvÞ denotes the derivative of the MPS with
respect to the tensor element of Aðk;kþ1Þ, and Z0 ¼
2
P

v∈VΨ0ðvÞΨðvÞ. Note that although Z and Z0 involve
summations over an exponentially large number of terms,
they are tractable in the MPS model via efficient contrac-
tion schemes [17]. In particular, if the MPS is in the mixed-
canonical form [17], Z0 can be significantly simplified to

Z0 ¼ 2Aðk;kþ1Þwkwkþ1

ik−1ikþ1
. The calculation of the gradient, as

well as variant techniques in gradient descent such as the
stochastic gradient descent (SGD) and adaptive learning
rate, are detailed in Appendix B. After gradient descent, the
merged order-4 tensor is decomposed into two order-3
tensors, and then the procedure is repeated for each pair of
adjacent tensors.
The derived algorithm is quite similar to the celebrated

DMRG method with a two-site update, which allows us to
adjust dynamically the bond dimensions during the opti-
mization and to allocate computational resources to the
important bonds that represent essential features of data.
However, we emphasize that there are key differences
between our algorithm and DMRG:

(i) The loss function of the classic DMRG method is
usually the energy, while our loss function, the
averaged NLL (4), is a function of data.

(ii) With a huge amount of data, the landscape of the
loss function is typically very complicated, so that
modern optimizers developed in the machine learn-
ing community, such as the stochastic gradient
descent and learning rate adapting techniques
[43], are important to our algorithm. Since the
ultimate goal of learning is optimizing the perfor-
mance on the test data, we do not really need to find
the optimal parameters minimizing the loss on the
training data. One usually stops training before
reaching the actual minima to prevent overfitting.

(iii) Our algorithm is data oriented. It is straightforward
to parallelize over the samples since the operations
applied to them are identical and independent. In
fact, it is a common practice in the modern deep
learning framework to parallelize over this so-called
“batch” dimension [37]. As a concrete example, the
GPU implementation of our algorithm is at least 100
times faster than the CPU implementation on the full
MNIST data set.

C. Generative sampling

After training, samples can be generated independently
according to Eq. (1). In other popular generative models,
especially an energy-based model such as a restricted
Boltzmann machine (RBM) [3], generating new samples
is often accomplished by running MCMC from an initial
configuration, due to the intractability of the partition
function. In our model, one convenience is that the partition
function can be exactly computed with complexity linear in
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system size. Our model enjoys a direct sampling method,
which generates a sample bit by bit from one end of the
MPS to the other [36]. The detailed generating process is as
follows.
It starts from one end, say, the Nth bit. One directly

samples this bit from the marginal probability PðvNÞ ¼P
v1;v2;…;vN−1

PðvÞ. It is clear that this can be easily

performed if we have gauged all the tensors except AðNÞ

to be left canonical because PðvNÞ ¼ jxvN j2=Z, where we
define xvNiN−1

¼ AðNÞvN
iN−1

, and the normalization factor reads
Z ¼ P

vN∈f0;1gjxvN j2. Given the value of the Nth bit, one
can then move on to sample the (N − 1)th bit. More
generally, given the bit values vk, vkþ1;…; vN , the
(k − 1)th bit is sampled according to the conditional
probability

Pðvk−1jvk; vkþ1;…; vNÞ ¼
Pðvk−1; vk;…; vNÞ
Pðvk; vkþ1…; vNÞ

: ð6Þ

As a result of the canonical condition, the marginal
probability can be simply expressed as

Pðvk; vkþ1;…; vNÞ ¼ jxvk;vkþ1;…;vN j2=Z: ð7Þ

xvk;vkþ1;…;vN
ik−1

¼ P
ik;ikþ1;…;iN−1

AðkÞvk
ik−1ik

Aðkþ1Þvkþ1

ikikþ1
� � �AðNÞvN

iN−1
has

been settled since the kth bit is sampled. Schematically,
its squared norm reads

ð8Þ

Multiplying the matrix Aðk−1Þvk−1 from the left, and
calculating the squared norm of the resulting vector

xvk−1;vk;…;vN
ik−2

¼ P
ik−1A

ðk−1Þvk−1
ik−2ik−1

xvk;vk−1;…;vN
ik−1

, one obtains

Pðvk−1; vk;…; vNÞ ¼ jxvk−1;vk;…;vN j2=Z: ð9Þ

Combining Eqs. (7) and (9), one can compute the condi-
tional probability (6) and sample the bit vk−1 accordingly.
In this way, all the bit values are successively drawn from
the conditional probabilities given all the bits on the right.
This procedure gives a sample strictly obeying the prob-
ability distribution of the MPS.
This sampling approach is not limited to generating

samples from scratch in a sequential order. It is also capable
of inference tasks when part of the bits are given. In
that case, the canonicalization trick may not help greatly if
there is a segment of unknown bits sitting between given
bits. Nevertheless, the marginal probabilities are still
tractable because one can also contract ladder-shaped
TN efficiently [17,18]. As will be shown in Sec. III, given
these flexibilities of the sampling approach, MPS-based

probabilistic modeling can be applied to image reconstruc-
tion and denoising.

D. Features of the model and algorithms

We highlight several salient features of the MPS gen-
erative model and compare it to other popular generative
models. Most significantly, MPS has an explicit tractable
probability density, while still allowing efficient learning
and inference. For a system sized N, with prescribed
maximal bond dimension Dmax, the complexity of training
on a data set of size jT j is OðjT jND3

maxÞ. The scaling of
generative sampling from a canonical MPS is OðND2

maxÞ if
all the bits to be sampled are connected to the boundaries;
otherwise, given some segments, the conditional sampling
scales as OðND3

maxÞ.

1. Theoretical understanding of the expressive power

The expressibility of MPS was intensively studied in the
context of quantum physics. The bond dimensions of MPS
put an upper bound on its ability to capture entanglement
entropy. These solid theoretical understandings of the
representational power of MPS [17,18] make it an appeal-
ing model for generative tasks.
Considering the success of MPS for quantum systems,

we expect a polynomial scaling of the computational
resources for data sets with short-range correlations.
Treating data sets of two-dimensional images using MPS
is analogous to the application of DMRG to two-
dimensional quantum systems [31]. Although, in principle,
an exact representation of the image data set may require
exponentially large bond dimensions as the image reso-
lution increases, at computationally affordable bond dimen-
sions, the MPS may already serve as a good approximation
that captures dominant features of the distribution.

2. Adaptive adjustment of expressibility

Performing optimizations for the two-site tensor instead
of for each tensor individually allows one to dynamically
adjust the bond dimensions during the learning process.
Since for realistic data sets the required bond dimensions
are likely to be inhomogeneous, adjusting them dynami-
cally allocates computational resources in an optimal
manner. This situation will be illustrated clearly using
the MNIST data set in Sec. III C and in Fig. 4.
Adjustment of the bond dimensions follows the distri-

bution of singular values in Eq. (B4), which is related to the
low entanglement inductive bias of the MPS representation.
Adaptive adjustment of MPS is advantageous compared to
most other generative models. Because in most cases, the
architecture (which is the main limiting factor of the
expressibility of the model) is fixed during the learning
procedure, only the parameters are tuned. By adaptively
tuning the bond dimensions, the representational power of
MPS can grow as it gets more acquainted with the training
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data. In this sense, adaptive adjustment of expressibility is
analogous to the structural learning of probabilistic graphi-
cal models, which is, however, a challenging task due to the
discreteness of the structural information.

3. Efficient computation of exact gradients
and log-likelihood

Another advantage of MPS compared to the standard
energy-based model is that training can be done with high
efficiency. The two terms contributing to the gradient in
Eq. (5) are analogous to the negative and positive phases in
the training of energy-based models [39], where the visible
variables are unclamped and clamped, respectively. In the
energy-based models, such as RBM, a typical evaluation of
the first term requires approximated MCMC sampling [44]
or sophisticated mean-field approximations, e.g., Thouless-
Anderson-Palmer equations [45]. Fortunately, the normali-
zation factor and its gradient can be calculated exactly and
straightforwardly for MPS. The exact evaluation of gra-
dients guarantees the associated stochastic gradient descent
unbiased.
In addition to efficiency in computing gradients, the

unbiased estimate of the log-likelihood and its gradients
benefits significantly when compared with classic gener-
ative models such as RBM, where the gradients are
approximated due to the intractability of the partition
function. First, with MPS we can optimize the NLL
directly, while with RBM, the approximate algorithms
such as contrastive divergence (CD) are essentially opti-
mizing a loss function other than NLL. This results in the
fact that some region of configuration space could never
be considered during training RBM and a subsequently
poor performance on, e.g., denoising and reconstruction.
Second, with MPS, we can monitor the training process
easily using exact NLL instead of other quantities such as
reconstruction error or pseudolikelihood for RBM, which
introduce bias to monitoring [67].

4. Efficient direct sampling

The approach introduced in Sec. II C allows direct
sampling from the learned probability distribution. This
completely avoids the slowing mixing problem in the
MCMC sampling of energy-based models. MCMC ran-
domly flips the bits and compares the probability ratios for
accepting and rejecting the samples. However, the random
walks in the state space can get stuck in a local minimum,
which may bring unexpected fluctuations of long-time
correlation to the samples. Sometimes this raises issues
with the samplings. As a concrete example, consider the
case where all training samples are exactly memorized by
both MPS and RBM. This is to say that NLL of both
models are exactly ln jT j, and only training samples have
finite probability in both models. Meanwhile, other sam-
ples, even with only one bit different, have zero probability.
It is easy to check that our MPS model can generate

samples, which is identical to one of the training samples
using the approach introduced in Sec. II C. However, RBM
will not work at all in generating samples, as there is no
direction that MCMC could follow for increasing the
probability of samplings.
It is known that when graphical models have an appro-

priate structure (such as a chain or a tree), the inference can
be done efficiently [46,47], while these structural con-
straints also limit the application of graphical models with
intractable partition functions. The MPS model, however,
enjoys both the advantages of efficient direct sampling and
a tractable partition function. The sampling algorithm is
formally similar to the ones of autoregressive models [6,7];
however, being able to dynamically adjust its expressibility
makes the MPS a more flexible generative model.
Unlike GAN [11] or VAE [5], theMPS can explicitly give

tractable probability, which may enable more unsupervised
learning tasks. Moreover, the sampling in MPS works with
arbitrary prior information of samples, such as fixed bits,
which supports applications like image reconstruction and
denoising. We note that this offers an advantage over the
popular GAN, which easily maps a random vector in
the latent space to the image space, but having difficulties
in the reverse direction—mapping a vector in the images
space to the latent space as prior information to sampling.

III. APPLICATIONS

In this section, to demonstrate the ability and features
of the MPS generative modeling, we apply it to several
standard data sets. As a proof of principle, we first apply
our method to the toy data set of Bars and Stripes, where
some properties of our model can be characterized ana-
lytically. Then, we train MPS as an associative memory to
learn random binary patterns to study properties such as
capacity and length dependences. Finally, we test our
model on the Modified National Institute of Standards
and Technology (MNIST) database to illustrate its gener-
alization ability for generating and reconstructing images of
handwritten digits.

A. Bars and Stripes

Bars and Stripes (BS) [48] is a data set containing 4 × 4
binary images. Each image has either four-pixel-length
vertical bars or horizontal stripes, but not both. In total there
are 30 different images in the data set out of all 216 possible
ones, as shown in Fig. 1(a). These images appear with equal
probability in the data set. This toy problem allows a
detailed analysis and reveals key characteristics of the MPS
probabilistic model.
To use MPS for modeling, we unfold the 4 × 4 images

into one-dimensional vectors as shown in Fig. 1(b). After
being trained over four loops of batch gradient descent
training, the cost function converges to its minimum value,
which is equal to the Shannon entropy of the BS data set
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S ¼ lnð30Þ, within an accuracy of 1 × 10−10. Here, what
the MPS has accomplished is memorizing the 30 images
rigidly, by increasing the probability of the instances that
appear in the data set, and suppressing the probability of
not-shown instances towards zero. We have checked that
the result is insensitive to the choice of hyperparameters.
The bond dimensions of the learned MPS have been

annotated in Fig. 1(b). It is clear that part of the symmetry
of the data set has been preserved. For instance, the 180°
rotation around the center or the transposition of the second
and the third rows would change neither the data set nor the
bond dimension distribution. The open boundary condition
results in the decrease of bond dimensions at both ends. In
fact, when conducting SVD at bond k, there are at most
2minðk;N−kÞ nonzero singular values because the two parts
linked by bond k have their Hilbert spaces of dimension 2k,
2N−k. In addition, the turnings bonds have slightly smaller
bond dimension (D4 ¼ D8 ¼ D12 ¼ 15) than others inside
the second row and the third row, which can be explained
qualitatively as these bonds carrying less entanglement than
the bonds in the bulk.
One can directly write down the exact “quantum wave

function” of the BS data set, which has finite and uniform
amplitudes for the training images and zero amplitude for
other images. For division on each bond, one can construct
the reduced density matrix whose eigenvalues are the
square of the singular values. Analyzed in this way, it is
confirmed that the trained MPS achieves the minimal
number of required bond dimension to exactly describe
the BS data set.
We have generated Ns ¼ 106 independent samples

from the learned MPS. All these samples are training
images shown in Fig. 1(a). Carrying out the likelihood
ratio test [49], we got the log-likelihood ratio statistic
G2 ¼ 2NsDKLðfnj=NsgjjfpjgÞ ¼ 22.0, equivalently
DKLðfnj=NsgjjfpjgÞ¼1.10×10−5. The reason for adopting
this statistic is that it is asymptotically χ2-distributed [49].
The p-value of this test is 0.820, which indicates a high

probability that the uniform distribution holds true for the
sampling outcomes.
Note that DKLðfnj=NsgjjfpjgÞ quantifies the deviation

from the expected distribution to the sampling outcomes, so
it reflects the performance of the sampling method rather
than merely the training performance. In contrast to our
model, for energy-based models, one typically has to resort
to the MCMC method for sampling new patterns. It suffers
from the slow mixing problem, since various patterns in the
BS data set differ substantially, and it requires many
MCMC steps to obtain one independent pattern.

B. Random patterns

Capacity represents how much about data could be
learned by the model. Usually, it is evaluated using
randomly generated patterns as data. For the classic
Hopfield model [12] with pairwise interactions given by
Hebb’s rule among N → ∞ variables, it has been shown
[50] that, in the low-temperature region at the thermody-
namic limit, there is the retrieval phase, where, at most,
jT jc ¼ 0.14N random binary patterns could be remem-
bered. In this sense, each sample generated by the model
has a large overlap with one of the training patterns. If the
number of patterns in the Hopfield model is larger than
jT jc, the model would enter the spin glass state, where
samples generated by the model are not correlated with any
training pattern.
Thanks to the tractable evaluation of the partition

function Z in MPS, we are able to evaluate exactly the
likelihood of every training pattern. Thus, the capability of
the model can be easily characterized by the mean negative
log-likelihood L. In this section, we focus on the behavior
of L with varying numbers of training samples and varying
system sizes.
In Fig. 2(a), we plot L as a function of the number of

patterns used for training for several maximal bond dimen-
sionsDmax. The figure shows that we obtainL ¼ ln jT j for a

(a) (b)

FIG. 1. (a) The Bars and Stripes data set. (b) Ordering of the
pixels when transforming the image into a one-dimensional
vector. The numbers between pixels indicate the bond dimensions
of the well-trained MPS.

(a) (b)

FIG. 2. NLL averaged as a function of (a) number of random
patterns used for training, with system size N ¼ 20. (b) System
size N, trained using jT j ¼ 100 random patterns. In both (a) and
(b), different symbols correspond to different values of maximal
bond dimension Dmax. Each data point is averaged over 10
random instances (i.e., sets of random patterns); error bars are
also plotted, although they are much smaller than symbol size.
The black dashed lines in figures denote L ¼ ln jT j.
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training set no larger than Dmax. As shown in the previous
section, this means that all training patterns are remembered
exactly. As the number of training patterns increases, MPS
with a fixedDmax will eventually fail in remembering exactly
all the training patterns, resulting in L > ln jT j. In this
regime, generations of the model usually deviate from
training patterns (as illustrated in Fig. 3 on the MNIST data
set). We notice that, with jT j increasing, the curves in the
figure deviate from ln jT j continuously. We note that this is
very different from the Hopfield model, where the overlap
between the generation and training samples changes
abruptly due to the first order transition from the retrieval
phase to the spin glass phase.
Figure 2(a) also shows that a largerDmax enables MPS to

remember exactly more patterns and produce smaller L
with the number of patterns jT j fixed. This is quite natural
because enlarging Dmax amounts to the increase of the
parameter number of the model and, hence, enhances the
capacity of the model. In principle, ifDmax ¼ ∞, our model
has infinite capacity, since arbitrary quantum states can be
decomposed into MPS [17]. Clearly, this is an advantage
of our model over the Hopfield model and inverse Ising
model [14], whose maximal model capacity is proportional
to system size.
Careful readers may complain that the inverse Ising

model is not the correct model to compare with, because its
variation with hidden variables, i.e., Boltzmann machines,
do have infinite representation power. Indeed, increasing
the bond dimensions in MPS has similar effects to
increasing the number of hidden variables in other gen-
erative models.
In Fig. 2(b), we plot L as a function of system size N,

trained on jT j ¼ 100 random patterns. As shown in the
figure, with Dmax fixed, L increases linearly with system
size N, which indicates that our model gives a worse

memory capability with a larger system size. This is due to
the fact that keeping the joint distribution of variables
becomes more and more difficult for MPS when the
number of variables increases, especially for long-range
correlated data. This is a drawback of our model when
compared with fully pairwise-connected models such as
the inverse Ising model, which is able to capture long-
distance correlations of the training data easily. Fortunately,
Fig. 2(b) also shows that the decay of memory capability
with system size can be compensated by increasing Dmax.

C. MNIST data set of handwritten digits

In this subsection, we perform experiments on the
MNIST data set [51]. In preparation, we turn the grayscale
images into binary numbers by threshold binarization and
flattened the images row by row into a vector. For the
purpose of unsupervised generative modeling, we do not
need the labels of the digits. Here, we further test the
capacity of the MPS for this larger-scale and more mean-
ingful data set. Then, we investigate its generalization
ability via examining its performance on a separated test
set, which is crucial for generative modeling.

1. Model capacity

Having chosen jT j ¼ 1000MNIST images, we train the
MPS with different maximal bond dimensions Dmax, as
shown in Fig. 3. AsDmax increases, the final L decreases to
its minimum ln jT j, and the images generated become more
and more clear. It is interesting that, with a relatively small
maximum bond dimension, e.g., Dmax ¼ 100, some crucial
features show up, though some of the images were not as
clear as the original ones. For instance, the hooks and loops
that partly resemble the numerals “2,” “3,” and “9” emerge.
These clear characters of handwritten digits illustrate that
the MPS has learned many “prototypes.” Similar feature-to-
prototype transitions in pattern recognitions could also
be observed by using a many-body interaction in the
Hopfield model, or equivalently, using a higher-order
rectified polynomial activation function in the deep neural
networks [52]. It is remarkable that, in our model, this can
be achieved by simply adjusting the maximum bond
dimension of the MPS.
Next, we train another model with the restriction of

Dmax ¼ 800. The NLL on the training data set reaches 16.8,
and many bonds have reached maximal dimension Dmax.
Figure 4 shows the distribution of bond dimensions. Large
bond dimensions are concentrated in the center of the
image, where the variation of the pixels is complex. The
bond dimensions around the top and bottom edge of
the image remain small, because those pixels are always
inactivated in the images. They carry no information and
have no correlations with the remaining part of the image.
Remarkably, although the pixels on the left and right edges
are also white, they also have large bond dimensions

FIG. 3. NLL average of a MPS trained using jT j ¼ 1000
MNIST images of size 28 × 28, with varying maximum bond
dimensions Dmax. The horizontal dashed line indicates the
Shannon entropy of the training set ln jT j, which is also the
minimal value of L. The inset images are generated by the MPS
trained with different Dmax (denoted by the arrows).
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because these bonds learn to mediate the correlations
between the rows of the images.
The samples directly generated after training are shown

in Fig. 5(a). We also show a few original samples from the
training set in Fig. 5(b) for comparison. Although many of
the generated images cannot be recognized as digits, some
aspects of the result are worth mentioning. Firstly, the MPS
learned to leave margins blank, which is the most obvious
common feature in the MNIST database. Secondly, the
activated pixels compose pen strokes that can be extracted
from the digits. Finally, a few of the samples could already
be recognized as digits. Unlike the discriminative learning
task carried out in Ref. [32], it seems we need to use much
larger bond dimensions to achieve a good performance in
the unsupervised task. We postulate the reason to be that,
in the classification task, local features of an image are
sufficient for predicting the label. Thus, MPS is not
required to remember longer-range correlation between
pixels. For generative modeling, however, it is necessary
because learning the joint distribution from the data

consists of (but not limited to) learning two-point corre-
lations between pairs of variables that could be far from
each other.
With the MPS restricted to Dmax ¼ 800 and trained with

1000, we carry out image restoration experiments. As shown
in Fig. 6, we remove part of the images in Fig. 5(b) and then
reconstruct the removed pixels (in yellow) using conditional
direct sampling. For column reconstruction, its performance
is remarkable. The reconstructed images in Fig. 6(a) are
almost identical to the original ones in Fig. 5(b). On the other
hand, for row reconstruction in Fig. 6(b), it makes interesting
but reasonable deviations. For instance, for the rightmost
image in the first row, the “1” shape has been bent to a “7.”

2. Generalization ability

In a glimpse of its generalization ability, we also tried
reconstructing MNIST images other than the training
images, as shown in Figs. 6(c) and 6(d). These results
indicate that the MPS has learned crucial features of the
data set, rather than merely memorizing the training
instances. In fact, even as early as only 11 loops trained,
the MPS could perform column reconstruction with similar

FIG. 4. Bond dimensions of the MPS trained with jT j ¼ 1000
MNIST samples, constrained to Dmax ¼ 800. Final average NLL
reaches 16.8. Each pixel in this figure corresponds to the bond
dimension of the right leg of the tensor associated to the identical
coordinate in the original image.

(a) Generated (b) Original

FIG. 5. (a) Images generated from the same MPS as in Fig. 4.
(b) Original images randomly selected from the training set.

(a) column reconstruction on
training images

(b) row reconstruction on training
images

(c) column reconstruction on test
images

(d) row reconstruction on test
images

FIG. 6. Image reconstruction from partial images by direct
sampling with the same MPS as in Fig. 4. (a,b) Restoration of
images in Fig. 5(b), which are selected from the training set. (c,d)
Reconstruction of 16 images chosen from the test set. The test set
contains images from the MNIST database that were not used for
training. The given parts are in black (dark) and the reconstructed
parts are in yellow (light). The reconstructed parts are 12 columns
from either (a,c) the left or the right and (b,d) the top or the bottom.
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image quality, but its row reconstruction performance was
much worse than that trained over 251 loops. It is reflected
that the MPS has learned about short-range patterns within
each row earlier than those with long-range correlations
between different rows, since the images have been
flattened into a one-dimensional vector row by row.
To further illustrate our model’s generalization ability, in

Fig. 7, we plotted L for the same 104 test images after
training on different numbers of images. To save computing
time, we worked on rescaled images of size 14 × 14. The
rescaling has also been adopted by past works, and it is
shown that the classification on the rescaled images is
still comparable with those obtained using other popular
methods [32].
For different jT j, L for training images always decreases

monotonically to different minima, and with a fixed Dmax,
it is easier for the MPS to fit fewer training images. The L
for test images, however, behaves quite differently: For
jT j ¼ 103, test L decreases to about 40.26 and then starts
climbing quickly, while for jT j ¼ 104, the test L decreases
to 33.65 and then increases slowly to 34.18. For
jT j ¼ 6 × 104, test L kept decreasing in 75 loops. The
behavior shown in Fig. 7 is quite typical in machine
learning problems. When training data are not enough,
the model quickly overfits the training data, giving worse
and worse generalization to the unseen test data. An
extreme example is when our model is able to decrease
training L to ln jT j, i.e., completely overfits the training
data, then all other images, even the images with only one
pixel difference from one of the training images, have zero
probability in the model, and hence L ¼ ∞. We also
observe that the best test NLL decreases as the training
set volume enlarges, which means the tendency of memo-
rizing is constrained and that of generalization is enhanced.
The histograms of log-likelihoods for all training and test

images are shown in Fig. 8. Notice that, if the model just
memorized some of the images and ignored the others, the

histograms would be bimodal. It is not the case, as shown
in the figure, where all distributions are centered around.
This indicates that the model learns all images well rather
than concentrates on some images while completely
ignoring the others. In the bottom panel, we show the
detailed L histogram by categories. For some digits, such
as “1” and “9,” the difference between training and test
log-likelihood distribution is insignificant, which sug-
gests that the model has particularly great generalization
ability to these images.

IV. SUMMARY AND OUTLOOK

We have presented a tensor-network-based unsupervised
model, which aims at modeling the probability distribution
of samples in given unlabeled data. The probabilistic model
is structured as a matrix product state, which brings several
advantages, as discussed in Sec. II D, such as adaptive and
efficient learning and direct sampling.
Since we use the square of the TN states to represent

probability, the sign is redundant for probabilistic

FIG. 7. Evolution of the average negative log-likelihood L for
both training images (blue, bottom lines) and 104 test images
(red, top lines) during training. From left to right, the numbers of
images in the training set jT j are 103, 104, and 6 × 104,
respectively.

FIG. 8. Top: Distribution of − lnp of 60 000 training images
and 10 000 test images given by a trained MPS withDmax ¼ 500.
The training negative log likelihood Ltrain ¼ 24.2, and the test
Ltest ¼ 30.3. Bottom: Distributions for each digit.
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modeling besides the gauge freedom of MPS. It is likely
that, during the optimization, MPS develops different
signs for different configurations. The sign variation may
unnecessarily increase the entanglement in MPS and,
therefore, the bond dimensions [53]. However, restricting
the sign of MPS may also impair the expressibility of the
model. One probable approach to obtain a low entangle-
ment representation is adding a penalty term in the target
function, for instance, a term proportional to Rényi
entanglement entropy as in our further work on quantum
tomography [54]. In light of these discussions, we would
like to point to future research on the differences and
connections of MPS with non-negative matrix entries
[55] and the probabilistic graphical models such as the
hidden Markov model.
Binary data modeling links closely to quantum many-

body systems with spin-1=2 constituents and could be
straightforwardly generalized for higher-dimensional data.
One can also follow Refs. [32,56] to use a local feature map
to lift continuous variables to a spinor space for continuous
data modeling. The ability and efficiency of this approach
may also depend on the specific way of performing the
mapping, so in terms of continuous input, there is still a lot
to be explored in this algorithm. Moreover, for colored
images, one can encode the RGB values to three physical
legs of each MPS tensor.
Similar to using MPS for studying two-dimensional

quantum lattice problems [31], modeling images with
MPS faces the problem of introducing long-range corre-
lations for some neighboring pixels in two dimensions. An
obvious generalization of the present approach is to use
more expressive TN with more complex structures. In
particular, the projected entangled pair states (PEPS) [57] is
particularly suitable for images, because it takes care of
correlation between pixels in two dimensions. Similar to
the studies of quantum systems in 2D, however, this
advantage of PEPS is partially compensated by the diffi-
culty of contracting the network and the loss of convenient
canonical forms. Exact contraction of a PEPS is #P hard
[58]. Nevertheless, one can employ tensor renormalization
group methods for approximated contraction of PEPS
[59–62]. Thus, it remains to be seen whether judicious
combination of these techniques really brings a better
performance to generative modeling.
In the end, we would like to remark that perhaps the

most exciting feature of quantum-inspired generative
models is the possibility of being implemented by
quantum devices [63], rather than merely being simulated
in classical computers. In that way, neither the large
bond dimension nor the high computational complexity
of tensor contraction would be a problem. The tensor
network representation of probability may facilitate
quantum generative modeling because some of the tensor
network states can be prepared efficiently on a quantum
computer [64,65].
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APPENDIX A: CANONICAL CONDITIONS
FOR MPS AND COMPUTATION OF THE

PARTITION FUNCTION

The MPS representation has gauge degrees of freedom,
which means that the state is invariant after inserting
identity I ¼ MM−1 on each bond (M can be different on
each bond). Exploiting the gauge degrees of freedom,
one can bring the MPS into its canonical form: for example,
the tensor AðkÞ is called left canonical if it satisfiesP

vk∈f0;1gðAðkÞvkÞ†AðkÞvk ¼ I. In diagrammatic notation,
the left-canonical condition reads

ðA1Þ

The right-canonical condition is defined analogously.
Canonicalization of each tensor can be done locally and
only involves the single tensor at consideration [17,18].
Each tensor in the MPS can be in a different canonical

form. For example, given a specific site k, one can conduct
a gauge transformation to make all the tensors on the left,
fAðiÞji ¼ 1; 2;…; k − 1g, left canonical and tensors on the
right, fAðiÞji ¼ kþ 1; kþ 2;…; Ng, right canonical, while
leaving AðkÞ neither left canonical nor right canonical.
This is called the mixed-canonical form of the MPS [17].
The normalization of the MPS is particularly easy to
compute in the canonical from. In the graphical notation,
it reads

ðA2Þ
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We note that, even if the MPS is not in the canonical form,
its normalization factor Z can still be computed efficiently
if one pays attention to the order of contraction [17,18].

APPENDIX B: DMRG-LIKE GRADIENT
DESCENT ALGORITHM FOR LEARNING

A standard way of minimization of the cost function
in Eq. (4) is done by performing the gradient descent
algorithm on the MPS tensor elements. Crucially, our
method allows dynamical adjustment of the bond dimen-
sion during the optimization, thus being able to allocate
resources to the spatial regions where correlations among
the physical variables are stronger.
Initially, we set the MPS with random tensors with small

bond dimensions. For example, all the bond dimensions are
set to Dk ¼ 2 except those on the boundaries [66]. We then
carry out the canonicalization procedure so that all the
tensors except the rightmost one AðNÞ are left canonical.
Then, we sweep through the matrices back and forth to tune
the elements of the tensors, i.e., the parameters of the MPS.
The procedure is similar to the DMRG algorithm with the
two-site update, where one optimizes two adjacent tensors
at a time [30]. At each step, we firstly merge two adjacent
tensors into an order-4 tensor,

ðB1Þ

followed by adjusting its elements in order to decrease
the cost function L ¼ lnZ − ð1=jT jÞPv∈T ln jΨðvÞj2. It is
straightforward to check that its gradient with respect to an
element of the tensor in Eq. (B1) reads

∂L
∂Aðk;kþ1Þwkwkþ1

ik−1ikþ1

¼ Z0

Z
−

2

jT j
X

v∈T

Ψ0ðvÞ
ΨðvÞ ; ðB2Þ

where Ψ0ðvÞ denotes the derivative of the MPS with respect
to the tensor in Eq. (B1), and Z0 ¼ 2

P
v∈VΨ0ðvÞΨðvÞ. In

diagram language, they read

ðB3Þ

ðB4Þ

The direct vertical connections of wk, vk and wkþ1; vkþ1 in
Eq. (B3) stand for Kronecker delta functions δwkvk and
δwkþ1vkþ1

, respectively, meaning that only those input data
with pattern vkvkþ1 contribute to the gradient with respect
to the tensor elements Aðk;kþ1Þvkvkþ1 . Note that, although Z
and Z0 involve summations over an exponentially large

number of terms, they are tractable in MPS via efficient
contraction schemes [17]. In particular, if the MPS is in the
mixed canonical form, the computation only involves local
manipulations illustrated in Eq. (B4).
Next, we carry out gradient descent to update the

components of the merged tensor. The update is flexible
and is open to various gradient descent techniques. Firstly,
the stochastic gradient descent is considerable. Instead of
averaging the gradient over the whole data set, the second
termof thegradient inEq. (B2) canbe estimatedby randomly
chosen minibatches of samples, where the size of the
minibatch mbatch plays the role of a hyperparameter in the
training. Secondly, on a specific contracted tensor, one can
conduct several steps of gradient descent.Note that, although
the local update of Aðk;kþ1Þ does not change its environment,
the shifting ofAðk;kþ1Þ makes a difference between ndes steps
of the update with learning rate η and one update step with
η0 ¼ ndes × η. Thirdly, especially when several steps are
conducted on each contracted tensor, the learning rate (the
ratio of the update to the gradient) can be adaptively tuned by
meta-algorithms such as RMSProp and Adam [43].
In practice, it is observed that sometimes the gradients

become very small, while it is not in the vicinity of any
local minimum of the landscape. In that case, a plateau or a
saddle point may have been encountered, and we simply
increase the learning rate so that the norm of the update is a
function of the dimensions of the contracted tensor.
After updating the order-4 tensor in Eq. (B1), it is

decomposed by unfolding the tensor to a matrix, sub-
sequently applying singular value decomposition (SVD),
and finally unfolding the obtained two matrices back to two
order-3 tensors:

ðB5Þ

where U, V are unitary matrices and Λ is a diagonal matrix
containing singular values on the diagonal. The number of
nonvanishing singular values will generally increase com-
pared to the original value in Eq. (B1) because the MPS
observes correlations in the data and tries to capture them.
We truncate those singular values whose ratios to the
largest one are smaller than a prescribed hyperparameter
cutoff ϵcut, along with their corresponding row vectors and
column vectors deleted in U and V†.
If the next bond to train on is the (kþ 1)th bond on

the right, take AðkÞ ¼ U so that it is left canonical, and
consequently Aðkþ1Þ ¼ ΛV†. Meanwhile, if the MPS is
about to be trained on the (k − 1)th bond, analogously,
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Aðkþ1Þ ¼ V† will be right canonical and AðkÞ ¼ UΛ. This
keeps the MPS in a mixed-canonical form.
The whole training process consists of many loops. In

each loop, the training starts from the rightmost bond
[between AðN−1Þ and AðNÞ] and sweeps to the leftmost Að1Þ,
then back to the rightmost.
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