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Employing large-scale quantum Monte Carlo simulations, we study the extended XXZ model on the
kagome lattice. A Z2 quantum spin liquid phase with effective even Ising gauge field structure emerges
from the delicate balance among three symmetry-breaking phases including stripe solid, staggered solid,
and ferromagnet. This Z2 spin liquid is stabilized by an extended interaction related to the Rokhsar-
Kivelson potential in the quantum dimer model limit. The phase transitions from the staggered solid to a
spin liquid or ferromagnet are found to be first order and so is the transition between the stripe solid and
ferromagnet. However, the transition between a spin liquid and ferromagnet is found to be continuous and
belongs to the 3D XY� universality class associated with the condensation of spinons. The transition
between a spin liquid and stripe solid appears to be continuous and associated with the condensation of
visons.
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Introduction.—Quantum spin liquids (QSLs) [1–3] are
representatives of topologically ordered states of matter [4],
characterized by long-range many-body entanglement and
fractionalized excitations. In the zoo of QSLs, the Z2 spin
liquid, whose elementary excitations are coupled to the
emergent Ising gauge field [5,6], can be realized in an
extended XXZ spin model on a kagome lattice, i.e., the
Balents-Fisher-Girvin (BFG) model [7–11], which has been
extensively investigated as one of the fewmodels of frustrated
magnets that can be simulatedwith unbiased quantumMonte
Carlo (QMC) methods. There are two promising QSL
materials with kagome lattice geometry—ZnCu3ðOHÞ6Cl2
(herbertsmithite) [12,13] and Cu3ZnðOHÞ6FBr (Zn-doped
barlowite) [14–18]. In both cases, several experiments are
pointing towards gappedQSLground states with possiblyZ2

topological order [14,19], especially the latter, in which a
gapped spinon continuum has been consistently revealed
from both nuclear magnetic resonance [14] and inelastic
neutron scattering experiments [16], and phase transitions
from amagnetically ordered phase to the QSL are realized by
tuning the chemical substitution [17,18]. Therefore, con-
trolled theoretical investigations that could shine light on the
transition fromZ2 topological order to a symmetry-breaking
phase would be very useful to further guide the experiment
developments.

Theoretically, the ground state phase diagram of a
spin-1=2 model is constrained by the celebrated Lieb-
Schultz-Mattis-Oshikawa-Hastings (LSMOH) theorem,
which asserts that, for systems with an odd number of spin
1=2 per unit cell (or fractional filling of bosons per unit cell),
any trivial gapped ground state is forbidden [20–22]. As a
result, the phase diagram should contain only symmetry-
breaking phases or spin liquids. This is indeed the case for the
BFG model at a zero external field, whose phase diagram
consists of a ferromagnet and a gapped Z2 spin liquid [11].
A further refinement of the LSMOH theorem [19,23] implies
that the Z2 spin liquid, which can be viewed as an Ising
gauge theory, must have an effective odd gauge structure.
Intuitively, the ground state contains one Ising gauge charge
per unit cell due to Gauss’s law. This is a manifestation of
the nontrivial fractionalization of lattice symmetries in this
phase [24–27], that the anyon excitations have fractional
lattice momentum. This fact has important implications for
lattice symmetry-breaking phases proximate to the spin liquid.
On the other hand, if we turn to one-third filling (integer

bosons per unit cell) in the BFGmodel, which is outside the
realm of the LSMOH theorem, a Z2 spin liquid ground
state with an even Ising gauge field structure may exist
(a featureless Mott insulator is also possible), and, if so, its
emergent anyon excitations will host different fractional
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quantum numbers and fractionalization patterns [23,28]. In
addition, the absence of the LSMOH constraint implies that
more symmetry-breaking phases may compete with the
potential Z2 spin liquid. We thus expect to see a richer
phase diagram, with possibly more phase transitions of
exotic type driven by condensation of fractionalized any-
onic excitations.
Model and method.—In this Letter, we study a system

hosting a Z2 spin liquid with an even Ising gauge field
structure and solve it with large-scale QMC simulations.
The Hamiltonian of the extended XXZ model on the
kagome lattice is given by

H ¼ −J�
X

hi;ji
ðSþi S−j þ H:c:Þ þ Jz

2

X

⎔

�X

i∈⎔
Szi

�
2

þ J0z
X

hi;ji0
Szi S

z
j − h

X

i

Szi ; ð1Þ

where the physical meaning of each term is illustrated in
Fig. 1(a). The original BFG model consists of the nearest-
neighbor spin flip J� > 0 term and Jz > 0 plaquette
interaction terms for each hexagon which induces local
degeneracy [7]. The newly added J0z term is a next-nearest-
neighbor interaction that frustrates the ordering of spins
on the same sublattice. The Zeeman field h here is used
to tune the magnetization. Throughout the Letter, we set
Jz ¼ 1 as the energy unit.

We note that, as shown in previous work [11], the Z2

spin liquid in the BFGmodel (i.e., J0z ¼ 0) can be stabilized
when the magnetization is zero, i.e., mz ¼ 1

6

P
i∈⎔S

z
i ¼ 0.

As we have mentioned, this filling immediately implies that
the Z2 spin liquid has an odd Ising gauge structure. In the
Ising limit Jz ≫ J�, where a mapping to the quantum
dimer model becomes plausible, mz ¼ 0 means that three
dimers originate from the center of the hexagon. To have an
even number of dimers required by the even Ising gauge
structure [29], the net magnetization must be adjusted to 1
on each hexagon, corresponding to mz ¼ �1=6. With such
a net magnetization, the ground state of the BFG model
turns out to be ferromagnetic for large J�=Jz but may be a
stripe solid (SS) phase [30] or spin liquid (SL) phase [31] in
strong coupling region J� ≪ Jz. In order to stabilize the SL
phase, a diagonal Rokhsar-Kivelson (RK) potential VRK
defined on the corner shared triangles is introduced, and the
critical point between SL and the accompanying staggered
solid (ST) phase is exactly the RK point VRK ¼ 4J2�=Jz. As
mentioned in Ref. [30], the effective RK interaction can be
inserted as the J0z term in the original BFG model. As
shown with QMC simulations below, it plays a key role in
stabilizing the Z2 spin liquid with an even Ising gauge field
structure in our model.
To reveal the ground state phase diagram of Eq. (1), we

employ large-scale stochastic series expansion QMC sim-
ulations, with a plaquette update [11,32] and generalized
balance condition [11,33]. Since the model is highly
anisotropic and frustrated, i.e., J� ≪ Jz and J0z, to avoid
the sampling problem of many local minima, we perform
QMC updates with a five-spin plaquette update (ten legs in
a vortex) [34] instead of the conventional two-spin bond
update. Moreover, to reduce the rejection rate of the
proposed spin configuration, we make use of an algorithm
that satisfies the balance condition without imposing
detail balance between the Monte Carlo configurations
[33]. Details of our numerical method are presented in
Supplemental Material [35].
Results.—Applying large-scale QMC simulations in

canonical ensembles with exact mz ¼ 1=6, we obtain the
phase diagram shown in Fig. 1(c). Four different phases are
distinguished by two physical observables: (i) the spin
stiffness (superfluid density in hard-core boson language)
ρs ¼ ðW2

r1 þW2
r2Þ=ð4βJ�Þ through winding number fluctu-

ationsW2
r1;2 [36], where r1;2 are the two lattice directions, as

shown in Fig. 1(a), and (ii) the sublattice magnetic structure
factor Sq ¼ ð1=NÞPfi;jgeirij·qðhSziSzji − hSzi ihSzjiÞ, where
fi; jg represents ith and jth sites are in the same sublattice
andN ¼ 3L2 is the volume of the system. For weak coupling
J� ≫ Jz, the spin stiffness converges to a finite value, and the
ferromagnetic (FM) order is formed. At small J�=Jz, the
frustrations induced via J0z and Jz manifest themselves in an
intriguing way, such that three different phases emerge.
For large antiferromagnetic J0z ≫ Jz, ρs vanishes, but the

(a)

Γ

(c)

(b)

FIG. 1. (a) The kagome lattice with lattice vectors r1 and r2,
sublattices A, B, and C, and all the interactions J�, Jz, and J0z of
the Hamiltonian in Eq. (1) are depicted. (b) Brillouin zone of the
kagome lattice, with the reciprocal space vectors b1 and b2, the
high-symmetry points Γ ¼ ð0; 0Þ, and K¼ð4π=3;0Þ. (c) J�=Jz−
J0z=Jz phase diagram of the Hamiltonian in Eq. (1) with
magnetization mz ¼ 1=6 (or 1=3 filling factor in boson lan-
guage). The yellow, green, violet, and blue shaded areas are Z2

spin liquid (SL), stripe solid (SS), staggered solid (ST), and
ferromagnetic (FM) phases, respectively. The arrangements of the
spin configuration in the SS and ST phases are schematically
shown in the insets, with the red (gray) ball denoting spin up
(down). The red dimers stand for the effective dimer covering in
the SS and ST phases. The phase transition SL-FM is continuous,
SL-SS is seemingly continuous, and SL-ST, ST-FM, and SS-FM
are first order.
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magnetic structure factor Sq=N has a peak at the wave vector
q ¼ K so that the system forms an ST phase, with the bosons
(or Szi ) arranging themselves according to a

ffiffiffi
3

p
×

ffiffiffi
3

p
unit

cell, as shown in the upper inset in Fig. 1(c). In comparison,
for large ferromagnetic interaction −J0z ≫ Jz, the system is
still incompressible with zero ρs, but Sq=N peaks at the wave
vector q ¼ Γ, which implies that the system forms another
kind of crystalline order [see the lower inset in Fig. 1(c)]. We
identify this phase as the SS phase, because themagnetization
pattern only breaks the rotation symmetry of the kagome
lattice, and it is therefore also a nematic phase [31]. Between
these two solid phases, we find a phase without any obvious
symmetry breaking, and, as will be explained below, numeri-
cal data suggest the existence of fractionalized excitations in
this symmetric phase and their condensation transitions into
other symmetry-breaking phases. These results, combined
with the quantum dimer model limit of our model [30,31],
suggest that this phase is a Z2 SL phase with an even Ising
gauge structure.
According to the Ginzburg-Landau theory, the phase

transition between SS to FM should be first order, because
they break different symmetries; otherwise, an exotic sce-
nario such as a deconfined quantum critical point [37–40]
must be required. In Figs. 2(a) and 2(b), finite structure factor
Sq¼Γ=N and spin stiffness ρs clearly demarcate the region of
SS and FM at large negative J0z=Jz ¼ −0.005, respectively.
A sharp discontinuity indicates a first-order transition.
However, the results at J0z=Jz ¼ 0 are more subtle, as shown
in Figs. 2(c) and 2(d). At first glance, both Sq¼Γ=N and ρs
change continuously. But when the system size increases,
the jumps in Sq¼Γ=N and ρs become more visible. It hints at
a weakly first-order transition and may result from the
energy gap shrinking when approaching the tricritical point
among SL, SS, and FM phases. Furthermore, a smaller
finite-size effect is observed in the SS phase, which suggests

that the SS phase is more stable in the original BFG model,
compared with the SL phase.
Similarly, the phase transitions from ST to FM is first

order. As shown in the right part in Fig. 3, different from SS,
the magnetic structure factor Sq=N has a finite value at
q ¼ K in the ST phase. With fixed J0z=Jz ¼ 0.03 and
increasing J�=Jz up to around J�=Jz ∼ 0.085, Sq¼K=N
drops to zero and ρs jumps to a finite value. Then, the system
enters the FM phase through a first-order phase transition.
Surrounded by three symmetry-breaking phases, the SL is

located in the middle of the phase diagram. In Figs. 3(a)
and 3(b), both order parameters are zero,whichmeans the SL
phase does not break related symmetries. Drawing lessons
from the quantum dimer model on the triangular lattice [41],
the phase transition between SL and ST is expected to be first
order around the RK point J0z ¼ 4J2�=Jz, where SL and ST
are degenerate. From the numerical result shown in Figs. 3(a)
and 3(b) with fixing J�=Jz ¼ 0.07, we can find a clear
first-order transition at J0z=Jz ∼ 0.0175 matching well with
the analytic result from the quantum dimer model. To further
make sure there is no long-range order developed in the SL
phase, we plot the Sq for the entire Brillouin zone in Fig. S4
(see Supplemental Material) with J�=Jz ¼ 0.07 and
J0z=Jz ¼ 0.01, and no obvious Bragg peak is observed.
The intrinsic characteristics of SL are fractionalized

topological excitations. In a Z2 SL, spinons and visons
are deconfined. When quantum fluctuations are enhanced,
spinons can condense to form a FM phase, but the
universality class of transition is usually special [10]. In
order to check it, we implement finite-size scaling on the
spin stiffness ρs at J0z=Jz ¼ 0.005. Seen from the inset in
Fig. 4(a), ρs is a continuous function across the SL to FM
transition for different sizes. Multiplying Lz by the con-
jectured dynamical exponent z ¼ 1, we find that all the
curves cross at the critical point Jc�=Jz ¼ 0.0775. Then,
Fig. 4(a) presents the data collapse of the stiffness ρsLz vs
ðJ�=Jz − Jc�=JzÞL1=ν, where ν is the correlation length
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FIG. 2. The structure factor Sq¼Γ=N and spin stiffness ρs of the
system as a function of J�=Jz at J0z=Jz ¼ −0.005 [Sq¼Γ=N (a)
and ρs (b)] and J0z=Jz ¼ 0 [Sq¼Γ=N (c) and ρs (d)]. The inverse
temperature is set to βJ� ¼ 2L, and the initial spin configuration
is set to be inside the SS phase.
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FIG. 3. The structure factor Sq¼K=N and spin stiffness ρs of the
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ρs (b)] and as a function of J�=Jz at J0z=Jz ¼ 0.03 [Sq¼K=N (c)
and ρs (d)]. The inverse temperature is set to βJ� ¼ 2L, and the
initial spin configuration is set to be inside the ST phase.

PHYSICAL REVIEW LETTERS 121, 057202 (2018)

057202-3



exponent of the 3D XY universality class [42,43].
Apparently, with z ¼ 1 and ν ¼ 0.672, the spin stiffness
is well collapsed. Hence, it suggests that the SL to FM
transition is a genuine continuous phase transition of the 3D
XY universality.
On the other hand, if the symmetric phase observed at

small J�=Jz is indeed a Z2 SL, the transition from SL to
FM should actually belong to the XY� class: Namely, due to
the existence of spinon excitations near the ground state,
the physical order parameter field Sþ fractionalizes into
two spinons, which results in a large anomalous dimension
η at the critical point. This is indeed observed for the
transition from the Z2 SL to the FM phase at half filling
with η ¼ 1.5 [10,44]. To see whether such a scenario is
realized in our model, we consider the equal-time spin-spin
correlation function GðrÞ ¼ hSþ0 S−r i. At the critical point,
GðrÞ should decay as a power lawGðrÞ ∼ 1=jrj1þη. In order
to minimize the finite-size effect, we plot the GðrÞ for

several different system sizes L ¼ 8, 12, 16, 20, 24, 28, and
32 and look for the converged power 1þ η of the real space
decay. Figure 4(b) shows the results at the critical point in a
log-log plot, and the converged exponent is found to be
η ¼ 1.53ð4Þ for J0z=Jz ¼ 0.005. To distinguish this tran-
sition from the conventional 3D XY universality, the η ¼
0.04 line of the 3D XY behavior is also shown in Fig. 4(b).
These numerical observations confirm the scenario that the
transition between SL and FM, as shown in Fig. 1(c), is a
3D XY� transition with a large anomalous scaling dimen-
sion, identical with that in the mz ¼ 0 (Z2 SL with an
odd Ising gauge structure) case [8–10,44]; thus the exist-
ence of fractionalized spinon excitations in the SL phase is
revealed.
Finally, we consider the transition from SS to SL. Our

data of the magnetic structure factor as a function of J0z=Jz
are shown in Fig. 5. Up to L ¼ 18, Sq¼Γ=N seems to
converge to a continuous curve, i.e., smoothly vanishing as
J0z=Jz goes from negative to positive. According to
Ref. [31], a continuous transition from SL to SS with
emergent O(3) symmetry is possible due to the even Ising
gauge structure in the SL phase, driven by the condensation
of visons. However, since we have to simulate the model at
very small values of J�=Jz, the Monte Carlo dynamics
becomes extremely slow even with the advanced update
scheme reported in this work; hence the numerical results
obtained are not sufficient to discern the true nature of this
transition (we actually performed the data collapse upon the
data in Fig. 5 but could not obtain meaningful exponents).
We leave this task to future work with even more powerful
simulation techniques.
Discussion.—We investigated the ground state phase

diagram of an extended BFG model with large-scale
QMC simulations, in which ferromagnet, nematic stripe
solid, and staggered solid phases and, most importantly, a
Z2 spin liquid with an even Ising gauge structure are
discovered. The phase transitions of SS-FM, ST-FM, and
ST-SL are all found to be first order. The phase transitions
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of SL-FM and SL-SS appear to be continuous. The phase
transition from SL and FM is found to fall in the 3D XY�
universality class, signaling the fractionalized spinon exci-
tations in the Z2 spin liquid. A continuous transition
between SL and SS phases is also consistent with the
even Ising gauge structure, where the vison excitations of
the Z2 spin liquid have no fractionalization of the lattice
translation symmetries [45] and, thus, can drive a con-
densation transition to a translation-invariant trivial phase
[28]. The Z2 spin liquid found here, with its even Ising
gauge structure, is an outlier of LSMOH-type theorems,
and, hence, more competing phases, exemplified by the SS
and ST phases, indeed come into play in the phase diagram.
The transitions coming out of the SL phase into SS and
FM phases provide two possible routes for the anyon
condensation. Our results hence broaden the scope of
frustrated spin models in which unexpected topological
phases could be present.
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