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Anomalous surface states with Fermi arcs are commonly consid-
ered to be a fingerprint of Dirac semimetals (DSMs). In contrast to
Weyl semimetals, however, Fermi arcs of DSMs are not topologi-
cally protected. Using first-principles calculations, we predict that
β-cuprous iodide (β-CuI) is a peculiar DSM whose surface states
form closed Fermi pockets instead of Fermi arcs. In such a fermi-
ological Dirac semimetal, the deformation mechanism from Fermi
arcs to Fermi pockets stems from a large cubic term preserving all
crystal symmetries and from the small energy difference between
the surface and bulk Dirac points. The cubic term in β-CuI, usu-
ally negligible in prototypical DSMs, becomes relevant because of
the particular crystal structure. As such, we establish a concrete
material example manifesting the lack of topological protection
for surface Fermi arcs in DSMs.

Dirac semimetals | Weyl semimetals | Fermi arcs | topological insulator

Topological semimetals including Dirac semimetals (DSMs),
Weyl semimetals (WSMs), and nodal line semimetals have

been attracting enormous attention in contemporary research (1,
2), exhibiting a plethora of exotic phenomena (3–14). In particu-
lar, the surface states of such semimetals commonly feature open
Fermi arcs rather than closed Fermi pockets (15). The princi-
pal existence of Fermi arcs appears robust against potential bulk
band hybridizations and has been confirmed by theoretical cal-
culations as well as experimental observations in all type-I and
type-II (16) WSM and DSM materials studied so far (17–24).

The topological protection of nondegenerate surface Fermi
arcs in WSMs traces back to topological invariants enforcing the
connection between Berry flux monopoles of opposite charge,
which is realized by pairs of bulk Weyl cones projected to a
given surface. In view of DSMs, however, it has been pointed
out recently (25, 26) that the doubly degenerate Fermi arcs on
side surfaces are not topologically protected and that a cubic
term preserving all crystal symmetries can deform Fermi arcs
into closed Fermi surfaces, yielding a state we call fermiologi-
cal DSM. In all DSMs (Na3Bi and Cd3As2) known so far, such
a cubic term is negligible, so that doubly degenerate Fermi arcs
always appear at the surfaces.

In this work, we predict that β-cuprous iodide (β-CuI) (27, 28)
is a proposed instance of a fermiological DSM, exhibiting closed
Fermi surfaces instead of Fermi arcs on its side surfaces. The
band inversion, which can be greatly enhanced with compressive
strain along the c axis, happens between the bonding states of
Cu-4s orbitals and I-5px ,y orbitals. It generates both 3D topo-
logical semimetal and 3D topological insulator phases. A crystal
symmetry-preserving cubic term, which is usually expected to
be negligible in previous DSM materials, is found to be con-
siderably larger because of the unique atomic arrangements in
β-CuI, in sharp contrast to conventional DSMs such as Na3Bi
and Cd3As2. In particular, the small energy difference between
surface and bulk Dirac points causes a flat surface state along the
Γ–Z direction. In this flat surface state, the cubic term can intro-
duce a gap for kz 6=0 to deform Fermi arcs into a closed Fermi

surface. Our study provides a concrete material example to illus-
trate the lack of topological protection of surface Fermi arcs
in DSMs. The corresponding consequences in angle-resolved
photoemission spectroscopy (ARPES) and quantum oscillation
measurements are also discussed.

Crystal Structure
The crystal chemistry of CuI is characterized by three stable
structural phases α, β, and γ (27). Here, we focus on the topolog-
ically nontrivial properties of the β phase. The crystal structure
of β-CuI with the space group R3̄m is shown in Fig. 1A (27).
According to the chemical environment, the I ions can be classi-
fied as I1 and I2. I1 is octahedrally coordinated by six Cu atoms,
and I2 is coordinated by only two Cu ions parallel to the c axis,
resulting in a strong negative crystal field for the I1 p orbitals
and I2 pz orbital. As shown in Fig. 1A, the Cu–I1–Cu form tri-
layer structures and are connected by I2 ions along the c axis. In
the following calculations, we adopt the experimental structural
parameters in ref. 27.

Electronic Structure
The band structure and density of states (DOS) for β-CuI are
displayed in Fig. 2. Due to the monovalence of Cu, the d orbitals
of Cu are fully filled and located at about −2.5 eV. The p orbitals
of I1 and the pz orbital of I2 lie far below the Fermi level because
of the strongly negative crystal field. Near the Fermi level, the
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Fig. 1. Crystal structure and primitive Brillouin zone for β-CuI. (A) Crystal
structure of β-CuI. Cu–I1–Cu trilayers stacking along the c axis are connected
by I2 ions. (B) Top view of crystal structure of Cu–I1–Cu trilayers. I1 is octahe-
drally coordinated by six Cu atoms, which generate a negative crystal field.
(C) Primitive Brillouin zone for β-CuI.

valence and conduction bands are predominantly attributed to
the I2-5px/y and Cu-4s orbitals. The most prominent feature in the
band structure is that at the Γ point, the Cu-4s band is lower than
the I-5px ,y bands by about 0.47 eV and that there is a crossing
point along the ΓZ line near the Fermi level, as shown in Fig. 2A.
Due to strong spin orbital coupling (SOC) in I ions, we further
take SOC into consideration in our calculations. As shown in
Fig. 2C, the I-5px ,y bands in the ΓZ line split into Λ5 + Λ6

(
∣∣jz =± 3

2

〉
) and Λ4 (

∣∣jz =± 1
2

〉
) bands, and the band inversion at

the Γ point is further enhanced to 0.77 eV. As the generalized
gradient approximation occasionally tends to underestimate band
gaps, we further assert the avenue of band inversion by hybrid
functional Heyd–Scuseria–Ernzerhof calculations and also find
that the gap can be greatly enhanced through compressive strain
along the c axis (SI Appendix, section 2). Furthermore, as the two
crossing bands along the ΓZ line belong to different irreducible
representationsasdistinguishedbyC3 rotationalsymmetryaround
the z axis, this indicates that the 3D Dirac cones near the Fermi
level are stable. Notably, the Cu-4s and I-5px ,y

∣∣jz =± 1
2

〉
bands

have the same Λ4 irreducible representation, which leads to a
band anticrossing and a full gap opening around −0.4 eV. As the
parities of Cu-4s and I-5p bands are opposite at the Γ and the
Z point, band inversion will drive the system into a topologically
nontrivial phase. Due to the presence of 3D inversion symmetry
in β-CuI, we can calculate Z2 topological invariants by analyzing
the parity eigenstates at high-symmetry points (29). The parity of
the eigenstates near the Fermi level at Γ and Z points is displayed
in Fig. 2C. According to our calculations, CuI is a topologically
nontrivial semimetal, with 3D Z2 invariants given by (1; 000) (SI
Appendix, section 1). Furthermore, setting the chemical potential
to −0.4 eV, the system is located in a topological insulator phase
with nontrivial Z2 invariants. In total, we thus find that band
inversion generates both topological semimetal and topological
insulator phases.

Because of bulk–edge correspondence, a topologically non-
trivial bulk state is accompanied by gapless surface states. For

CuI, these can be obtained by calculating the surface Green func-
tion of the semiinfinite system through an iterative procedure
(30, 31). Fig. 3A shows the edge states on the (001) surface. Inter-
estingly, a surface Dirac cone exists around −0.4 eV stemming
from the nontrivial topological insulator phase, and the corre-
sponding Fermi surface is a closed circle with a left-handed spin
texture (SI Appendix, section 6). The surface states of the (100)
surface in the conventional cell are shown in Fig. 3B. The energy
difference ∆ between the surface Dirac point at Γ and the pro-
jections of the bulk Dirac points is extremely small, yielding flat
surface states along ΓZ , in sharp contrast to conventional DSMs
(6, 15) (SI Appendix, section 7). Despite the band folding along
the ΓZ direction (SI Appendix, section 4), we find that the two
surface states vanish at the projection of bulk Dirac points and
exhibit nonmonotonic dispersion along ΓZ . Furthermore, the
lower surface state first sinks below the energy level ED of the
bulk Dirac points, then rises above it, and finally bends down
to saturate at it, resulting in three crossing points for ky = 0 at
ED (denoted by white and red circles in Fig. 3 B and D). The
corresponding Fermi surface of (100) surface at ED is shown in
Fig. 3D. There is one closed nontrivial Fermi pocket centered
around kz = 0 and there are two trivial pockets around kz =π,
which originate from the nontrivial Z2 invariant in the kz = 0
plane and the trivial Z2 invariant in the kz =π plane, respec-
tively. The closed Fermi pocket around kz = 0 does not pass
through the projections of the bulk Dirac points (denoted by red
circles in Fig. 3D), illustrating that Fermi arcs are absent. Fur-
thermore, the surface states at an exemplary amount of kz =π/6
lower than the location kzD of the Dirac point, which exhibit
gap opening, are shown in Fig. 3C. We find that the obtained
surface states are gapped for all kz except kz = 0, which plays
an important role in deforming Fermi arcs into a closed Fermi
surface.
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Fig. 2. Band structures and DOS for β-CuI without SOC and with SOC. (A
and B) Band structures and DOS of β-CuI without SOC. The band inversion
happens between I2-5px/y and Cu-4s orbitals, and Dirac points are located in
ΓZ near the Fermi level. (C and D) Band structures and DOS of β-CuI with
SOC. The I-5px,y bands in the ΓZ line are split, and the band inversion at the
Γ point is further enhanced to be 0.77 eV. The orbital weights are repre-
sented by the areas of circles and triangles. The parities of the eigenstates
and the irreducible representations of bands at the Γ point near the Fermi
level are shown. The eigenvalues of C3 for bands along the Γ–Z line are
displayed in SI Appendix, section 1.
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Fig. 3. The (001) and (100) surface states and Fermi surfaces for β-CuI.
(A and B) Projected surface states of β-CuI for (001) and (100) surfaces
in the conventional cell. On the (001) surface a surface Dirac cone exists
around −0.4 eV and on the (100) surface the two surface states exhibit
nonmonotonic dispersion along ΓZ and vanish at the projection of bulk
Dirac points. (C) Projected surface states of β-CuI for the (100) surface at
the kz = π

6 plane, where surface states are gapped. (D) Fermi surface at
the energy of bulk Dirac points for the (100) surface. One closed non-
trivial Fermi pocket with spin helical texture (shown by green arrows) is
centered around kz = 0. The closed pocket does not pass through the pro-
jections of the bulk Dirac points (red circles), illustrating that Fermi arcs
are absent.

Effective Hamiltonian
To characterize the low-energy effective Hamiltonian around the
Γ point, which is helpful to understand the origin of the surface
Fermi arc breakdown, we adopt the perspective of the theory of
invariants (32). From the band structure, the states around Γ are
mainly attributed to I2-5px, y and Cu-4s orbitals, and thus these
orbitals can be used to construct the basis. Further considering
the inversion symmetry in the system, it is convenient to combine
these orbitals to form the eigenstates of the inversion symmetry,
which are given by

∣∣P±α 〉=
1√
2

(
∣∣Iα〉± ∣∣I′α〉),∣∣S±〉=

1√
2

(
∣∣Cus

〉
±
∣∣Cu′s

〉
), [1]

where the superscript denotes the parity, α= px ,y , and the I (Cu)
as well as I′ (Cu′) atoms are related by inversion symme-
try. We focus on the low-energy states near the bulk Dirac
point. After further taking into account SOC in the atomic
picture, we can choose

∣∣S+, 1
2

〉
,
∣∣P−, 3

2

〉
,
∣∣S+,− 1

2

〉
,
∣∣P−,− 3

2

〉
as the basis in k · p theory to construct the effective Hamilto-
nian around the Γ point. The Hamiltonian to third order in
k reads

Heff (k) =H0 +H1 +H2

H0 = ε(k) +M (k)σ0τ3−A(k‖)(kxσ3τ2 + kyσ0τ1)

H1 = (D2 +D3k
2
z )(−kxσ1τ2 + kyσ2τ2)

H2 =−D1kz [(k2
x − k2

y )σ1τ2 + 2kxkyσ2τ2], [2]

where the Pauli matrices σ act in spin and τ in orbital space, k±=
kx±iky , εk =C0 +C1k

2
z +C2(k2

x + k2
y ), M (k) =M0−M1k

2
z −

M2(k2
x + k2

y ), A(k‖) =A0 +A1k
2
z , D(k) = ik+(D2 +D3k

2
z ), and

D̃(k) = iD1kzk
2
−. The antidiagonal terms contain first-order and

third-order terms, which have often been omitted in previ-
ous studies, but turn out to be of great importance in β-CuI.
The energy dispersion of the Hamiltonian for the DSM is

E(k) = εk±
√

M (k)2 +A2k+k−+
∣∣D(k) + D̃(k)|2, resulting in

two band crossing points (0,0, ±kzD ) along the Γ–Z line with

kzD =
√

M0
M1

. By fitting the bands of the effective model with
those of density functional theory (DFT) calculation around the
Γ point, the parameters in the effective model are given by C0 =
−0.2070 eV, C1 = 2.0445 eV·Å2, C2 = 12.8481 eV·Å2, M0 =
−0.3855 eV, M1 =−6.8288 eV·Å2, M2 =−37.4544 eV·Å2,
A0 = 4.0035 eV·Å, A1 =−1,629.0242 eV·Å2, D1 = 167.799
eV·Å3, D2 = 2.8549 eV·Å, and D3 =−1,668.6306 eV·Å3. In β-
CuI, we find that the coefficients in the antidiagonal terms are
considerably large and thus cannot be omitted.

In ref. 25, the Fermi arcs on the (100) surface have been shown
to be not protected by symmetry and can in principle be absent.
Still, the effective Hamiltonian H0, up to second order in k, can
give robust surface Fermi arcs. Therefore, H0 must have addi-
tional symmetries, which are to some degree artificial and not
enforced for DSM materials. Consider a pseudo–time-reversal
symmetry T in 2D, which can be defined as T = iσ2τ3 ·K . Under
this operation, the Hamiltonian for H (kx , ky , kz0) at a fixed kz0

plane transforms as T H (kx , ky , kz0)T −1 =H (−kx ,−ky , kz0). It
can be easily verified that the Hamiltonians H0 and H1 are invari-
ant under the operation T . This symmetry, not preserved for
the generic realistic system but only for the Hamiltonian H0,H1,
and its side surfaces, can protect gapless surface states for
any kz < kzD planes. The energy difference between the surface
Dirac point and the bulk Dirac point is given by (SI Appendix,
section 5)

∆ =

(
C2

M2
− C1

M1

)
M0. [3]

The corresponding prototypical surface states on the (100) sur-
face along Y–Γ–Z for H0 +H1, with a small ∆, are shown in
Fig. 4A, where the energy of two degenerate flat surface states
decreases monotonically with increasing momentum along ΓZ .
As a consequence of the latter, there are only two points in
ky = 0 on the Fermi surface at ED , that is, the projected bulk
Dirac points, and Fermi arcs can robustly appear on the (100)
surface. It is, however, the cubic H2 term that breaks this arti-
ficial symmetry and naturally introduces gap openings for any
kz except kz = 0 where fundamental time-reversal symmetry is
kept. Taking H2 into consideration, two surface states split,
as shown in Fig. 4B, and the prominent feature is that both
surface states exhibit a nonmonotonic band dispersion along Γ–
Z, which generates an additional two points in ky = 0 at ED

in the surface state. As such, the Fermi arcs deform into a
closed Fermi pocket, bearing some similarity to a 3D topolog-
ical insulator surface state. Further increasing coefficients in
H1, we find that this will reduce the splitting of surface states
along Γ–Z. Adding either inversion symmetry or time-reversal
symmetry breaking, DSMs become WSMs, and Fermi arcs are
known to be robust (SI Appendix, section 7). In the presence
of both these symmetries, however, the cubic term explicates
how Fermi arcs on the surface of a DSM are not topologically
protected.

We now turn to a detailed analysis of why despite the above
finding, the hallmark of DSM materials discovered previously,
such as Na3Bi and Cd3As2, still has the appearance of seemingly
robust Fermi arcs. We conjecture that this is attributed to a small
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Fig. 4. The (100) surface states from the effective Hamiltonian with differ-
ent D1 and ∆. (A and B) Calculated (100) surface states from H0 + H1 (A) and
H0 + H1 + H2 (B) with a small ∆. Taking H2 into consideration, the Fermi arcs
deform into a closed Fermi pocket. (C and D) Calculated surface states from
H0 + H1 (C) and H0 + H1 + H2 (D) with a large ∆. The effect of the cubic term
is weakened due to the large ∆ and Fermi arcs can still exist. Both the large
cubic term and small ∆ are crucial to the absence of side Fermi arcs in DSMs.

coefficient of the cubic term in H2 along with a large ∆. How
does this change for β-CuI? We start by analyzing the origin of
the H2 term, which corresponds to the coupling of

∣∣P−, 3
2

〉
and∣∣S+,− 1

2

〉
. The only process generating this coupling in β-CuI

can be summarized as∣∣pI2
x/y,σ

〉 λI−→
∣∣pI2

z ,σ̄

〉 t1−→
∣∣sCub
σ̄

〉 t2−→
∣∣sCua
σ̄

〉
, [4]

where σ= ↑, ↓ labels the spin. The hybridization process is as fol-
lows: First,

∣∣pI2
x/y,σ

〉
couples strongly with

∣∣pI2
z ,σ̄

〉
due to strong

atomic SOC in I atoms; as there is a strong σ bond between
I2 and Cub ,

∣∣pI2
z ,σ̄

〉
can strongly hybridize with

∣∣sCub
σ̄

〉
; because

of the short distance between Cua and Cub ,
∣∣sCua
σ̄

〉
and

∣∣sCub
σ̄

〉
exhibit considerable coupling; and finally, the

∣∣P−, 3
2

〉
can couple

indirectly via
∣∣S+,− 1

2

〉
, and the coupling constant D1 is propor-

tional to λI t1t2. In β-CuI, all three parameters are large, and
hence they generate a considerable D1. While the microscopic
mechanism explained above is derived for a specific material, it
potentially applies to a series of other DSMs, certainly to the
ones originating from band inversion between

∣∣jz =± 3
2

〉
and∣∣jz =± 1

2

〉
states with opposite parities. In Na3Bi and Cd3As2,

even though SOC is even stronger than for CuI, the second and
third steps of the process are considerably weakened because of
the weak bonding between cations and anions, indicating that
the D1 parameter is small there. In addition, ∆ in Na3Bi is much
larger than that in β-CuI, which also weakens the effect of the
cubic term. Fig. 4C shows the surface states with a large ∆, where
surface states exhibit a large dispersion along Γ–Z. Including the
same cubic term as in Fig. 4D, the band splitting weakens, and
Fermi arcs can still exist in this case. Thus, small ∆ is another pre-
requisite to impose on the absence of Fermi arcs. The H1 term in
β-CuI preserves T symmetry and, if dominant, can substantially
suppress the gap opening for the surface states. The first term
in D(k), however, involves only in-plane coupling, and is weak
because of no immediate microscopic foundation in real space;

the second term includes k2
z and, as such, in comparison with H2

has a much weaker effect for small kz . Therefore, the combined
appearance of large D1 as well as small ∆ in β-CuI triggers the
breakdown of surface Fermi arcs.

Discussion
We elaborate on experimental evidence derived from the break-
down of surface Fermi arcs due to a significant cubic term.
First, aiming at the effect of the cubic term in the bulk,
the in-plane energy dispersion for a specific kz is E(k) = εk±√

f1 + f2
∣∣k |2 + f3|k |4. If D1 is large, the coefficient f3 =M 2

2 +

D2
1 k

2
z should exhibit noticeable kz dependence, which could be

identified upon fitting the band structure against ARPES mea-
surements. Second, as the splitting of (100) surface states along
Γ–Z is directly related to the cubic term, this splitting can like-
wise be obtained in ARPES and is expected to be relatively
large as well as strongly kz dependent. In addition, the change
of nature of the surface states from arcs to closed Fermi pockets
hints at immediate experimental implications. First, terminating
Fermi arcs and closed Fermi surfaces exhibit qualitative differ-
entiable shape differences in ARPES measurements. For the
former, when two Fermi arcs meet at the projection of bulk Dirac
points, there is a singular change in slope, whereas for the latter,
the closed Fermi surface has a smooth curvature everywhere and
does not pass through the projections of bulk Dirac points. Sec-
ond, the distinct behavior of surface Fermi arcs vs. closed surface
Fermi pockets in quantum oscillation measurements can be used
to contrast them. In the former case, the quantum oscillation fre-
quency Fs is strongly dependent on the sample thickness due to
the Weyl orbits (33, 34). In triangle-shaped samples, quantum
oscillations can be even unobservable in experiment (34). In the
latter case, fermions acquire a measurable Berry phase of π as
they encircle the Fermi contour, similar to topological insulators.
In contrast to the former case, quantum oscillations can exist
in triangle-shaped samples (35–37) and exhibit weak thickness
dependence.

Conclusion
Based on first-principles calculations we predict that β-CuI is
a topological unconventional DSM exhibiting closed Fermi sur-
faces instead of Fermi arcs on its side surfaces. The theoretical
discovery of β-CuI provides explicit proof that the Fermi arcs in
DSMs are not topologically protected. Our study also suggests
that halide compounds can be a fertile ground to explore novel
topological properties.

Methods
Our calculations are performed using DFT as implemented in the Vienna
ab initio simulation package (VASP) code (38–40). The Perdew–Burke–
Ernzerhof (PBE) exchange-correlation functional and the projector–
augmented-wave (PAW) approach are used. Throughout this work, the
cutoff energy is set to 500 eV for expanding the wave functions into plane-
wave basis. In the calculation, the Brillouin zone is sampled in the k space
within the Monkhorst–Pack scheme (41). On the basis of the equilibrium
structure, the k mesh used is 6× 6× 6 and 10× 10× 2 for primitive and
conventional cells, respectively.
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