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The nontriviality of quantum spin liquids (QSLs) typically manifests in the nonlocal observables that
signify their existence; however, this fact actually casts a shadow on detecting QSLs with experimentally
accessible probes. Here, we provide a solution by unbiasedly demonstrating a dynamical signature of
anyonic excitations and symmetry fractionalization in QSLs. Employing large-scale quantum Monte Carlo
simulation and stochastic analytic continuation, we investigate the extended XXZ model on the kagome
lattice, and find out that, across the phase transitions from Z2 QSLs to different symmetry breaking phases,
spin spectral functions can reveal the presence and condensation of emergent anyonic spinon and vison
excitations, in particular, the translational symmetry fractionalization of the latter, which can be served as
the dynamical signature of the seemingly ephemeral QSLs in spectroscopic techniques such as inelastic
neutron or resonance (inelastic) x-ray scatterings.
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Introduction.—Quantum spin liquids (QSLs) [1–4] are
exotic phases of matter characterized by long-range many-
body entanglement and fractionalized excitations [5]. One of
the defining features of QSLs is that there is no local order
parameter and the nontriviality of the phase manifests in
nonlocal observables. In the case of gapped QSLs, global
observables such as Wilson loop operators [6,7], topological
entanglement entropies [8–10], and modular transformations
[11] have been exploited to characterize topological order
theoretically, but none of them are directly accessible in
experiments. Available to experiments are measurements of
static [12] and dynamical spin correlation functions (besides
thermodynamical quantities). In particular, dynamical spin
structure factor (DSSF), measured by inelastic neutron
scattering, probes the spectral properties of elementary
magnetic excitations [13,14]. Therefore, it is an important
question for understanding what kind of universal informa-
tion about the underlying QSLs can be extracted from the
momentum and energy resolved DSSFs.
For example, now, a continuum in DSSF is often taken

as an indication of fractionalized excitations, but a simple
continuum in the spin spectrum can also be caused by
disorder [15]. Therefore, additional signatures in DSSF
unique to a QSL are desired. On the other hand, it is also
desirable to read out more information besides the existence

of fractionalized excitations from DSSF. In particular, QSLs
with the same type of anyon excitations can be further
classified by how internal and lattice symmetries act on the
anyons, known as the symmetry-enriched topological order
[5,16,17]. It has been proposed that [18–20] this additional
information can also be detected from DSSF. In this work,
for the first time, we compute the DSSF in a frustrated spin
model in an unbiased manner and observe such unique
dynamical signatures in DSSF—the fractionalization of
lattice symmetries—in QSL with Z2 topological order.
Model and method.—We consider the extended Balents-

Fisher-Girvin (BFG) model on a kagome lattice, where Z2

QSLs are realized [10,12,21–25]. It has been extensively
investigated as one of the very few models of frustrated
magnets that can be simulated with unbiased quantum
Monte Carlo (QMC) methods, and the defining features of
QSL such as spinon and vison excitations [23,26], topo-
logical entanglement entropy [10], and fractionalized
quantum critical points [24] have been revealed.
The Hamiltonian of the model is given by

H ¼ −J�
X

hi;ji
ðSþi S−j þ H:c:Þ þ Jz

2

X

⎔

�X

i∈⎔
Szi
�
2

þ J0z
X

hi;ji0
SziS

z
j − h

X

i

Szi ; ð1Þ

PHYSICAL REVIEW LETTERS 121, 077201 (2018)

0031-9007=18=121(7)=077201(6) 077201-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.077201&domain=pdf&date_stamp=2018-08-14
https://doi.org/10.1103/PhysRevLett.121.077201
https://doi.org/10.1103/PhysRevLett.121.077201
https://doi.org/10.1103/PhysRevLett.121.077201
https://doi.org/10.1103/PhysRevLett.121.077201


with the physical meaning of each term illustrated in
Fig. 1(a). The original BFG model consists of the
nearest-neighbor spin flip J� > 0 term, and Jz > 0 pla-
quette interaction term for each hexagon. The newly added
J0z term is a next-nearest-neighbor interaction that frustrates
the ordering of spins on the same sublattice [21]. The
Zeeman field h tunes the total magnetization. We set Jz ¼ 1
as the energy unit. The Hamiltonian preserves all sym-
metries of the kagome lattice, as well as a Uð1ÞSz⋊Z2 ¼
Oð2Þ spin symmetry at h ¼ 0 and the Uð1ÞSz symmetry at
h ≠ 0. Hence, throughout this Letter, the spin quantum
number refers to Sz.
To study the model in Eq. (1), we employ large-scale

stochastic series expansion [27] QMC simulations. Since
the model is highly anisotropic and frustrated, i.e., J� ≪ Jz
and J0z, to avoid the sampling problem of many local
minima, we perform QMC simulations with a five-spin
plaquette update (ten legs in a vortex) [12,21]. Moreover, to
reduce the rejection rate of the proposed spin configura-
tions, we make use of an algorithm that satisfies the balance
condition without imposing detail balance [12,21,28]. The
ground state phase diagrams of the model in Eq. (1) at
mz ¼ 0ð1

6
Þ plateaus are determined in Refs. [12,21,25], and

are reproduced in Figs. 1(c) and 1(d). In both cases, stable
Z2 QSL emerges and the transitions from Z2 QSL to the

ferromagnetic (FM) phase driven by J�=Jz are continuous
and of (2þ 1) XY� universality [21,24].
Spinon and vison continua.—Here, we introduce the

concept of spinon and vison excitations in the BFG QSL
and develop an understanding of how they are detected
in the DSSFs. We are primarily interested in the Ising
limit J� ≪ Jz. Thus, the ground state manifold respects
the constraint Sz

⎔

¼ P
i∈⎔S

z
i ¼ 6mz for each hexagon.

Violations of these constraints correspond to deconfined
excitations, the spinon, whose energy gap is of the order of
Jz. Since a spin flip Sþi , which carries a charge of 1 under
Uð1ÞSz , creates two identical hexagon excitations, each
with Sz

⎔

¼ 6mz þ 1, each of them must carry a Uð1ÞSz
charge of 1=2 and, thus, is called a spinon. The other kind
of excitation, visons, are more subtle and can be viewed as
sources of π flux for spinons. When a spinon is transported
around a vison, its wave function changes sign. Since
visons do not carry any Uð1ÞSz charge, it is natural that Sz
operators can create pairs of visons. This is supported by an
explicit construction of vison states at a soluble deforma-
tion of the BFG model in Ref. [22]. Because visons are
created in the low-energy manifold with Sz

⎔

¼ 6mz, they
have a much lower energy gap of the order of J2�=Jz.
Therefore, to observe the spectral information of spinon

and vison excitations of Z2 QSLs, we make use of the
following dynamical spin structure factors:

S�αβðq; τÞ ¼ hSþ−q;αðτÞS−q;βð0Þi; ð2Þ

Szzαβðq; τÞ ¼ hSz−q;αðτÞSzq;βð0Þi: ð3Þ

Here, the imaginary time τ ∈ ½0; β�, and to make sure that
the system is close to the QSL ground state, we choose
β ¼ 2L=J� to be below the energy scale associated with
the anyonic excitation gap (if J� ¼ 0.1Jz, then T ≤ J2�=Jz
when L > 5). L is the linear system size and the
total number of sites N ¼ 3 × L2. α, β ¼ 1, 2, 3 label
the three sublattices of the kagome lattice. h� � �i stands
for the QMC ensemble average. We have defined S�q;α ¼ffiffiffiffiffiffiffiffiffi
3=N

p P
i∈αe

−iq·riS�i , where the summation over the sub-
lattice α and ri is the spatial position of the site i. Szzq;α is
defined in the same vein.
One can obtain the real frequency DSSFs via the

stochastic analytic continuation (SAC) [29–36] of the
imaginary-time data. In SAC, candidate real-frequency
spectra are proposed and fitted to the imaginary time data.
Each candidate is then weighted by their goodness-of-fit χ2

as an effective energy, such that a Metropolis sampling can
be defined over the proposed spectra. The final spectrum
is the ensemble average of all candidates. A detailed
account of SAC and its recent applications can be found
in Refs. [32–37].
Figure 2 shows the obtained S�ðq;ωÞ ¼ 1

3

P
αS

�
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and Szzðq;ωÞ ¼ 1
3

P
αS
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FIG. 1. (a) The kagome lattice with lattice vectors r1 and r2,
sublattices A, B, and C, and all the interactions J�, Jz, and J0z of
the Hamiltonian in Eq. (1) depicted. (b) Brillouin zone of the
kagome lattice, with the reciprocal vectors b1 and b2, the high
symmetry path goes through points Γ, M, and K. (c) J�=Jz vs
J0z=Jz phase diagram of Hamiltonian in Eq. (1) at magnetization
mz ¼ 0 [12]. Along the J�=Jz axis, there is a transition from Z2

QSL to ferromagnetic (FM) ordered phase; along the J0z=Jz axis,
following the direction of the red arrow, there is a transition from
Z2 QSL to a valence bond solid (VBS) phase which orders at
point M. (d) J�=Jz vs J0z=Jz phase diagram of Hamiltonian in
Eq. (1) at magnetizationmz ¼ 1

6
[21]. Along the J�=Jz axis, there

is a transition from Z2 QSL to FM phase; along the J0z=Jz axis,
following the direction of the red arrow, there is a transition from
Z2 QSL to a VBS phase which orders at point Γ.
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path. Figures 2(a) and 2(c) are for mz ¼ 0 with J� ¼ 0.06,
J0z ¼ 0, and Figs. 2(b) and 2(d) are for mz ¼ 1

6
with

J� ¼ 0.06, J0z ¼ 0.005. The parameters are chosen such
that the system is well inside the QSL phases, according to
the phase diagrams in Figs. 1(c) and 1(d). It is clear that, in
both Sx and Sz channels, the spectra are gapped with
continua above the gap. As explained earlier, we expect that
the magnon spectra observed in S� are comprised of spinon
pairs to match the quantum number Sz ¼ 1, while the
excitations in Szz are comprised of vison pairs to match
with Sz ¼ 0. Since the spinons and visons are gapped, their
pair spectra in S�ðq;ωÞ and Szzðq;ωÞ are gapped as well.
We can confirm this interpretation by examining the

energy scales of the spectral gap. We expect that the
spinon excitations have a pair gap Δs of the order of
Jz ¼ 1, and for visons, it is Δv ∼ J2�=Jz. From Fig. 1,
we see that the value of J�=Jz for the onset of the QSL
phases is J�=Jz ∼ 0.1, so we can estimate Δv ∼ 0.01. In
Figs. 2(a)–2(d), we find that the minimum of spectrum is
located at the Γ point for both spinons and visons, and
we can read off Δs ≈ 0.2, and Δv ≈ 0.01, consistent with
expectation.
Such consistency in energy scales can also be observed

directly from the temperature dependence of the total
energy. Figures 2(e) and 2(f) show the EðTÞ for QSLs
at both mz ¼ 0 with J� ¼ 0.06, J0z ¼ 0 and mz ¼ 1

6
with

J� ¼ 0.06, J0z ¼ 0.005 for L ¼ 12 system. It is clear that
there are two different exponential decays in the curves, as
shown by our expð−Δ=TÞ fitting, the higher energy gap is
at Δs ∼ 0.42, which we identify as the spinon-pair gap. It is
larger but of the same magnitude with that observed in the
S�ðq;ωÞ in Figs. 2(c) and 2(d), and it is expected, since the

thermodynamic measurements contain the contribution from
the full spectra, to give rise to a larger gap. The second, much
lower expð−Δv=TÞ happens at Δv ∼ 0.01 (see Fig. 2 insets
for clarity), which is apparently the vison-pair gap, consistent
with the gap in Szzðq;ωÞ in Figs. 2(a) and 2(b). Therefore,
we can conclude that the vison-pair excitations are observed
in the Szzðq;ωÞ spectra and the spinon-pair excitations are
observed in the S�ðq;ωÞ spectra. A similar observation for
the vison excitation in the pure BFG model at mz ¼ 0 has
also been shown in Ref. [26].
Symmetry fractionalization.—Once we have established

the relation between DSSF and anyonic excitation gaps,
now, we set out to explore the more salient yet fundamental
difference between the Z2 QSLs at mz ¼ 0 and 1

6
, i.e., their

different form of symmetry fractionalization [38–40]. In
the case of Z2 QSLs, spinons and visons can carry a
fractional crystal momentum associated with the lattice,
which means that

TðaÞ
1 TðaÞ

2 ¼ −TðaÞ
2 TðaÞ

1 ; ð4Þ

here, a refers to an anyon (i.e., spinon or vison) and TðaÞ
1;2

denotes the local action of translation on it. Intuitively, with
such fractionalization, a moves on a lattice with π flux per
unit cell.
The fractional crystal momentum carried by visons is

determined by the magnetization per unit cell [41]. In Z2

QSLs realized in the extended BFG models, the spinon
carries a half-integer spin, a fractionalized quantum number
[22]. At mz ¼ 0, the spin per unit cell is 3

2
, indicating that

there must be an odd number of spinons therein. As a result,
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FIG. 2. Szzðq;ωÞ along the high symmetry path atmz ¼ 0with J� ¼ 0.06, J0z ¼ 0 (a) andmz ¼ 1
6
with J� ¼ 0.06, J0z ¼ 0.005 (b). The

system size is L ¼ 16. The spectra are all gapped with continua. The spectral bottom is at ω ∼ 0.01, this is the energy scale of a vison-
pair as discussed in the text and consistent with the vison-pair gap (Δv) fitted in (e) and (f). S�ðq;ωÞ along the high symmetry
path at mz ¼ 0 with J� ¼ 0.06, J0z ¼ 0 with L ¼ 18 (c) and mz ¼ 1

6
with J� ¼ 0.06, J0z ¼ 0.005 with L ¼ 16 (d). The spectra are all

gapped with continua. The spectral bottom is at ω ∼ 0.2, consistent with the energy scale of a spinon-pair gap (Δs) obtained in (e) and
(f). (e) [(f)] is the temperature dependence of the energy for L ¼ 12 system for parameters in (a) and (c) [(b) and (d)], expð−Δ=TÞ fits are
performed to extract anyonic gaps.
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moving a vison around a unit cell results in a π Berry phase
due to its mutual braiding with the spinons. In other words,
the visons must carry a fractional crystal momentum, and
consequently, vison translation operators anticommute at
mz ¼ 0. On the other hand, atmz ¼ 1

6
, the spin per unit cell is

1, indicating that there must be an even number of spinons
therein. Hence, the visons do not carry a fractional crystal
momentum, and the vison translation commutes [42]. There
will be two major differences of such fractional crystal
momentum in the vison-pair continua at mz ¼ 0 and 1

6
.

First, consider the limit where the spectral edge in DSSF
is dominated by scattering states of a pair of visons. If the
vison carries a fractional crystal momentum, the density of
the scattering states N ðq;ωÞ should exhibit an enhanced
periodicity [19,20]

N ðq;ωÞ ¼ N ðqþK;ωÞ; ð5Þ

where K is half of the reciprocal vector, i.e., 2K ¼ G. In
particular, such enhanced periodicity should manifest in the
spectral edge.
Second, the translational symmetry fractionalization is

also reflected on the gap-closing momenta near the phase
transition driven by vison condensation. Phase transitions
between the QSL and nearby symmetry-breaking phases
can be understood as driven by anyon condensations: the
transition to the FM phase is driven by spinon condensa-
tion, and that to the valence bond solid (VBS) phases, both
at mz ¼ 0 and 1

6
, are driven by the vison condensation.

When the vison carries a fractional crystal momentum, its
condensation will lead to the spontaneous breaking of the
translational symmetry in the VBS phase. Moreover, the
fractional crystal momentum has the following constraints
on the ordering wave vector q of the VBS phase: (i) in the
symmetry-breaking phase, the static structure factor must
be peaked at qþK as well (the peaks do not have the same
heights), (ii) if we approach the critical point from the QSL
side, we expect to see gap closing in the DSSF at q and
qþK. Both statements easily follow from the discussion
of enhanced periodicity in the density of states of spin
excitations if we treat the condensation transition at a
“mean-field” level, but they hold more generally even when
the interactions between visons can not be ignored.
To detect the translational symmetry fractionalization in

the QSLs realized in our model, we monitor how the spectra
evolve as the transition to the VBS is approached from the
QSL side, indicated by the two paths in Figs. 1(c) and 1(d).
These results are shown in Fig. 3. Atmz ¼ 0, the envelope of
the two-vison continuum shows an enhanced periodicity
between q and qþK, where the gap closes at both Γ andM.
Correspondingly, the static structure factor in the VBS
phase is found to have two peaks at Γ and M [see the inset
of Fig. 3(a)]. These features are consistent with the expect-
ation that the vison carries a fractional crystal momentum.
On the other hand, at mz ¼ 1

6
, the envelope of the two-vison

continuum is asymmetric between Γ and M, the gap closes
only at Γ, and the static structure factor in the VBS phase has
only one peak at Γ [see the inset of Fig. 3(b)], consistent with
the expectation that the vison does not carry a fractional
crystal momentum at mz ¼ 1

6
.

The sharp contrast in Fig. 3 between mz ¼ 0 and 1
6
, both

in static and dynamic structure factors, clearly demonstrate
the presence or absence of the translation symmetry
fractionalization in Z2 QSLs at the two magnetizations.
This is, to our knowledge, for the first time, being observed
in a nonperturbative manner. These results point out the
possibility that inelastic neutron scattering or resonance
(inelastic) x-ray scattering experiments can be further
employed to identify gapped QSL on kagome magnets,
e.g., in ZnCu3ðOHÞ6Cl2 (Herbertsmithite) [13,43] and
Cu3ZnðOHÞ6FBr (Zn-doped Barlowite) [14,44–49]. In
both cases, existing experimental data are pointing towards
gapped QSL ground states with possibly Z2 topological
order, especially the latter, in which a gapped spinon
continuum has been consistently revealed from both
NMR [44] and inelastic neutron scattering experiments
[14]. If, when driving the material through a transition from
QSL to ordered state, the doubled period could be observed
in DSSF, such a dynamical signature of symmetry frac-
tionalization will be the decisive information to confirm the
Z2 QSL in materials.
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FIG. 3. The comparison of the vison-pair spectra close to the
QSL-VBS transition for mz ¼ 0 with J� ¼ 0.06, J0z ¼ −0.005
(a) and mz ¼ 1

6
with J� ¼ 0.07, J0z ¼ 0.005 (b). The system size

is L ¼ 18. In both cases, Szzðq;ωÞ are becoming gapless due to
the vison condensation. However, in (a), the enhanced periodicity
manifests in that both points Γ andM become gapless, signifying
translational symmetry fractionalization, whereas in (b), there is
no enhanced periodicity and, hence, no translational symmetry
fractionalization. Insets show the static structure factor of the two
VBS phases for mz ¼ 0 and 1

6
, respectively, in (a), the Bragg

peaks are at both Γ and M, whereas in (b), only at Γ.
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Discussion.—Employing large-scale QMCþ SAC sim-
ulations, we study the DSSF in extended BFG models at
different magnetizations. We associate the DSSF of SzSz and
SþS− operators with the two-particle continua of the vison
and spinons. The two-vison continuum reveals the difference
in translation-symmetry fractionalization between QSLs at
different mz: at mz ¼ 0, the continuum has an enhanced
periodicity relating Γ and M points, meaning that the vison
carries the symmetry fractionalization. In contrast, atmz ¼ 1

6
,

the continuum has no such enhanced periodicity, meaning
that the vison carries a trivial symmetry fractionalization,
instead. Furthermore, at mz ¼ 0, this enhanced periodicity
also implies that the condensation of visons must occur
simultaneously at Γ and M and, thus, breaks translation
symmetries. Correspondingly, the condensation of visons at
mz ¼ 1

6
leads to a translational symmetric VBS state [21].

Therefore, the dispersion of the two-vison continuum
observed in the DSSF, together with the nature of the
vison-condensation transition, reveals the symmetry frac-
tionalization pattern of the anyonic excitations in QSL.
Our findings show that the DSSF can not only detect

the existence of fractionalized anyonic excitations in a QSL,
but also distinguish different symmetry-fractionalization
patterns carried by the anyons. Since DSSF can be measured
in different experimental probes, our findings not only have
theoretical importance in understanding the properties of the
topological state of matter, but also provide a valuable
experimental guide to look for the dynamical signature of
symmetry-enriched topological order in QSL materials.
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