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Topological semimetals are under intensive theoretical and experimental studies. The first step of these
studies is always the theoretical (numerical) predication of one or several candidate materials, based on
first-principles numerics. In these calculations, it is crucial that all topological band crossings, including
their types and positions in the Brillouin zone, are found. While band crossings along high-symmetry lines,
which are routinely scanned in numerics, are simple to locate, the ones at generic momenta are notoriously
time-consuming to find and may be easily missed. In this paper, we establish a theoretical scheme of
diagnosis for topological semimetals where all band crossings are at generic momenta in systems with
time-reversal symmetry and negligible spin-orbital coupling. The scheme uses only the symmetry
(inversion and rotation) eigenvalues of the valence bands at high-symmetry points in the Brillouin zone
as input and provides the types (lines or points), topological charges, numbers, and configurations of all
robust topological band crossings, if any, at generic momenta. The nature of the new diagnosis scheme
allows for full automation and parallelization and paves the way to high-throughput numerical predictions
of topological semimetals.
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I. INTRODUCTION

Topologically protected Weyl points [1–3] and nodal lines
[4] are being actively searched for and studied in boson
bands, such as photons [5,6], phonons [7,8], and magnons
[9–13], as well as in electronic bands [14–16]. On one hand,
these topological band crossings bring about novel physical
properties such as the existence of “arcs” for equal energy
contours on the surface [2,17] and the quantum anomalies in
the bulk [18]. On the other hand, they are considered the
“parent states” of many an interesting topological gapped
and gapless state, if certain symmetries are broken by either
natural or applied perturbation, such as spin-orbital coupling
(SOC) or external strain. For example, a 2D honeycomb
lattice hosts two Dirac points, but, when SOC is present, it
becomes a topological insulator characterized by the famous
Kane-Mele model [19,20]; TaAs is a 3D nodal-line semi-
metal without considering SOC, but, when it is included
(even only perturbatively), the nodal lines break into Weyl
points [21,22].

Some topological band crossings appear at high-
symmetry momenta. These include point-type crossings
(Weyl and Dirac points) along high-symmetry lines or line-
type crossings on high-symmetry planes. The numerical
diagnosis of these crossings, that is, predicting their
existence, types, and configurations from first principles,
is relatively easy, as only a limited number of lines in the
band structure should be scanned, a standard protocol
integrated in most first-principles implementations nowa-
days [23]. On the other hand, the diagnosis for the
topological band crossings at generic momenta is difficult,
because, in principle, the entire Brillouin zone needs to be
scanned; and in order to confirm the type of a crossing
point, advanced methods such as Wilson loops [24] must be
invoked to calculate its topological invariant. This involved
process severely slows down the numerical search for more
topological semimetals in real materials.
Very recently, several seminal works have established the

mathematical relations between the connectivity of bands
in a band structure and the irreducible representations of
space groups in the valence bands [25–27]. For each space
group, a set of equations called the “compatibility rela-
tions” are found, which are satisfied if and only if a band
structure does not have any (nonaccidental) crossing
between the conduction and the valence bands along all
high-symmetry lines in the Brillouin zone. If any one of the
compatibility relations is violated, the system must be a
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topological semimetal with a band crossing at high-
symmetry momenta. On the other hand, if all equations
aremet, there are two possibilities: The band structure either
is fully gapped at all momenta (insulator) or has band
crossings at generic momenta. References [25,26] further
study the band structures of atomic insulators (or their
superpositions), which form a linear space spanned by basis
vectors called the “elementary band representations.”These
authors point out that, if a band structure satisfies all
compatibility relations but cannot linear-decompose into
elementary band representationswith integer coefficients, it
must be either a topological gapped state or a topological
semimetal. Both the compatibility relations and the explicit
expressions of elementary band representations are now
fully available online at BILBAO thanks to the effort of
Refs. [26,28,29].
Po, Vishwanath, and Watanabe (PVW) [25] show that,

given that all compatibility relations are satisfied, the
numbers of the appearance of each irreducible representa-
tion at all high-symmetry momenta in the valence bands
(defined as “symmetry data” for short) can be converted
into a very small set containing at most four Zn numbers
with n ¼ 2, 4 for the orthogonal Hamiltonians (time
reversal without SOC) and n ¼ 2, 3, 4, 6, 8, 12 for the
symplectic ones (time reversal with SOC). These numbers
are termed “symmetry-based indicators” (indicator for
short). Indicators are indicative of nontrivial topology in
a band structure such that any system with nonzero
indicators cannot be an atomic insulator but can be only
either a topologically gapped state or a topological semi-
metal. Mark here that, in the latter possibility, all band
crossings must appear at generic momenta, because the
compatibility relations are given as satisfied. More impor-
tantly, any system having zero indicators has symmetry
data that cannot be distinguished from that of an atomic
insulator [25,26]. This property means that all information
on band topology contained in symmetry data can be
extracted from indicators alone. However, the mathematical
framework used by PVW does not tell us to what
topological states each nonzero set of indicators corre-
sponds: Is the material an insulator or a semimetal? If an
insulator, what are the topological invariants? If a semi-
metal, what are the types and configurations of the band
crossings? Also, Ref. [25] contains only the groups formed
by indicators (or the indicator groups) without giving the
explicit isomorphism between the symmetry eigenvalues
and the generators of that group.
This paper is tasked with answering these questions

in systems with time reversal and negligible SOC, filling
the gaps between symmetry data and band topology by
(i) giving each generator of each indicator group an explicit
formula in terms of symmetry eigenvalues of valence bands
at high-symmetry momenta and (ii) “translating” each
nonzero set of indicators into a set of well-defined
topological states. The main results can be parsed into
two statements:

(1) All nonzero sets of indicators in all space groups
necessarily correspond to topological semimetals
but not insulators.

(2) The types, numbers, and configurations of the band
crossings can be partly predicted by the indicators.

Both results are obtained by examining each indicator in
every space group, where we first find the explicit formula
for that indicator, prove that a band crossing must exist
whenever it becomes nonzero, determine the type of the
crossing, and finally give a possible configuration. In
centrosymmetric space groups, all these topological semi-
metals are nodal-line semimetals, where the nodal lines
are away from high-symmetry points, lines, or planes.
Particularly, we find that, for many space groups, there is
always one set of indicators that corresponds to nodal-line
topological semimetals where nodal loops have nontrivial
Z2-monopole charge, a special type of nodal loops that are
not predicted in any realistic electronic materials. In non-
centrosymmetric space groups, all nonzero sets of indica-
tors correspond to Weyl semimetals, where the Weyl points
are away from high-symmetry lines.
In finding the expressions for all indicators, we happily

discover, without having such expectations to begin with,
that most of them are, in fact, Berry phases along certain
loops formed by high-symmetry lines and others the
difference of topological charge between two high-
symmetry planes. They are all (except two) topological
invariants of some submanifolds of the Brillouin zone
(BZ), and, if nonzero, they give precise information on the
number and positions of band crossings in the submanifold.

II. PRELIMINARIES: SYMMETRY-BASED
INDICATORS

In this section, we show how the generators of an
indicator group are chosen and how the corresponding
formulas are derived. In doing this, we first introduce an
abstract framework and then give two examples showing
the calculations step by step.

A. General theory

As introduced in the previous section, the symmetry
data of a band structure are given by the number of each
irreducible representation in the occupied bands. In the
following, we denote this number as nKi

ξj
, where the Ki

represents the high-symmetry momentum and ξj represents
an irreducible representation at Ki. Then, the symmetry
data of a band structure can be written as a “vector”

n ¼
�
nK1

ξ1
; nK1

ξ2
;…; nK2

ξ1
;…

�
T
: ð1Þ

In principle, n
Kj

ξi
’s should be non-negative integers; how-

ever, here we generalize them to arbitrary integers [25].
Since we are interested only in semimetals with crossing

ZHIDA SONG, TIANTIAN ZHANG, and CHEN FANG PHYS. REV. X 8, 031069 (2018)

031069-2



points at generic momenta, we require n to satisfy the
compatibility relations [25,26], which are a set of constraints
such as symmetry eigenvalue conservation along high-
symmetry lines, such that the corresponding band structure
has no symmetry-protected crossings at high-symmetry
momenta. Compatibility relations for all space groups are
available online at BILBAO derived in Refs. [26,28,29].
Mathematically, these constraints are described by a set of
linear equations, and the compatibility-relation-allowed
symmetry data form the solution subspace of these linear
equations. Because all entries of n should be integer, this
solution space is an infinite Abelian group, ZdBS [27]. In
the following, we denote this Abelian group as fBSg and
denote its generators as bi¼1…dBS . Here, dBS is the rank
of fBSg.
Another perspective to understand symmetry data is

from atomic insulators. Atomic insulators are defined as
insulators consisting of uncoupled atoms with closed
shells, where, to meet the symmetry, atomic orbitals form
the irreducible representations of the corresponding on-site
symmetry group. By definition, the generated symmetry
data satisfy the compatibility relations and, thus, form a
subgroup, denoted as fAIg, of fBSg. The authors of
Ref. [25] prove that fAIg has the same rank as fBSg,
and, thus, the quotient group fBSg=fAIg is finite.
Concretely, for each bi there exists a minimal integer κi
giving κibi ∈ fAIg. Therefore, any symmetry data in fBSg
can be decomposed into a part belonging to fAIg and a part
not belonging to fAIg:

∀ n ¼
X
i

cibi ∈ fBSg; ∃ n0 ∈ fAIg; such that

n ¼ n0 þ
X
i

ðci mod κiÞbi; ð2Þ

where
P

iðci mod κiÞbi is the part not belonging to fAIg.
Such a decomposition implies that the quotient group
fBSg=fAIg is Zκ1 ×Zκ2 ×…. The integers ðci mod κiÞ’s,
which identify n with one element of fBSg=fAIg, are
defined as the indicators of n, and, hence, the quotient
group fBSg=fAIg is also referred to as the indicator group.
Band structures having different indicators must be topo-
logically distinct from each other, because their difference,
the symmetry data of which does not belong to fAIg
according to Eq. (2), cannot be an atomic insulator.
Generally, indicators depend on the choice of fBSg
generators. Upon a change of the choice of fBSg gen-
erators, the values of indicators change, but the indicator
group remains the same. More importantly, the redefined
indicators with the new fBSg generators are still valid,
because distinct indicators still correspond to distinct
topologies. In Sec. II B, we take space group 2 as an
example to show such a redefinition in more detail. In the
rest of this paper, we call the choice of fBSg generators
as the convention of indicators. For concreteness, in the

following two subsections and Secs. III and IV, we fix the
conventions of indicators in all space groups.
The formulas to calculate indicators indeed form a

linear mapping from fBSg to the indicator group. Thus,
we express the formulas of the ith indicator as
FiðnÞ≡ fTi n mod κi, where fi gives the explicit form of
the formulas and satisfies fTi bj ¼ δij mod κi. We empha-
size that, even for a fixed indicator convention, the explicit
forms of the formulas, i.e., fi’s, are, in general, not unique
due to compatibility relations. Since all symmetry data
in fBSg satisfy compatibility relations, which take the
form cTn ¼ 0, we can add c to fi’s without changing the
results, i.e., F0

iðnÞ≡ ðfi þ cÞTn mod κi ¼ FiðnÞ. A gen-
eral strategy to get one of the many equivalent explicit
forms is to solve the left inverse of the nonsquare matrix
B ¼ ðb1;b2;…Þ, B−1

left, such that B−1
leftB ¼ I. Then, the fi

vector is given by the ith column of B−1T
left .

In order to simplify finding explicit indicator formulas and
get a consistent understanding of indicators in all space
groups, here we present a method to get indicators of a space
group from indicators of its subgroup. We denote the group
and its subgroup as G and H, respectively. We first notice
that the indicators of H, which are expressed as functions of
the symmetry data in H, are also well defined for that in G,
as each irreducible representation of G necessarily reduces
into one or multiple irreducible representations in H. Then,
if two band structures in G have distinct indicators of H,
which imply topological distinction, they must have distinct
indicators of G, because, by definition, topologies that can
be distinguished from symmetry data must have distinct
indicators. In other words, any two distinct realizable
indicators of H in G correspond to two distinct indicators
of G. Here, by realizable indicators ofH in G, we mean that
there is at least one symmetry data of G that (i) satisfies all
compatibility relations of G and (ii) has such a set of
indicators of H. If the realizable indicators of H happen to
form the indicator group of G, we say that the indicator
group of G is completely induced fromH; otherwise, we say
that the indicator group ofG is partly induced fromH. In the
latter case, new formulas for the remaining indicators must
be defined. In Sec. II C, we give a concrete example for
indicator induction.

B. Space group 2: The simplest example

Space group 2 is generated by three lattice translations
along three lattice vectors a1;2;3 and inversion symmetry
[30]. The eight high-symmetry momenta are the eight
time-reversal invariant momenta (TRIMs), i.e., ðk1; k2; k3Þ
with k1;2;3 ¼ 0, π. [Hereafter, we use ðk1; k2; k3Þ to denote
momentum in reciprocal lattices, i.e., k ¼ k1g1 þ k2g2 þ
k3g3, where gi¼1;2;3 are the reciprocal bases, and use
ðkx; ky; kzÞ to denote momentum in Cartesian coordinates.
Definitions of the reciprocal lattices in all space groups
can be found on the BILBAO Web site [31], and the parts
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used in this paper are tabulated in Table III.] On each of
them, there are two kinds of one-dimensional irreducible
representations: the even under inversion and the odd
under inversion. Thus, the symmetry data take the form
n ¼ ðnK1þ ; nK1− ;…; nK8þ ; nK8− ÞT , where nKi

� represents the
number of occupied states having the inversion eigenvalue
�1 at the ith TRIM. The only compatibility relation in
space group 2 is to require the same occupation numbers at
different TRIMs, i.e.,

nKiþ þ nKi− − n
Kj
þ − n

Kj
− ¼ 0 ði; j ¼ 1;…; 8Þ: ð3Þ

The solution spaces of these equations are easy to get, and
we list the nine generators in Table I.
According to Ref. [26], to generate fAIg, only the

orbitals at the “maximal Wyckoff positions” need to be
considered. Here, maximal Wyckoff position refers to the

position whose on-site symmetry group is a maximal finite
subgroup of the space group. For space group 2, there are
only eight such positions, i.e., ðx1; x2; x3Þ with x1;2;3 ¼ 0; 1

2
.

Since all of these positions are inversion invariant (modulo
a lattice), on each position we have only two kinds of
orbitals: the even one and the odd one. We denote the
atomic orbital with parity χ ¼ �1 at the inversion-invariant
position t in the lattice R as jχtþRi and define the
corresponding Blöch wave function as jϕχtðkÞi ¼
ð1= ffiffiffiffi

N
p ÞPRe

iðtþRÞ·kjχtþRi. Under inversion operation
P, the atomic orbital first gets an inversion eigenvalue and
then moves to the inverted position, i.e., P̂jχtþRi ¼
χjχ−t −Ri. (We use unhatted symbols for the symmetries
themselves and hatted ones for the corresponding oper-
ators.) Using this property, it is direct to obtain the inversion
eigenvalues of jϕχtðkÞi for k ∈ TRIMs. By this method,
we generate 16 symmetry data (two orbitals for each
position and eight positions in total) and find that only
nine of them are linearly independent, which is consistent
with the statement that fAIg has the same rank as fBSg.
We choose the nine listed in Table I as the generators of
fAIg. A crucial observation then follows: bi¼1…5 can be
generated from ai’s, for example, b1 ¼ a1 þ a2 − a6,
whereas bi¼6;7;8;9 cannot. Nevertheless, 2b6, 2b7, 2b8,
and 4b9 can be generated from ai’s, for example, 4b9 ¼
3a1 þ 4a2 −

P
9
i¼3 ai. Therefore, we have κi¼1…5 ¼ 1,

κi¼6;7;8 ¼ 2, and κi¼9 ¼ 4, and the indicator group
fBSg=fAIg is Z2 × Z2 × Z2 × Z4.
By counting the numbers of even and odd states at

particular TRIMs, we find that the following formulas give
a successful mapping from fBSg to Z2 × Z2 × Z2 × Z4:

z2;1 ≡
X

K∈TRIM
at fk1¼πg

N−ðKÞ − NþðKÞ
2

mod 2;

z2;2 ≡
X

K∈TRIM
at fk2¼πg

N−ðKÞ − NþðKÞ
2

mod 2;

z2;3 ≡
X

K∈TRIM
at fk3¼πg

N−ðKÞ − NþðKÞ
2

mod 2;

z4 ≡
X

K∈TRIM

N−ðKÞ − NþðKÞ
2

mod 4; ð4Þ

where N�ðKÞ is the number of valence bands having
positive (negative) parity. Here, we use the notation N�ðKÞ
instead of nK� to emphasize that these equations are
applicable for all centrosymmetric space groups, where
N�ðKÞ is obtained frommore general symmetry data. For a
general centrosymmetric space group, one ignores all
symmetries but inversion and translation and calculates
N�ðKÞ as if it were a symmetry data of space group 2. As
shown in Sec. III, most indicators in centrosymmetric space
groups are indeed induced from the above four equations.

TABLE I. The generators of fBSg and fAIg of space group 2.
Here, eK� represents the basis where all entries are zero except
nK� ¼ 1, κi represents the order of bi, i.e., the minimal positive
integer making κibi ∈ fAIg, and the symbol Gw

� in parentheses
represents that the corresponding atomic symmetry data are
induced from the orbital having the P eigenvalue �1 at the
Wyckoff position w. The notations for momenta and positions are
defined as Γð000Þ, RðπππÞ, Tð0ππÞ, Uðπ0πÞ, Vðππ0Þ, Xðπ00Þ,
Yð0π0Þ, Zð00πÞ and 1að000Þ, 1bð00 1

2
Þ, 1cð0 1

2
0Þ, 1dð1

2
00Þ,

1eð1
2
1
2
0Þ, 1fð1

2
0 1
2
Þ, 1gð0 1

2
1
2
Þ, 1hð1

2
1
2
1
2
Þ, respectively.

Generators of fBSg
Basis Symmetry data κi

b1 eΓ− þ eR− þ eTþ þ eUþ þ eV− þ eXþ þ eYþ þ eZ− 1
b2 eΓ− þ eR− þ eT− þ eUþ þ eVþ þ eX− þ eYþ þ eZþ 1
b3 eTþ − eT− − eUþ þ eU− þ eXþ − eX− − eYþ þ eY− 1
b4 −eRþ þ eR− þ eUþ − eU− þ eVþ − eV− − eXþ þ eX− 1
b5 −eΓþ þ eΓ− − eTþ þ eT− − eUþ þ eU− − eVþ þ eV− 1
b6 −eΓþ þ eΓ− þ eXþ − eX− 2
b7 −eΓþ þ eΓ− þ eYþ − eY− 2
b8 −eΓþ þ eΓ− þ eZþ − eZ− 2
b9 −eΓþ þ eΓ− 4

Generators of fAIg
Basis Symmetry data

a1ðG1aþ Þ eΓþ þ eRþ þ eTþ þ eUþ þ eVþ þ eXþ þ eYþ þ eZþ
a2ðG1a

− Þ eΓ− þ eR− þ eT− þ eU− þ eV− þ eX− þ eY− þ eZ−
a3ðG1bþ Þ eΓþ þ eR− þ eT− þ eU− þ eVþ þ eXþ þ eYþ þ eZ−
a4ðG1cþ Þ eΓþ þ eR− þ eT− þ eUþ þ eV− þ eXþ þ eY− þ eZþ
a5ðG1dþ Þ eΓþ þ eR− þ eTþ þ eU− þ eV− þ eX− þ eYþ þ eZþ
a6ðG1eþ Þ eΓþ þ eRþ þ eT− þ eU− þ eVþ þ eX− þ eY− þ eZþ
a7ðG1f

þ Þ eΓþ þ eRþ þ eT− þ eUþ þ eV− þ eX− þ eYþ þ eZ−
a8ðG1g

þ Þ eΓþ þ eRþ þ eTþ þ eU− þ eV− þ eXþ þ eY− þ eZ−
a9ðG1hþ Þ eΓþ þ eR− þ eTþ þ eUþ þ eVþ þ e−X þ e−Y þ e−Z
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As mentioned in Sec. II A, the indicators are, in general,
convention dependent due to the many choices of fBSg
generators. Here, we take the z4 indicator as an example to
show the convention dependence and discuss the physical
interpretation of this convention dependence. Below, we
proceed with another choice of b8, but the discussion
applies for all fBSg generators. Upon redefining the eighth
generator as b8 − 2b9, which leaves the order κ8 ¼ 2
invariant, the z2;i¼1;2;3 indicators remain invariant, whereas
the z4 indicator changes to z4 þ 2z2;3 mod 4. Specifically,
upon the redefining, the indicator set (0011) interchanges
with (0013), and the indicator set (0010) interchanges
with (0012). Then, we find that, from the physical point of
view, redefining indicators in this way corresponds to a
different choice of inversion center from (000) to ð00 1

2
Þ.

Choosing a different inversion center redefines the inver-
sion operation as f1̄j001g, i.e., inversion centered at (000)
followed by a translation (001). (Following BILBAO [30],
we use fpjtg to represent the space-group operation
composed of point-group operation p followed by trans-
lation t.) The translation (001) leads to additional “−”
signs in the inversion eigenvalues at the k3 ¼ π momenta
such that the generator b8 ¼ −eΓþ þ eΓ− þ eZþ − eZ−, which
has indicator set (0010) due to Eq. (4), changes to
b8 ¼ −eΓþ þ b8 þ eΓ− þ eZ− − eZþ, which has the indicator
set (0012) due to Eq. (4). (See Table I for definitions of the
notation eK� .) Generalizing the discussion for changing the
inversion center from (000) to ½ði=2Þðj=2Þðk=2Þ� (i, j,
k ¼ 0, 1), one can easily find that the z2;i¼1;2;3 indicators
remain invariant, whereas the z4 indicator changes to
z4 þ 2iz2;1 þ 2jz2;2 þ 2kz2;3 mod 4. It should be noticed
that, whichever inversion center is chosen, the parity of z4
remains the same, i.e., convention independent. In fact,
odd z4 corresponds to an odd number of nodal loops
centering at TRIMs, as discussed in Sec. III.

C. Space group 10: Example showing indicator
induction and more

Space group 10 is generated by three lattice translations
along a1;2;3, an inversion P, and a rotation C2, wherein the
rotation axis passes through the inversion center and is
parallel to a2 [30]. In the absence of SOC, these operators
satisfy P̂2 ¼ Ĉ2

2 ¼ 1 and ½P̂; Ĉ2� ¼ 0. There are two types
of high-symmetry momenta: (i) the eight TRIMs, which are
invariant under both P and the C2, and (ii) the four high-
symmetry lines ðk1; k2; k3Þ (k1, k3 ¼ 0, π, k2 ≠ 0, π), which
are invariant under only C2. The TRIMs have four one-
dimensional irreducible representations, which have the C2

and P eigenvalues (1,1), ð1;−1Þ, ð−1; 1Þ, and ð−1;−1Þ,
respectively. Thus, the corresponding entries in symmetry
data are given by nK�;�, representing the number of states
having the C2 and P eigenvalues�1;�1 atK. On the other
hand, the C2-invariant lines have only two kinds of one-
dimensional irreducible representations, i.e., the one having

the C2 eigenvalue 1 and the one having the C2 eigenvalue
−1. Thus, the corresponding entries in symmetry data
are given by nK�, where � represents the rotation
eigenvalue �1.
Now, we turn to the compatibility relations. The first

kind of compatibility relation simply requires the same
occupation numbers at high-symmetry momenta. The
second kind requires that the C2 eigenvalues of the
occupied bands remain invariant along the C2-invariant
lines. On one hand, the second kind of relation makes
nK� (K ∉ TRIM) a constant along a C2-invariant line. On
the other hand, viewing TRIMs as particular points in the

C2-invariant lines, these relations require nK�;þ þ nK�;− ¼
nKþð0;k2;0Þ
� for K ∈ TRIM and k2 ≠ 0, π, implying that the

symmetry data on the C2-invariant lines are completely
determined by the symmetry data on the TRIMs. Therefore,
in the following we keep only the symmetry data on the
eight TRIMs and denote the eight TRIMs as Ki¼1…8. The
two kinds of compatibility relation are then given by

X
ζ¼�1;χ¼�1

nKi
ζ;χ − n

Kj

ζ;χ ¼ 0 ði; j ¼ 1…8Þ ð5Þ

and

X
χ¼�1

nKi
1;χ − nKiþð0;π;0Þ

1;χ ¼ 0 ði ¼ 1…8Þ; ð6Þ

respectively. We tabulate the 15 generators of the solutions
in Table II.
Generators of fAIg can be calculated by the same method

described in Sec. II B. Space group 10 has eight maximal
Wyckoff positions [26], i.e., ðx1; x2; x3Þ (x1;2;3 ¼ 0; 1

2
), each

of which has four kinds of atomic orbitals with the C2 and P
eigenvalues (1,1), ð1;−1Þ, ð−1; 1Þ, and ð−1;−1Þ, respec-
tively. By a direct Fourier transformation of these atomic
orbitals, we get the 15 independent atomic symmetry
data, which are chosen as generators of fAIg, shown in
Table II. Then, it follows that bi¼1…12 ∈ fAIg and
bi¼13;14;15 ∉ fAIg, whereas 2bi¼13;14;15 ∈ fAIg, implying
that the indicator group is Z2 × Z2 × Z2.
To find explicit formulas for the indicators, we first

notice that group 2 is a subgroup of group 10, and, thus,
we can induce the indicator formulas from group 2 by
the method described in Sec. II A. Substituting bi’s into
Eq. (4), we find that the group 2 indicator set ðz2;1z2;2z2;3z4Þ
of the three nontrivial generators, b13;14;15, is (0100),
(0100), and (0002), respectively, generating a Z2 × Z2

group. Therefore, two of the threeZ2 indicators are induced
from z2;2 and z4 of space group 2, while the left Z2

indicator is not induced from group 2. Since z4 ¼ 1, 3 are
no more realizable in space group 10, z4 reduce to a Z2

number, and we introduce z02 ¼ z4=2 to represent this Z2

number. To find the left indicators, we notice that states in
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the k2 ¼ π plane can be divided into two sectors due to their
mirror (M ¼ PC2) eigenvalues, and, thus, the parities in
this plane can be counted for the two sectors separately as

zð�Þ
2 ≡ X

K∈TRIM
at fk2¼πg

Nð�Þ
− ðKÞ − Nð�Þ

þ ðKÞ
2

mod 2; ð7Þ

where Nð�Þ
þ ðKÞ is the number of states having parity þ1 in

the M ¼ �1 sector and Nð�Þ
− ðKÞ is the number of states

having parity −1 in the M ¼ �1 sector. Apparently, the

sum of zðþÞ
2 and zð−Þ2 just gives z2;2 (mod 2), whereas zðþÞ

2

and zð−Þ2 themselves are new indicators, either of which
realizes a successful mapping from fBSg to the missing Z2

TABLE II. The generators of fBSg and fAIg of the space group 10. Here, eK�;� represents the basis where all entries are zero except
nK�;� ¼ 1, κi represents the order of bi, i.e., the minimal positive integer making κibi ∈ fAIg, and the symbol Gw

�;� in parentheses
represents that the corresponding atomic symmetry data are induced from the orbital having the C2 and P eigenvalues �1;�1 at the
Wyckoff position w. The notations for momenta and positions are defined as Aðπ0πÞ, Bð00πÞ, Cðππ0Þ, Dð0ππÞ, EðπππÞ, Γð000Þ,
Yðπ00Þ, Zð0π0Þ and 1að000Þ, 1bð0 1

2
0Þ, 1cð00 1

2
Þ, 1dð1

2
00Þ, 1eð1

2
1
2
0Þ, 1fð0 1

2
1
2
Þ, 1gð1

2
0 1
2
Þ, 1hð1

2
1
2
1
2
Þ, respectively.

Generators of fBSg
Basis Symmetry data κi

b1 eAþ;þ þ eBþ;þ þ eCþ;þ þ eDþ;þ þ eEþ;þ þ eGþ;þ þ eYþ;þ þ eZþ;þ 1
b2 eAþ;− þ eBþ;− þ eCþ;− þ eDþ;− þ eEþ;− þ eGþ;− þ eYþ;− þ eZþ;− 1
b3 eA−;þ þ eB−;þ þ eC−;þ þ eD−;þ þ eE−;þ þ eG−;þ þ eY−;þ þ eZ−;þ 1
b4 eA−;− þ eB−;− þ eC−;− þ eD−;− þ eE−;− þ eG−;− þ eY−;− þ eZ−;− 1
b5 eCþ;þ − eCþ;− þ eDþ;þ − eDþ;− þ eEþ;þ − eEþ;− þ eZþ;þ − eZþ;− 1
b6 eC−;þ − eC−;− þ eD−;þ − eD−;− þ eE−;þ − eE−;− þ eZ−;þ − eZ−;− 1
b7 eCþ;− − eC−;− − eDþ;þ þ eDþ;− − eEþ;þ þ eEþ;− þ eGþ;þ − eG−;− þ eYþ;þ − eY−;− þ eZþ;− − eZ−;− 1
b8 eDþ;þ − eDþ;− þ eD−;þ − eD−;− þ eEþ;þ − eEþ;− þ eE−;þ − eE−;− − eGþ;þ þ eGþ;− − eG−;þ þ eG−;− − eYþ;þ

þeYþ;− − eY−;þ þ eY−;−
1

b9 eBþ;þ − eB−;− þ eDþ;− − eD−;þ − eEþ;þ þ eEþ;− − eE−;þ þ eE−;− þ 2eGþ;þ − eGþ;− þ eG−;þ − 2eG−;− þ eYþ;þ − eYþ;− þ e−;
þY − eY−;− þ eZþ;þ − eZ−;−

1

b10 −eBþ;− þ eB−;þ − eDþ;− þ eD−;þ − eGþ;− þ eG−;þ − eZþ;− þ eZ−;þ 1
b11 eEþ;þ − eEþ;− þ eE−;þ − eE−;− − eGþ;þ þ eGþ;− − eG−;þ þ eG−;− − eYþ;þ þ eYþ;− − eY−;þ þ eY−;− − eZþ;þ þ eZþ;− − eZ−;þ þ eZ−;− 1
b12 eGþ;þ − eGþ;− þ eG−;þ − eG−;− þ eYþ;þ − eYþ;− þ eY−;þ − eY−;− 1
b13 eGþ;− − eG−;þ þ eZþ;þ − eZ−;− 2
b14 eG−;− − eGþ;þ þ eZ−;þ − eZþ;− 2
b15 eGþ;þ − eGþ;− þ eG−;þ − eG−;− 2

Generators of fAIg
Basis Symmetry data

a1ðG1aþ;þÞ eAþ;þ þ eBþ;þ þ eCþ;þ þ eDþ;þ þ eEþ;þ þ eGþ;þ þ eYþ;þ þ eZþ;þ
a2ðG1aþ;−Þ eAþ;− þ eBþ;− þ eCþ;− þ eDþ;− þ eEþ;− þ eGþ;− þ eYþ;− þ eZþ;−

a3ðG1a
−;þÞ eA−;þ þ eB−;þ þ eC−;þ þ eD−;þ þ eE−;þ þ eG−;þ þ eY−;þ þ eZ−;þ

a4ðG1a
−;−Þ eA−;− þ eB−;− þ eC−;− þ eD−;− þ eE−;− þ eG−;− þ eY−;− þ eZ−;−

a5ðG1bþ;þÞ eAþ;þ þ eBþ;þ þ eCþ;− þ eDþ;− þ eEþ;− þ eGþ;þ þ eYþ;þ þ eZþ;−

a6ðG1b
−;þÞ eA−;þ þ eB−;þ þ eC−;− þ eD−;− þ eE−;− þ eG−;þ þ eY−;þ þ eZ−;−

a7ðG1cþ;þÞ eA−;− þ eB−;− þ eCþ;þ þ eD−;− þ eE−;− þ eGþ;þ þ eYþ;þ þ eZþ;þ
a8ðG1cþ;−Þ eA−;þ þ eB−;þ þ eCþ;− þ eD−;þ þ eE−;þ þ eGþ;− þ eYþ;− þ eZþ;−

a9ðG1dþ;þÞ eA−;− þ eBþ;þ þ eC−;− þ eDþ;þ þ eE−;− þ eGþ;þ þ eY−;− þ eZþ;þ
a10ðG1dþ;−Þ eA−;þ þ eBþ;− þ eC−;þ þ eDþ;− þ eE−;þ þ eGþ;− þ eY−;þ þ eZþ;−

a11ðG1eþ;þÞ eA−;− þ eBþ;þ þ eC−;þ þ eDþ;− þ eE−;þ þ eGþ;þ þ eY−;− þ eZþ;−

a12ðG1f
þ;þÞ eA−;− þ eB−;− þ eCþ;− þ eD−;þ þ eE−;þ þ eGþ;þ þ eYþ;þ þ eZþ;−

a13ðG1g
þ;þÞ eAþ;þ þ eB−;− þ eC−;− þ eD−;− þ eEþ;þ þ eGþ;þ þ eY−;− þ eZþ;þ

a14ðG1g
þ;−Þ eAþ;− þ eB−;þ þ eC−;þ þ eD−;þ þ eEþ;− þ eGþ;− þ eY−;þ þ eZþ;−

a15ðG1hþ;þÞ eAþ;þ þ eB−;− þ eC−;þ þ eD−;þ þ eEþ;− þ eGþ;þ þ eY−;− þ eZþ;−
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indicator. Therefore, we choose the independent indicators

of space group 10 as zðþÞ
2 , zð−Þ2 , and z02 such that the

nontrivial generators b13;14;15 have the indicators (100),
(010), and (001), respectively.

III. CENTROSYMMETRIC SPACE GROUPS

In the absence of spin-orbital coupling, the time-reversal
operator T̂ satisfies T̂2 ¼ þ1. Hamiltonians having the
T̂2 ¼ þ1 symmetry belong to the orthogonal Wigner-
Dyson class [32], also known as class AI in the new
Altland-Zirnbauer system [33]. When inversion symmetry
P̂ is also present, the composite symmetry PT satisfies
ðP̂ T̂Þ2 ¼ þ1. In the presence of PT, generic band cross-
ings are nodal lines, which are robust against symmetric
perturbations, due to the π-Berry phase associated with any
loop that links with a nodal line [34,35].
First, we introduce a lemma in a 2D system with P and

T, which later we see has quite a few useful variations.
Consider a closed path in the 2D BZ that encircles exact
one-half of the BZ such that the inside and the outside of
the loop are mapped to each other under inversion [see
Fig. 1(a)]. Following Ref. [36], one can prove that the Berry
phase of the loop is given by the following.
Lemma.—

eiΦB ¼
Y

n∈occ;K∈TRIM
χnðKÞ; ð8Þ

where occ represents the set of valence bands and χnðKÞ
the inversion eigenvalue of the nth band at K. When the
product of inversion eigenvalues at TRIM of all valence
bands is −1, the Berry phase is π, so that there must be one
(or an odd number of) Dirac point inside the area enclosed
by the loop. Suppose the Dirac point has momenta k0; then,
due to time reversal, there is another at −k0, so that there
are at least two Dirac points in the 2D BZ.
This lemma helps diagnose the presence and the con-

figuration of nodal loops in the BZ. In a 3D system having
P and T, there are eight TRIMs that are invariant under
parity. The above lemma applies to any 2D slice in the 3D

Brillouin zone as long as the slice is invariant under
inversion. It is straightforward to confirm that any such
2D slice passes exactly four out of the eight TRIMs, and,
if for that slice ΦB ¼ π, there must be at least two points
where the nodal line passes through this 2D slice.
Therefore, the inversion eigenvalues at all eight TRIMs
indicate how many times (modulo four) a given 2D slice in
the 3D BZ is passed by nodal lines.
In this section, we also need to diagnose nodal lines in

the presence of other symmetries in addition to inversion,
where a simple extension of the lemma is incurred. In the
presence of mirror symmetry (denoted byM), in addition to
inversion symmetry, there are special 2D planes in the BZ
where Mk ¼ k. On these mirror-invariant planes, thanks
to M̂2 ¼ þ1 and ½M̂; P̂� ¼ ½M̂; T̂� ¼ 0, we can separate all
bands into the M̂ ¼ þ1 sector and M̂ ¼ −1 sector, and the
bands in each sector have their respective inversion
eigenvalues at the four TRIMs, as well as their respective
Berry phases associate with the loop in Fig. 1(a).
Lemma: First variation.—

eiΦ
ð�Þ
B ¼

Y
n∈occ;K∈TRIM

χ�n ðKÞ: ð9Þ

If both ΦðþÞ
B and Φð−Þ

B are π, then there are two Dirac points
in the þ1 sector and two in the −1 sector. The Dirac points
in opposite sectors may appear at the same momenta via
fine-tuning but cannot pairwise annihilate each other, as
their hybridization is disallowed by mirror symmetry.
We now apply the lemma and its variations (more to

be introduced later) to study the band topology of each
centrosymmetric space group that has a nontrivial indicator
group. These 41 space groups [25] are further divided into
six classes according to the presence of rotation and/or
screw axes. Within each class, we first write down the
explicit expressions of all indicators, followed by analyzing
the band crossings for all combinations of nonzero indica-
tors. The minimal possible configurations of nodal lines for
each nonzero set of indicators for each of the 41 space
groups are tabulated in Table III, where “minimal” means
that we have tried to minimize the number of lines among
all possible configurations.

A. Space group 2

The indicator group for space group 2 is
Z2 × Z2 × Z2 × Z4, and the corresponding indicator set
ðz2;1z2;2z2;3z4Þ is defined in Eq. (4). The definitions of
z2;i¼1;2;3 are identical to the expressions for the weak
indicators in the original Fu-Kane formula, only that, in
the original context, their nonzero values imply weak
topological insulators. The definition of z4 may look both
familiar and strange: z4 mod 2 is the familiar strong
indicator in the original Fu-Kane formula, whose nonzero
value implies a strong topological insulator if SOC is

K1
K1

K1

X
M

Z
(a) (b) (c) (d)

K2
K2

K4

K3

K4

K3
M

P

R
A

N

K3

K2

FIG. 1. The loops on which Berry phases are considered in this
paper. The plane in (a) can be any 2D submanifold of the 3D BZ
in a system having inversion and the plane in (a) and (b) can be
any k slice in a system having a twofold or fourfold axis. (a) A
loop enclosing half of the BZ, passing four TRIMs on its way,
denoted by K1;2;3;4. (b) A loop enclosing a quarter of the BZ,
passing all four TRIMs. (c) A loop particularly considered in a
simple tetragonal lattice for space group 130.
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TABLE III. Minimal configurations of nodal lines in centrosymmetric space groups, given any nonzero set of symmetry-based
indicators. The first column is the class of space groups by which the text is broken into subsections. The second column is the indicators
we choose for the generators of the indicator group. The third column is for the numbers of space groups. The fourth column gives the
Bravais lattice and the Brillouin zone. The reciprocal lattice (gi¼1;2;3) setting and convention for the Brillouin zone follow Ref. [31]. The
fifth column contains all possible combinations of nonzero indicators and their corresponding configurations, where blue lines represent
nodal rings without Z2-monopole charge, yellow lines represent nodal rings with Z2-monopole charge, gray planes are mirror planes at
which nodal rings are centered, and red lines are the rotation or screw axes surrounded by one or two nodal rings. Note here that if two
rings or lines are related by a reciprocal vector, only one of them is drawn.

Symm. Indicator SGs
Reciprocal lattice
vectors and BZ Configurations

Inversion only z2;i¼123,
z4

2 aP 0001, 0003 1001, 1003 0002 1000, 1002 1100, 1102

g3
1
2

g1
1
2 g2

1
2

Inversion plus
twofold
rotation
or screw

z02 11 mP 1
g2 (k )y

1
2

g3
1
2 g1

1
2

z02 14 mP 1

g2 (k )y
1
2

g3
1
2 g1

1
2

z02 48, 49, 50, 52, 53,
54, 56, 58, 60

oP 1

g3

(kz)1
2

g1
1
2 g2

1
2

z02 66, 68 oC 1
g3 (kz)

1
2

1
2

1
2g1 g2

z02 70 oF 1

g1
kz

-

1
2

g3
1
2

g2
1
2

z2;2, z02 12 mC 01 10, 11

g2
ky1

2

g1-1
2

g3
1
2

z2;2, z02 13 mP 01 10, 11

g2 (k )y
1
2

g3
1
2 g1

1
2

z2;2, z02 15 mC 01 10, 11

g2
ky1

2

g1-1
2

g3
1
2

(Table continued)
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TABLE III. (Continued)

Symm. Indicator SGs
Reciprocal lattice
vectors and BZ Configurations

zðþÞ
2 , zð−Þ2 ,

z02
10 mP 100, 010,

101, 011
001 110 111

g2 (k )y
1
2

g3
1
2 g1

1
2

Inversion plus
threefold
rotation
or screw

z02 162, 163, 164, 165 hP 1

g1
1
2

g2
1
2

g3
1
2

(kz)

z02 166, 167 hR 1

g2

kz

1
2

g1-1
2

g3-1
2

z2;3, z4 147 hP 01, 03 11, 13 02 10, 12

g1
1
2

g2
1
2

g3
1
2

(kz)

z2;3, z4 148 hR 01, 03 11, 13 02 10, 12

g2

kz

1
2

g1-1
2

g3-1
2

Inversion plus
sixfold
rotation
or screw

z02 176 hP 1

g1
1
2

g2
1
2

g3
1
2

(kz)

z02 192 hP 1

g1
1
2

g2
1
2

g3
1
2

(kz)

zðþÞ
2 , zð−Þ2 ,

z02

175 hP 100, 010, 101,
011

001 110 111

g1
1
2

g2
1
2

g3
1
2

(kz)

Inversion plus
fourfold
rotation
or screw

δ2 85, 86 tP 1

g3

(kz)1
2

g1
1
2 g2

1
2

z02 88 tI 1

g1
1
2g2

1
2

g3

kz

1
2

(Table continued)
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present, so it is unsurprising if z4 ¼ 1, 3 gives us some
topological semimetal without SOC, while the physical
meaning of z4 ¼ 2 remains far from clear at this point.
Before analyzing the implications of nonzero z2;i and z4,

we remark that z2;i’s are “weak,” in the sense that they
change value under translation-breaking perturbations that
preserve inversion symmetry, but that z4 is a strong
indicator. Translation-breaking perturbations, such as den-
sity-wave order parameters, effectively fold the BZ such
that all eight TRIMs in the unfolded BZ are now at Γ and
that each new TRIM (which were interior points of the
original BZ) has the same number of bands having positive
parity as that of bands having negative parity. Therefore,
after this folding, it is easy to confirm that z2;i ¼ 0 in the

folded BZ. It is also easy to check that z4 remains the same
after this folding. Intuitively, this result is because, in its
expression, all TRIMs contribute equally.
Invoking the lemma in Eq. (8), we can establish the

following statements regarding which planes are crossed by
nodal lines for how many times. (i) If z4 ¼ 0, 2 and
z2;i ¼ 1, both the slice at ki ¼ 0 and ki ¼ π are crossed by
nodal lines for 2 mod 4 times, and the crossing points are
pairwise related by time reversal, where ki is the component
of the momentum when decomposed into three reciprocal
lattice vectors, i.e., k ¼ P

i¼1;2;3kibi. (ii) If z4 ¼ 1, 3 and
z2;i ¼ 0, the slice at ki ¼ 0 is crossed by nodal lines for 2
mod 4 times, so that a possible configuration of nodal lines
is a single nodal ring that is symmetric about Γ. (iii) If

TABLE III. (Continued)

Symm. Indicator SGs
Reciprocal lattice
vectors and BZ Configurations

δðþÞ;π
2 124, 128 tP 1

g3

(kz)1
2

g1
1
2 g2

1
2

θ2 130 tP 1

g3

(kz)1
2

g1
1
2 g2

1
2

δðþÞ;0
2 ,
δð−Þ;02

84 tP 10, 01 11

g3

(kz)1
2

g1
1
2 g2

1
2

ϕ2, δ
ðþÞ;0
2

87 tI 10 01

g1
1
2g2

1
2

g3

kz

1
2

δðþÞ;π
2 ,

δð−Þ;π2 ,
δ02

83 tP 100, 010, 101,
011

001 111 110

g3

(kz)1
2

g1
1
2 g2

1
2

Inversion plus
cubic
symmetry

z02 201 cP 1

g3

(kz)1
2

g1
1
2 g2

1
2

z02 203 cF 1

g1
1
2g2

kz

1
2

g3
1
2
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z4 ¼ 1, 3 and z2;i ¼ 1, the slice at ki ¼ π is crossed by nodal
lines for 2 mod 4 times. In summary, if z4 ¼ 0, 2 and some
z2;i ≠ 0, a possible configuration of nodal lines has
two lines, related by time reversal, that run along the
direction of

P
iz2;ibi, and if z4 ¼ 1, 3, a possible configu-

ration is a single nodal ring around the TRIM at
P

iz2;ibi=2.
The analysis above shows that z4 ¼ 0, z2;i ¼ 1 and

z4 ¼ 2, z2;i ¼ 1 correspond to the same nodal-line con-
figuration. Indeed, this result must be true, because the
indicator sets z4 ¼ 0, z2;i ¼ 1 and z4 ¼ 2, z2;i ¼ 1 change
to each other upon changing the inversion center used to
define parity (Sec. II B), which leaves all physical observ-
ables invariant. However, it should be noted that, given a
fixed inversion center, a state with z4 ¼ 0, z2;i ¼ 1 and a
state with z4 ¼ 2, z2;i ¼ 1 have a relative difference, since
by definition we cannot tune one to another without closing
gaps at high-symmetry momenta. This relative difference
can be detected by additional gapless modes (in addition
to the bulk modes) on a domain wall of the two states,
provided that the configuration keeps inversion symmetry.
There is one and only one remaining nonzero set of

indicators, where ðz2;1z2;2z2;3z4Þ ¼ ð0002Þ. Using the
lemma, we find that there is no plane that must be crossed
by nodal lines, so that the natural question becomes: Could
this state be a (topological) gapped state? To answer this
question, we first look at a related question: Is a double
copy of the (0001) state a gapped state? According to the
above results, the (0001) state has one nodal ring around Γ,
crossing the k3 ¼ 0 plane at �k0. By doubling the state of
(0001), we have also doubled the nodal rings. Then, we
introduce coupling between the two copies while preserv-
ing P and T. Illustrated in Fig. 2, the two points on the
plane k3 ¼ 0 where the two rings cross the plane can be
gapped, and now we have two disconnected loops on each
side of the plane. We now show that each loop has nonzero
Z2-monopole charge [35] and is therefore topologically
stable against any inversion-preserving perturbations.
The Z2-monopole charge is defined on a closed 2D mani-
fold, e.g., a sphere, that encloses the nodal loop, originating
from the nontrivial second homotopy group of real
Grassmannianmanifolds. There has not been any prediction

of electronic materials hosting this new type of nodal line,
probably due to the involved calculation of its topological
invariant. To show that the nodal loops in Fig. 2(b) carry
nonzero Z2 charge, one should closely study how the
crossing points on the k3 ¼ 0 plane are gapped out. Near
k0, where the nodal loop crosses the k3 ¼ 0 plane, the
effective theory of a z4 ¼ 1 state on the k3 ¼ 0 plane takes
the Dirac form

hðq1; q2Þ ¼ q1σx þ q2σz; ð10Þ
where q≡ k − k0, σi’s are Pauli matrices, andwe implicitly
choose the symmetry representation P̂ T̂ ¼ K, where K
means complex conjugation. Doubling the whole system
automatically doubles hðqÞ to HðqÞ ¼ hðqÞ ⊕ hðqÞ. For
the four-band model HðqÞ, there is only one term that gaps
the spectrumwhile preservingPT:mτyσy, where τz ¼ �1 is
the flavor index. Because of time-reversal symmetry, the two
Dirac points at −k0 also gap out each other such that the
plane k3 ¼ 0 becomes fully gapped,where theZ2 invariant ν
protected by PT symmetry can be defined. For four-band
models of the form

HðkÞ ¼ dxðkÞτ0σx þ dyðkÞτ0σz þ dzðkÞτyσy; ð11Þ

the Z2 invariant is given by [35]

ν ¼ 1

4π

Z Z
BZ

dk2d̂ × ∂k1 d̂ × ∂k2 d̂ mod 2; ð12Þ

where diðkÞ are real functions and d̂ the unit vector of
ðdx; dy; dzÞ. InsertingHðqÞ into the integral in Eq. (12), one
finds that HðqÞ contributes 1=2 to ν. To obtain the integral
near −k0, we first notice that the Bloch wave functions at
−k0 can be obtained by actingT on thewave functions atk0,
so as to fix the basis vectors for the k · p theory near −k0. In
this basis, the effective theory at −k0 is simply
H0ðqÞ ¼ Hð−qÞ. An explicit calculation shows that the
contribution of H0ðqÞ is also 1=2, and ν for entire the
k3 ¼ 0 slice is νðkz ¼ 0Þ ¼ 1. On the other hand, νðkz ¼ πÞ
for the k3 ¼ π slice is trivial: Before doubling, the k3 ¼ π
plane is gapped and may possess either a trivial or nontrivial
ν, but, due to itsZ2 nature, after doubling ν simply vanishes.
Therefore, the difference of νbetween the k3 ¼ 0 and k3 ¼ π
planes implies that there is a nodal loop with nontrivial Z2

charge on each side of the k3 ¼ 0 plane.
While the doubled (0001) state is a (0002) state, the

inverse is not necessarily true. Two states with the same
indicators (0002) may, in principle, still be topologically
distinct, and we cannot exclude the possibility that there
are (0002) states that are fully gapped. Nevertheless, we
argue that this is highly unlikely based on the following
observation. Suppose we start from the (0002) state built
from doubling a (0001) state. In order to gap out the two
nodal loops, they have to pairwise annihilate each other
at a TRIM, which we assume to be Γ without the loss of

(a) (b)

FIG. 2. (a) Two nodal rings that are contributed by the two
copies of the (0001) state have two loops at the same position
(deliberately separated for distinction), each crossing the k3 ¼ 0
plane. (b) Adding a hybridization between the two copies can
open a full gap on the k3 ¼ 0 plane, which results in a
reconnection of the nodal structure, such that, on each side of
k3 ¼ 0, there is a nodal ring with nontrivial Z2-monopole charge.
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generality. Consider a four-band k · p model near Γ that
describes this annihilation process:

H ¼ k1τ0σx þ k2τ0σz þ k3τzσ0 þ ðm − k2zÞτyσy; ð13Þ

where the symmetry operators are represented by P̂ ¼ τyσy
and T̂ ¼ Kτyσy. The two loops with Z2 charge are, if
m > 0,

L� ≡
n
ðk1; k2; k3Þjk3 ¼ � ffiffiffiffi

m
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

q
¼ m

o
: ð14Þ

At m ¼ 0, both loops shrink to a point and vanish at Γ, and
the model is fully gapped for m < 0. Therefore, the model
indeed describes a topological transition from m > 0 to
m < 0, where two loops having Z2 charge annihilate at
m ¼ 0. For m > 0 (m < 0), the two occupied bands at Γ
have negative (positive) parity such that, after the band
inversion, the strong index z4 changes by two. Therefore,
within a four-band model, it is impossible for a (0002) state
to be fully gapped. For a system of more than four bands,
we can reasonably assume that, when the two nodal loops
are sufficiently close to each other, the bands away from the
Fermi energy can be energetically separated from the four
bands involved in the annihilation without changing band
topology, so that the above analysis remains valid.
To further confirm the correspondence between z4 ¼ 2

and nodal loops with Z2 charge, we generalize the k · p
model in Eq. (13) to a tight-binding model given by

HðkÞ ¼ sin k1τ0σx þ sin k2τ0σz þ sin k3τzσ0

þ
�
Δ −

X
i

cos ki

�
τyσy; ð15Þ

and the symmetry operators are still P̂ ¼ τyσy and
T̂ ¼ Kτyσy. On one hand, the Z2 invariant [Eq. (12)] of
a kz plane can be explicitly derived as

νðkzÞ ¼ sgn½ðΔ − cos k3 − 2ÞðΔ − cos k3 þ 2Þ� mod 2:

ð16Þ

The Z2 charge in half of the BZ, given by the difference
of νðk3¼0Þ and νðk3 ¼ πÞ, can be expressed as sgnðΔ−3Þ
ðΔ−1ÞðΔþ1ÞðΔþ3Þmod 2 [35]. Therefore, in half of the
BZ exists one (mod 2) nodal loop with Z2 charge when
1 < jΔj < 3. On the other hand, it is direct to verify that for
1 < jΔj < 3 the indicator set of the lower two bands is
(0002), whereas for jΔj > 3 or jΔj < 1 the indicator set is
(0000). Therefore, the correspondence between z4 ¼ 2
and nodal loops with Z2 charge still holds in this tight-
binding model.
Up to this point, we have used both mathematics and

physical arguments to support the conclusion that a state
with indicators (0002) must have one (or an odd number of)

nodal ring(s) in each half of the BZ, and each nodal ring has
nonzero Z2-monopole charge. This concludes the analysis
of each nonzero set of indicators for space group 2. Before
going to the next part, we briefly comment on the difficulty
in finding a rigorous proof for the relation between
indicator set (0002) and the presence of a Z2-charged
nodal ring. One may attempt at relating the Z2 invariant of a
2D plane with P and T to the inversion eigenvalues and
then show that, if kz ¼ 0 and kz ¼ π have different Z2,
there must be one nodal ring having Z2-monopole charge.
The same proof works for the relation between the number
of Weyl points and the inversion eigenvalues in 3D with
inversion but not time reversal. However, in our case, one
may easily prove that 2D systems having P and T do not
have any indicator, so that there does not exist any relation
between the Z2 invariant and the inversion eigenvalues.

B. Inversion plus twofold rotation or screw axis

From this point, we start adding one additional rotation
or screw axis to enhance the space group 2 to a higher space
group. As convention, the direction of the highest-order
rotation (screw) axis is defined as the z direction.
There are 18 space groups that have (i) at least one

twofold rotation or screw axis, (ii) no higher-order rotation
or screw axis, and (iii) a nontrivial indicator group. Two
observations relate their indicators to the indicators of
group 2: (i) Among the 18, space group 14 is their common
subgroup, and a study of the compatibility relation in group
14 reveals that z4 ∈ even; (ii) all 18 space groups are
subgroups of space group 192, and the compatibility
relations of group 192 allows at least one solution having
z4 ¼ 2. These two facts together give at least one strong Z2

indicator shared by all 18 space groups: z02 ≡ z4=2.
The subsection, hence, is further divided into parts by the

number of independent Z2 indicators other than z02.

1. Z2 indicators in space groups 11, 14, 48, 49, 50,
52, 53, 54, 56, 58, 60, 66, 68, and 70

Since z02 is always an indicator and the 14 space groups
in this part have only one indicator, this indicator must be
z02. As group 2 is their common subgroup, when z02 ¼ 1,
there is one (or an odd number of) nodal ring in each half of
the BZ, but their configurations now are further constrained
by rotation or screw axes.
Finding the constraints requires a detailed study of the

k · p model of a nodal ring having Z2-monopole charge.
The k · p model expanded about the center of a nodal ring
with Z2-monopole charge is [35]

hðqÞ ¼ q1σx þ q2σz þ q3τyσy þmτzσ0; ð17Þ

where the only assumed symmetry PT is represented by
P̂ T̂ ¼ K. The Hamiltonian in Eq. (17) gives a nodal ring of
radius

ffiffiffiffiffiffiffijmjp
perpendicular to the q3 direction. It is easy to

ZHIDA SONG, TIANTIAN ZHANG, and CHEN FANG PHYS. REV. X 8, 031069 (2018)

031069-12



confirm that hðqÞ is consistent with an additional twofold
rotation Ĉ2 ¼ σy satisfying C2

2 ¼ 1 such that

Ĉ−1
2 hðq1; q2; q3ÞĈ2 ¼ hð−q1;−q2; q3Þ: ð18Þ

It is important to notice that Ĉ2 thus defined anticommutes
with P̂ T̂ and that it is impossible to find any Dirac matrix
that commutes with PT while satisfying Eq. (18).
Therefore, the nodal ring may be centered at a C2 axis
where

Ĉ2P̂ T̂ ¼ −P̂ T̂ Ĉ2: ð19Þ

This equation is satisfied only if, (i) in real space, the C2

axis does not pass any inversion center, and (ii) at the C2-
invariant momentum, commuting P and C2 generates a
minus sign. In any lattice having twofold rotation and
inversion, we can set the inversion center at (000) and the
rotation axis as the line passing through t=2, where t is a
vector perpendicular to the rotation axis such that C2 ¼
f2jtg and C2P ¼ f1j2tgPC2. Then, for a C2-invariant line
in momentum space, if it satisfies 2k · t ¼ π mod 2π,
Eq. (19) holds. Similar results apply for twofold screw
axis C21

¼ f2jtþ sg, where s is the screw-vector parallel
with screw axis, but the anticommutation is replaced by

Ĉ21
P̂ T̂ ¼ −e2is·kP̂ T̂ Ĉ21

: ð20Þ

Applying these results to the listed space groups, we find
that space groups 14, 48, 49, 50, 52, 53, 54, 56, 58, 60, 66,
68, and 70 have twofold axes not passing through any
inversion center, and we plot in Table III nodal rings around
one C2- or C21

-invariant line where either Eq. (19) or
Eq. (20) is met. In space group 11, where the screw axis
contains an inversion center, each of the two nodal rings is
centered and symmetric about the k2 ¼ 0 plane, and the
two rings are related to each other under the twofold screw
rotation. (For group 11, the screw axis is along the k2
direction, as shown in Table III.)

2. Z2 × Z2 indicators in space groups 12, 13, and 15

Other than the Z2 indicator z02, there is another Z2

indicator for these three monoclinic space groups. An
analysis of the compatibility relations reveals that this is
nothing but the second weak index z2;2. When z2;2 ¼ 1, the
strong indicator z02 becomes convention dependent (see
discussion in Secs. II B and III A), and the nodal lines are
two lines running along the k2 direction, related to each
other under time reversal. When z2;2 ¼ 0 and z02 ¼ 1, there
are again two nodal rings having Z2-monopole charge, the
positions of which depend on whether the rotation axis
contains any inversion center, as explained in Sec. III B 1.

3. Z2 × Z2 × Z2 indicators in space group 10

Space group 10 has a simple monoclinic lattice with a
twofold rotation axis, so that P and C2 imply a mirror plane
M≡ PC2 that also contains the inversion center. In this
case, the 2D slice at k2 ¼ π is a mirror invariant plane in
the BZ, on which we can define two Z2 indicators for the

M ¼ þ1 and M ¼ −1 sectors as zðþÞ
2 and zð−Þ2 [Eq. (7)],

respectively. From Eqs. (4) and (7), we see that the
previously defined index z2;2 satisfies

z2;2 ¼ zðþÞ
2 þ zð−Þ2 mod 2: ð21Þ

Therefore, if zðþÞ
2 ¼ 1 and zð−Þ2 ¼ 0 (or vice versa), there are

two nodal lines running along the k2 direction, related to
each other by time reversal. We are now left with three

cases: (a) zð�Þ
2 ¼ 0, z02 ¼ 1, (b) zð�Þ

2 ¼ 1, z02 ¼ 0, and

(c) zð�Þ
2 ¼ 1, z02 ¼ 1.

(a) zð�Þ
2 ¼ 0 means that k2 ¼ π plane is crossed by 0 mod
4 nodal lines, and z02 ¼ 1 means that there are in the
entire BZ 2 mod 4 nodal rings. According to the
discussion in Sec. III B 1, since the rotation axis
contains at least one inversion center, a nodal ring
cannot be symmetric about any C2-invariant line. The
only possibility is that both nodal rings are vertical,
symmetric about the k2 ¼ 0 plane, but related to each
other under the twofold rotation.

(b) zð�Þ
2 ¼ 1 means that the nodal lines cross the kz ¼ π
plane four times, two in the M ¼ þ1 and two in the
M ¼ −1 sectors, respectively, while z02 ¼ 0means that
the same happens on the k0 ¼ 0 plane. A typical
configuration has in total four nodal lines running
along the k2 direction.

(c) zð�Þ
2 ¼ 1 means that the nodal lines cross the kz ¼ π
plane four times, two in the M ¼ þ1 and two in the
M ¼ −1 sectors, respectively, while z02 ¼ 1 means
there are in total 2 mod 4 nodal rings in the entire BZ.
A typical configuration has two vertical nodal rings,
related to each other by twofold rotation, but now
centered and symmetric about the k2 ¼ π plane.

C. Inversion plus threefold rotation or screw axis

Now we consider, instead of a twofold axis, adding a
threefold or screw rotation axis to space group 2. Among
all space groups having these two symmetries, the follow-
ing eight have nontrivial indicator group: 147, 148, and
162–167. All eight are either subgroups of group 166 or
192, both having at least one band structure that gives
z4 ¼ 2. Therefore, they at least have a strong Z2 indicator
z02 ¼ z4=2. In fact, it is the only indicator for space groups
162–167, where the indicator group is Z2. When z02 ¼ 1,
there are 2 mod 4 nodal rings, and there their configuration
must observe bothC3 and time-reversal symmetries. Unlike
twofold axes, threefold axes always contain inversion
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centers in these space groups. A study of the model in
Eq. (17) shows that we can define

Ĉ3 ¼ − expðiσyπ=3Þ; ð22Þ

which satisfies Ĉ3
3 ¼ 1, ½Ĉ3; P̂ T̂� ¼ 0, and

Ĉ−1
3 hðkÞĈ3 ¼ hðC3kÞ: ð23Þ

Therefore, while a nodal ring having aZ2-monopole charge
is inconsistent with a twofold rotation through its center if
½Ĉ2; P̂ T̂� ¼ 0, it is consistent with a threefold rotation, so
that a ring may be surrounding a C3-invariant line in
the BZ.

1. Z2 indicators in space groups 162–167
As said, z02 is the only indicator for these groups, and if

z02 ¼ 1, there are two nodal rings, each of which is
symmetric about a C3-invariant line in the BZ, that are
related to each other by time reversal.

2. Z2 × Z4 indicators in space groups 147 and 148

These two space groups have higher-symmetry indica-
tors. In fact, they allow z4 defined in Eq. (4) to take all four
possible values and also allow the three weak indicators to
be the same and nonzero, i.e., z2;1 ¼ z2;2 ¼ z2;3 ¼ 1. The
topological information indicated by their nonzero combi-
nations is identical to those discussed in Sec. III A, with the
only difference that, due to the threefold axis, the state
having z2;3 ¼ 1 and z4 ¼ 0, 2 should have 6 mod 12 nodal
lines running in the third direction.

D. Inversion plus six rotation or screw axes

There are only three space groups that have a sixfold axis
and nontrivial indicator group, all of which are subgroups
of space group 192. Group 192 allows at least one band
structure having z4 ¼ 2 such that the three groups have at
least one strong Z2 indicator, z02 ≡ z4=2. When z02 ¼ 1,
there must be 2 mod 4 nodal rings protected by P and T,
and the additional symmetries put further constraints on
their numbers and configurations. Like threefold axes,
sixfold axes always contain inversion centers, and, since
a sixfold axis is automatically a twofold axis, all twofold
axes also contain inversion centers in the three subgroups.
According to the discussion in Sec. III B 1, any nodal ring
in this case cannot be symmetric about a C2-invariant line
or a C6-invariant line. A minimal configuration, having
the least number of rings, therefore has six nodal rings,
each vertical and symmetric under the mirror symmetry
kz → −kz. They are related to each other by a sixfold
rotation or screw and may be centered on either the kz ¼ 0
or the kz ¼ π plane (depending on which space group).
In all three space groups, the mirror plane allows us to
define the two additional Z2 indicators, as in the twofold

axis case, zð�Þ
2 for the positive and negative mirror sectors,

respectively.

1. Z2 indicators in space groups 176 and 192

For groups 176 and 192, z02 is the only indicator, and its
nontrivial value corresponds to the six-ring configuration
described above. However, in group 176, the screw axis
makes the entire kz ¼ π plane double degenerate, incon-
sistent with having 12 discrete band touch points where the
six rings cross this plane. These rings are hence centered at
the kz ¼ 0 plane, each symmetric about the plane. In group
192, the nontrivial indicator always corresponds to band

structure having zð�Þ
2 ¼ 1, which means that the six rings

are located on the kz ¼ π plane.

2. Z2 × Z2 × Z2 in space group 175

The three indicators forming the indicator group of space

group 175 are zð�Þ
2 and z02. The topological information

carried by their nonzero combinations can be derived in the
same way as in Sec. III B 3.

E. Inversion plus additional fourfold rotation
or screw axis

We now consider adding fourfold rotation or screw axes
to space group 2 and also to space groups having twofold
axes: These are the tetragonal space groups.
Among them, the following ones have nontrivial indi-

cator groups: 83–88, 124, 128, and 130, nine in total. A
calculation shows that only groups 86 and 88 allow band
structures having z4 ¼ 2, while all the others have z4 ¼ 0.
Therefore, for the other seven space groups, three new Z2

indicators are found.
Before defining them, we need to introduce a new

variation of the lemma presented in Eq. (9). Consider a
2D system having C4, P, and T, and consider a loop shown
in Fig. 1(b), which encloses a quadrant of the BZ. It is
shown in Ref. [36] that the Berry phase associated with this
loop is determined by the symmetry eigenvalues of the
occupied bands in the following equation.
Lemma: Second variation.—

expðiΦBÞ ¼
Y
n∈occ

ξnðΓÞξnðMÞζnðXÞ; ð24Þ

where ξ is the C4-rotation eigenvalue and ζ the C2-rotation
eigenvalue. While ξn takes four possible values �1 and �i,
time reversal ensures that �i appear in pairs, such that the
rhs of Eq. (24) can be only eitherþ1 or −1. If − 1, we have
ΦB ¼ π, and, since PT makes Berry curvature vanish, this
result implies that in each quadrant of the BZ there must
be 1 mod 2 Dirac points.
We can apply this lemma to 3D systems having the same

symmetries. For the kz ¼ 0 and the kz ¼ π slice in a simple
tetragonal lattice and for the kz ¼ 0 slice in a body-centered

ZHIDA SONG, TIANTIAN ZHANG, and CHEN FANG PHYS. REV. X 8, 031069 (2018)

031069-14



tetragonal lattice, applying the lemma of Eq. (24) simply
tells us that, if ΨB ¼ π, the slice of question is crossed by
nodal lines 1 mod 2 times in each quadrant or 4 mod 8 times
in total. This observation enables the definition of a new Z2

indicator:

δ2 ≡ Nξ¼−1ðΓÞ þ Nξ¼−1ðMÞ þ Nζ¼−1ðXÞ mod 2; ð25Þ

where Nξ¼−1 and Nζ¼−1 are the numbers of occupied bands
having ξ ¼ −1 and ζ ¼ −1, respectively.
If the C4 axis contains inversion centers, then M ¼ C2

4P
is a mirror plane. In this case, the Hamiltonian on the
kz ¼ 0 and kz ¼ π slices can be further divided into
decoupled sectors having M ¼ þ1 and M ¼ −1, so that
the Berry phase for the two sectors can also be separately
defined on the two planes. Applying the lemma of Eq. (24)
to each sector, we have the definitions of the following Z2

numbers:

δð�Þ;0
2 ≡Nð�Þ

ξ¼−1ðΓÞþNð�Þ
ξ¼−1ðMÞþNð�Þ

ζ¼−1ðXÞmod 2; ð26Þ

δð�Þ;π
2 ≡Nð�Þ

ξ¼−1ðZÞþNð�Þ
ξ¼−1ðAÞþNð�Þ

ζ¼−1ðRÞmod 2: ð27Þ

We emphasize that (i) if the lattice is body-centered

tetragonal, then δð�Þ;π
2 is undefined, (ii) if C4 is replaced

by screw axis C41
, then again δð�Þ;π

2 is undefined, and
(iii) these four numbers satisfy

δðþÞ;0
2 þ δð−Þ;02 ¼ δðþÞ;π

2 þ δð−Þ;π2 ¼ δ2 mod 2: ð28Þ

Depending on the specific groups, we choose from these
four indicators one, two, or three as generators of the
indicator group.

1. Z2 indicators in space groups 85, 86, 88,
124, 128, and 130

Unlike the cases of twofold or sixfold axes, here we
cannot find a common Z2 indicator for these space groups,
although their indicator groups are the same.
We directly solve the compatibility relations for all the

basis vectors of the symmetry data space and check if z02 or
any of the above new indicators, namely, δ2, δ

ð�Þ;0=π
2 , is well

defined in the given space group and, if yes, trivial or
nontrivial. If any one of them is nontrivial for any one of the
basis vectors of the band representation space, we know
that this is the generator of the indicator group, because
there is only one Z2 indicator.
The exhaustive search described above yields the indi-

cator δ2 for groups 85 and 86 and the indicator δðþÞ;π
2 for

groups 124 and 128. For group 130, the candidate indica-
tors are either undefined or take a zero value for all possible

basis vectors, and we have to solve some algebraic
equations to find the expression of its indicator

θ2 ¼ ½NðΓþ
1 Þ þ NðΓ−

1 Þ þ NðΓþ
3 Þ þ NðΓ−

3 Þ
þ NðM1Þ þ NðM2Þ�=2 mod 2; ð29Þ

where NðirrepÞ stands for the number of appearances of a
certain irreducible representation in the valence bands at a
given high-symmetry point. The labels of the irreducible
representations follow the convention of Refs. [26,28,29].
The configurations of nodal lines are easily found for

groups 85 and 86. Since δ2 ¼ 1, the nodal lines pass the
kz ¼ 0 plane for 4 mod 8 times, but, since there is no band
crossing along any high-symmetry line, the C4 eigenvalues
remain the same for any kz slice such that all planes with
fixed kz are crossed by nodal lines at four points. Therefore,
there must be four nodal lines running along the kz
direction.

For groups 124 and 128, we find that if δð�Þ;π
2 ¼ 1, then

δð�Þ;0
2 ¼ 0 is guaranteed by the compatibility relations.
Therefore, the nontrivial configuration has four nodal rings,
each centered at and symmetric about the kz ¼ π plane,
related to each other by C4.
For group 130, we notice that (i) it is a subgroup of group

124 and (ii) the band structure which corresponds to the

nontrivial indicator δðþÞ;π
2 ¼ 1 in group 124 gives θ2 ¼ 1

when we reduce the symmetries of group 124 to those of
group 130. These two facts mean that the configuration of
nodal lines in group 124 is also a possible configuration in
group 130 having θ2 ¼ 1. The difference between the two
space groups is that, while the four nodal rings must be
centered on the kz ¼ π plane in group 124, they can move
to the positions shown in Table III: Two of the four are
centered on XR and two others on its C4 equivalent line.
Through this configuration, the four rings may further
move to the kz ¼ 0 plane. Based on this observation, we
make a conjecture that eiθ2 is, in fact, the Berry phase of the
loop illustrated in Fig. 1(c).
The indicator for group 88 is, interestingly, the old

inversion indicator z02. If z
0
2 ¼ 1, there should be 2 mod 4

nodal rings. Point P in the BZ is the only point whose
multiplicity is two; therefore, in the minimal configuration,
there are two rings around the two P’s.

2. Z2 × Z2 indicators in space groups 84 and 87

An exhaustive search for indicators in space group 84

reveal the two Z2 indicators to be δð�Þ;0
2 . If δðþÞ;0

2 ¼ 1 and

δð−Þ;02 ¼ 0, or if δð−Þ;02 ¼ 1 and δðþÞ;0
2 ¼ 0, there are four

lines running along the kz direction. If δ
ðþÞ;0
2 ¼ δð−Þ;02 ¼ 1,

there are four nodal rings centered and symmetric about
the kz ¼ 0 plane, and they are related to each other by the
fourfold rotation or screw axis.

DIAGNOSIS FOR NONMAGNETIC TOPOLOGICAL … PHYS. REV. X 8, 031069 (2018)

031069-15



For space group 87, one generator of the indicator group

is found to be δðþÞ;0
2 , and, when δðþÞ;0

2 ¼ 1, the compati-

bility relations require also δð−Þ;02 ¼ 1. Since the rotation
axis contains inversion centers, in the minimal configura-
tion, there are four nodal rings centered at and symmetric
about the kz ¼ 0 plane, related to each other by the fourfold
rotation. The other generator takes the form

ϕ2 ≡ Nξ¼−1ðMÞ þ Nχ¼−1ðNÞ þ Nξ0¼−1ðPÞ mod 2; ð30Þ

where Nξ¼−1ðMÞ is the number of occupied states having
C4 eigenvalue −1 at M, Nχ¼−1ðNÞ is the number of
occupied states having P eigenvalue −1 at N, and
Nξ0¼−1ðPÞ is the number of states having S4 eigenvalue
−1 at P. We find that when ϕ2 ¼ 1 the Berry phase along
the loop shown in Fig. 3 is π (mod 2π), and, thus, ϕ2 ¼ 1
corresponds to a semimetal where an odd number of nodal
lines pass through the curve enclosed by the loop.
Now let us prove the correspondence between the Berry

phase and the symmetry eigenvalues. Below, we adopt the
notation

WK→P ≡ lim
N→∞

U†
KUk1

U†
k1
Uk2

…U†
kN
UP; ð31Þ

where ki¼1…N give a path from K to P, Uk ¼ ½ju1;ki;
ju2;ki…�, where each column represents an occupied state.
Then, since wave functions are all real due to the PT
symmetry, the Berry phase along the loop in Fig. 3, ΦB, is
quantized to 0, π (mod 2π) and given by

eiΦB ¼ detWK3→MWM→K1
WK1→PWP→K2

WK2→K3
: ð32Þ

Without the loss of generality, we choose the gauge where
wave functions in the path K1 → M (except for C4-
invariant point M) are C4 rotation counterparts of the wave
functions in the path M → K1, such as UK1

¼ C4UK3
. For

the M point, we have C4UM ¼ UMDMðC4Þ, with DMðC4Þ
the C4 representation matrix. Applying the C4 operation
on the wave functions in the path WK3→M, we get

WK3→M ¼ U†
K3
C†
4C4…C†

4C4UM ¼ W†
M→K1

DMðC4Þ: ð33Þ

Taking similar gauges for other paths, we get

WK1→P ¼ W†
P→K2

DPðS4Þ ð34Þ

and

WK2→N ¼ W†
N→K3

DNðPÞ; ð35Þ

where DPðS4Þ is the S4 representation matrix at P and
DNðPÞ the P representation matrix at N. Therefore, we
have

eiΦB ¼ detDMðC4ÞDPðS4ÞDNðPÞ: ð36Þ

Comparing Eqs. (30) and (36), we find that ðΦB=πÞ ¼
ϕ2 mod 2.

3. Z2 × Z2 × Z2 indicators in space group 83

The three indicators for space group 83 are chosen to be

δð�Þ;π
2 and δ02 ≡ δðþÞ;0

2 − δðþÞ;π
2 ¼ δð−Þ;02 − δð−Þ;π2 , where the

second equality is guaranteed by compatibility relations.
The configurations corresponding to each nontrivial set of

indicators are the following. If δðþÞ;π
2 ¼ 1 and δð−Þ;π2 ¼ 0 or

if δðþÞ;π
2 ¼ 0 and δð−Þ;π2 ¼ 1, there are four nodal lines along

the kz direction, related to each other by the fourfold
rotation. In this case, the value of δ02 is irrelevant, as one can
redefine the origin as a3=2 such that the mirror eigenvalues
at kz ¼ π flip, leading to the interchange of δðþÞπ and δð−Þπ
and, thus, the change of δ02. We can say the value of δ02 is
“convention dependent” in the same way that z4 ¼ 0 and
z4 ¼ 2 are convention dependent if any one of z2;i ≠ 0

(Secs. II B and III A). Similar to z4 ¼ 0 and z4 ¼ 2 in space
group 2, in a fixed convention, δ02 ¼ 0 and δ02 ¼ 1 have a
relative difference in the sense that we can tune one to
another without closing gaps at high-symmetry momenta.

We are left with three cases: (i) δðþÞ;π
2 ¼ δð−Þ;π2 ¼ 0,

δ02 ¼ 1, where there are four nodal rings centered at and
symmetric about the kz ¼ 0 plane, related to each other

under C4; (ii) δ
ðþÞ;π
2 ¼ δð−Þ;π2 ¼ 1, δ02 ¼ 0, where there are

eight nodal lines along the kz direction; and (iii) δðþÞ;π
2 ¼

δð−Þ;π2 ¼ 1, δ02 ¼ 1, where there are four nodal rings
centered at and symmetric about the kz ¼ π plane, related
to each other under C4.

F. Cubic space groups 201 and 203

There are two space groups in the cubic system that have
nontrivial indicator groups (Z2). The indicator is simply
z02 ¼ z4=2, and, when z02 ¼ 1, there are 2 mod 4 nodal rings.
However, due to the presence of a threefold rotation axis,
there would be in total 6 mod 12 nodal rings. In these space
groups, none of the twofold axes contains any inversion
center, so that each nodal ring is symmetric about a C2-
invariant line on the boundary of BZ where fĈ2; P̂ T̂g ¼ 0.

K1

M

P

N

K3

K2

FIG. 3. A loop considered in a body-centered tetragonal lattice
for space group 87.
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IV. NONCENTROSYMMETRIC SPACE GROUPS

In the absence of inversion, the nodal lines are unpro-
tected, so that all band crossings at generic momenta are
Weyl points. There are only 12 noncentrosymmetric space
groups that have nontrivial indicator groups. Except for
group 81, the indicator group is Z2, while for group 81, the
indicator group is Z2 × Z2. In this section, we use rotation
eigenvalues at high-symmetry points to express these
indicators, and for each nonzero indicator, we give one
possible configuration of the Weyl points in the Brillouin
zone. We have tried to provide the configuration with the
minimal number of Weyl points.
This section is further divided into subsections,

treating three classes of space groups according to the
generators: a single rotation axis, or a rotation axis plus
vertical glide planes, or an S4 symmetry defined by
S4∶ðx; y; zÞ → ð−y; x;−zÞ, respectively. In Fig. 5, we
provide the minimal configurations of Weyl points for
each nonzero set of indicators in each one of the 12 space
groups.

A. Single rotation or screw axis
(groups 3, 75, 77, 168, 171, and 172)

These space groups have only one rotation (3, 75, and
168) or screw (77, 171, and 172) axis. We can simply apply
the lemma of Eq. (8) to the rotation (or screw) invariant
planes in groups 3, 168, 171, and 172, where the product
of all C2 eigenvalues at all TRIMs implies whether there
are 2 mod 4 band crossing points (Weyl points) in the plane.
To be specific, we define for space groups 3, 168, 171, and
172 the Z2 indicator

α2 ≡
X

Ki¼0;K∈TRIM
Nζ¼−1ðKÞ mod 2; ð37Þ

where i ¼ y for group 3 and i ¼ z for groups 168, 171, and
172. If α2 ¼ 1, then the Berry phase associated with the
loop enclosing half of the BZ on the ki ¼ 0 slice is π.
Because of C2T symmetry, the z component of the Berry
curvature vanishes for the ki ¼ 0 slice, and the π-Berry
phase implies the existence of a 1 mod 2 band crossing in
each half of the ki ¼ 0 slice. There are, hence, 2 mod 4
Weyl points on the ki ¼ 0 plane if α2 ¼ 1. For group 3, the
minimal number is two, but for groups 168, 171, and 172,
the minimal number is six due to the sixfold rotation. In the
configuration having the minimal number of Weyl points,
theWeyl points on the ki ¼ 0 plane are related to each other
by twofold or sixfold rotations, thus having the same
monopole charge. Using the absence of a band crossing
along high-symmetry lines, the rotation eigenvalues are the
same for the ki ¼ 0 and the ki ¼ π slices, so that α2 ¼ 1
also implies that, on the ki ¼ π slice, there are 2 mod 4
Weyl points in group 3 and 6 mod 12Weyl points in groups
168, 171, and 172. In the configuration with the minimal
number of Weyl points, those Weyl points are related by

rotation symmetries thus having the same monopole
charge. However, since the total charge must vanish in
the entire BZ, the Weyl points on the ki ¼ 0 and the ki ¼ π
slices have opposite charges.
Space groups 75 and 77 have a single fourfold rotation

and screw axis, respectively. According to the lemma in
Eq. (24), we can define on the kz ¼ 0 slice the followingZ2

indicator:

β2 ≡ Nξ¼−1ðΓÞ þ Nξ¼−1ðMÞ þ Nζ¼−1ðXÞ mod 2: ð38Þ

The physical meaning of β2 ¼ 1 is that the Berry phase of
the loop enclosing one quadrant of the BZ on the kz ¼ 0
slice is π and implies the presence of a Weyl point within
the quadrant. Following similar steps, we find that if
β2 ¼ 1, there are, minimally, four Weyl points on the
kz ¼ 0 plane and four on the kz ¼ π plane. The four Weyl
points having the same kz have the same charge, while those
on different kz slices have opposite monopole charges.
Here, we take space group 3 as an example to show how

the Weyl points can be created or, equivalently, annihilated.
The minimal configuration of Weyl points is shown in
Fig. 5(a). In the following, we present a process annihilat-
ing these Weyl points symmetrically. First, the two Weyl
points in the ky ¼ 0 slice move toward Γ and then meet
each other at Γ. (For space group 3, the C2-invariant line ΓZ
is along the ky direction.) After their meeting, the ky ¼ 0

slice become fully gapped. According to the lemma
[Eq. (8)], this process changes the parity of the sum of
C2 eigenvalues in the occupied bands, leading to a change
of α2. The interchange of C2 eigenvalues also breaks the
compatibility relation along ΓZ, leading to a band crossing
protected by C2. Second, to remove the band crossing and
recover the compatibility relation, we move the crossing
point to Z, causing a band inversion there, which changes
C2 eigenvalues at Z. Again, due to the lemma [Eq. (8)],
this band inversion creates two additional Weyl points in
the ky ¼ π slice, possessing opposite charges of the two
Weyl points that have been in ky ¼ π. Third, we annihilate
the four Weyl points pairwise at two C2-related generic
momenta.

B. Rotation or screw axis plus vertical glide planes
(groups 27, 37, 103, and 184)

In this subsection, the space groups all have, aside from
a rotation axis, vertical glide planes whose half-translation
directions are along the rotation axis, denoted by
Ga∶ðx; y; zÞ → ð−x; y; zþ 1=2Þ. To find the expressions
of the indicators, we have to invoke new variations of the
lemma in Eq. (8). There are three variations for this type of
space group, in simple orthorhombic, base-centered ortho-
rhombic, and simple tetragonal Bravais lattices, respec-
tively. (Here, we consider the hexagonal lattice of group
184 a special case of base-centered orthorhombic.) We start
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our discussion with the simple orthorhombic case, whose
BZ is depicted in Fig. 4(a).
On the kz ¼ π slice, we have G2

a ¼ e−ikz ¼ −1, so that
its eigenvalues ga ¼ �i. C2 and Ga automatically imply
another glide plane Gb ≡ C2Ga, which also satisfies
G2

b ¼ e−ikz ¼ −1 and gb ¼ �i. The two lines ZT and
UR are invariant under Ga, while ZU and TR are invariant
under Gb. Therefore, along these lines, bands can be
labeled by their respective eigenvalues, jua=b;�iðkÞi. In
fact, since C2T commutes with Ga and Gb, all bands along
these lines are doubly degenerate, as C2T maps an
eigenstate having ga;b ¼ �i to one having ga;b ¼∓ i,
leaving k unchanged on the kz ¼ π slice. Without addi-
tional symmetries, the bands along these lines appear in
groups of two. For simplicity, we assume for now that there
are only two bands (one group).
The four TRIMs are not only both Ga;b invariant but also

C2 invariant. Since C2 eigenvalues, ζ ¼ �1, are real, they
are unchanged under C2T; at each TRIM, the doublet states
have the same ζ. Another important fact is that, due to
Gb ¼ C2Ga, at each TRIM we have

Gbjua;�iðKÞi ¼ �ζðKÞjua;�iðKÞi; ð39Þ

which implies

jub;�iðKÞi ∝ jua;�ζðKÞiðKÞi: ð40Þ

Now, we consider the Berry phase associated with the loop
shown in Fig. 4(a), enclosing a quarter of the BZ at kz ¼ π.
We pick a basis at Z:

ju1ðZÞi≡ jua;þiðZÞi;
ju2ðZÞi ¼ ½ju1ðZÞi��: ð41Þ

The first segment of the path is ZT; along this line, the
Hamiltonian can be block-diagonalized intoHa;þi ⊕ Ha;−i.
ju1i hence evolves under Ha;þi, and ju2i evolves under
Ha;−i such that, at T, they are still eigenvectors of Ga, and,
since Hþi ¼ H�

−i thanks to C2T symmetry, they still satisfy
ju2i ¼ ðju1iÞ�. Using Eq. (39), we know that ju1;2ðTÞi are
also eigenvectors of Gb with eigenvalues �ζðTÞ. Starting
from T to R, the two states evolve under Hb;þζðTÞi and
Hb;−ζðTÞi, respectively. Repeating this process, when the

two states ju1;2i go back to Z, they become ju01ðZÞi and
ju02ðZÞi, which are eigenvectors of Gb, because the final
segment of the path UZ is invariant under Gb. Their
eigenvalues are given by gb ¼ �ζðTÞζðRÞζðUÞi, respec-
tively. Using Eq. (39) atK ¼ Z, we find that ju01;2i are also
eigenvectors of Ga:

ju01ðZÞi ¼ eiθjua;ζðTÞζðRÞζðUÞζðZÞii;
ju02ðZÞi ¼ ½ju01ðZÞi��: ð42Þ

Equations (42), hence, call for the definition of the new Z2

indicator

γ2 ≡
X

K∈Z;T;U;R

Nζ¼−1ðKÞ=2 mod 2; ð43Þ

where the division by 2 is because each level is doubly
degenerate. When γ2 ¼ 1, we have

� ju01i
ju02i

�
¼

�
0 eiθ

e−iθ 0

�� ju1i
ju2i

�
; ð44Þ

so that the Berry phase of the loop is

eiΦB ¼ detðhu0ijujiÞ ¼ −1: ð45Þ

Here, we have established yet another variation of the
lemma.
Lemma: Third variation.—

eiΦB ¼
Y

n∈occ=2;K∈Z;T;U;R

ζnðKÞ ¼ eiγ2π; ð46Þ

where occ=2 means that, for each degenerate pair at these
TRIMs, we take only one band for the calculation.
Therefore, when γ2 ¼ 1, the Berry phase of the loop in
Fig. 4(a) is π, and, since C2T ensures the vanishing of the z
component of the Berry curvature, there must be 1 mod 2
Weyl point in each quadrant. In the configuration having
the least number (four) of Weyl points, the two Weyl points
related by Ga or Gb have opposite monopole charges.
It may be a little counterintuitive why the two Weyl

points of opposite charge cannot pairwise annihilate on
the glide plane. Consider two such Weyl points that are
related to each other by Ga. Then, we remark that they are
necessarily also related by Gb � T and that, on the kz ¼ π
slice, there is

ðĜbT̂Þ2 ¼ Ĝ2
bT̂

2 ¼ −1: ð47Þ

In Ref. [17], one of us shows that two Weyl points related
by Gb � T satisfying ðĜbT̂Þ2 ¼ −1 cannot pairwise anni-
hilate when they meet but will form an accidental
Dirac point.

Y
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SX

R

Z(a)

X

R

M

A

Z(c)

R

S

T

Y

T

Z(b)

Y

FIG. 4. Loops along which the Berry phases are used to define
indicators in noncentrosymmetric space groups (a) 27, (b) 37, and
(c) 103 (see Table III).
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The discussion of a base-centered orthorhombic case
differs but a little from the simple orthorhombic case.
Again, we consider the kz ¼ π slice, where the TRIMs are
denoted Z, R, T, whose multiplicities are one, two, and one,
respectively. While all TRIMs are C2 invariant, Z and T are
also invariant underGa andGb. Consider the loop shown in
Fig. 4(b). One should notice that, while the loop encloses
one-quarter of the BZ, it is formed by two closed loops,
labeled loop 1 from T to R to T and loop 2 from T to Z to T.
The total Berry phase is the sum of the Berry phases of loop
1 and loop 2, each of which is quantized to 0 and π due to
C2T. Using the same steps, we can show that the second
Berry phase is given by

expðiΦ2Þ ¼
Y

n∈occ=2
ζnðZÞζnðTÞ; ð48Þ

where occ=2 means that for each degenerate pair only one
state is chosen. Regarding loop 1, Refs. [37,38] show that
its Berry phase is given by

expðiΦ1Þ ¼
Y
n∈occ

ζnðTÞζnðRÞ ¼
Y
n∈occ

ζnðRÞ; ð49Þ

where the second equality comes from the fact that all ζ
values at T appear in doubles. These observations lead us to
define a new Z2 indicator:

γ02 ≡ Nζ¼−1ðZÞ þ Nζ¼−1ðTÞ
2

þ Nζ¼−1ðRÞ mod 2 ð50Þ

such that eiðΦ1þΦ2Þ ¼ eiγ
0
2
π . When γ02 ¼ 1, there must be

one Weyl point inside each quarter of the BZ at the kz ¼ π
slice. Therefore, there are four Weyl points in the minimal
configuration, where any two related by either Ga or Gb
have opposite monopole charges.
The indicator γ02 is well defined for both groups 37 and

183, since the hexagonal lattice can be considered as a
special case of a base-centered orthogonal lattice. However,

in group 183, due to the sixfold rotation, the total number of
Weyl points is 12 mod 24, and in the minimal configura-
tion, 12 Weyl points are related to each other either by Ga
or byC6, shown in Fig. 5(h). TwoWeyl points related byC6

have the same monopole charge, and two related by Ga;b

have opposite charges.
Similarly, we find the indicator for space group 103:

γ002 ≡ Nξ¼−1ðZÞ þ Nξ¼−1ðAÞ þ Nζ¼−1ðRÞ
2

mod 2: ð51Þ

When γ002 ¼ 1, the Berry phase of the loop in Fig. 4(c) is π,
so that there must be 1 mod 2 Weyl point in half of a
quadrant, resulting in 8 mod 16 Weyl points in total.
In the minimal configuration, the eight Weyl points, four
positive and four negative, are related to each other by
either C4 or Ga;b. Two Weyl points related by C4 have the
same monopole charge, and the two related by Ga;b have
different ones.

C. S4 symmetry (groups 81 and 82)

S2n symmetries are the only type of (noncentrosymmet-
ric) point group symmetries the invariant subspace of
which consists of discrete points rather than lines or planes.
Aside from S2, which is same as inversion, S4 is also
the only S2n symmetry that is consistent with 3D lattices.
Space group 81 on a simple tetragonal lattice is singly
generated by this symmetry. In momentum space, we have
S4∶ðkx; ky; kzÞ → ð−ky; kz;−kzÞ, so that on kz ¼ 0 and
kz ¼ π slices, they act the same way as C4. Therefore,
we can use the same lemma in Eq. (24) to define the
following two Z2 indicators:

ω0
2 ¼ Nξ¼−1ðΓÞ þ Nξ¼−1ðMÞ þ Nζ¼−1ðXÞ mod 2;

ωπ
2 ¼ Nξ¼−1ðZÞ þ Nξ¼−1ðAÞ þ Nζ¼−1ðRÞ mod 2; ð52Þ
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FIG. 5. Minimal configurations of the Weyl points for each nonzero set of indicators in various space groups. Red lines are rotation
axes, gray lines the intersection between vertical glide planes and the kz ¼ π plane, red dots S4 centers, and “w” stands for Weyl, where
different colors of wmean opposite monopole charge. (a)–(h) are for space groups with only one Z2 indicator: (a) 3, (b) 27, (c) 37, (d) 75
and 77, (e) 82, (f) 103, (g) 168, 171, and 172, and (h) 184. (i)–(k) are the minimal configurations for group 81 having indicator sets
ðω0

2;ω
π
2Þ ¼ ð1; 0Þ; ð0; 1Þ; ð1; 1Þ, respectively.

DIAGNOSIS FOR NONMAGNETIC TOPOLOGICAL … PHYS. REV. X 8, 031069 (2018)

031069-19



where ξ is the S4 eigenvalue and we observed the fact
that S24 ¼ C2.
When ω0;π

2 ¼ 1, there are 4 mod 8 points on the kz ¼ 0

and the kz ¼ π slice, respectively. Since S4 is an improper
rotation, two Weyl points related by S4 have opposite
monopole charges: This result is a difference between S4
and C4.
For space group 82, the only Z2 indicator is ω0

2.

V. DISCUSSION AND CONCLUSION

In this work, we find the explicit expressions for all
symmetry-based indicators in terms of symmetry eigen-
values of valence bands at high-symmetry points in the
momentum space for 3D systems with time-reversal
symmetry and negligible spin-orbital coupling, and we
characterize all topological states corresponding to every
given set of nonzero indicators. Somewhat to our surprise,
all nonzero sets of indicators necessarily correspond to
some topological semimetals; i.e., none of them is com-
patible with a gapped band structure in three dimensions.
These semimetals are, in general, “hidden” from most first-
principles calculations, since in the latter only high-
symmetry lines are routinely scanned, but in these semi-
metals all high-symmetry lines have gapped spectra.
Looking at these expressions, we realize that all the
indicators except one are, in fact, topological invariants
for submanifolds of the 3D BZ. (These expressions are
checked via decomposing all linearly independent solu-
tions of compatibility relations into elementary band
representations, where both data can be found in Ref. [26].)
Most of the indicators are equivalent to Berry phases:
(i) z2;i¼1;2;3π is the Berry phase of a loop enclosing half

of the BZ at ki ¼ π (all centrosymmetric space
groups).

(ii) zð�Þ
2 π is the Berry phase of a loop enclosing half of
the BZ at kz ¼ π in the M ¼ �1 sector (groups 10,
175, 176, and 192).

(iii) δ2π is the Berry phase of a loop enclosing a quarter
of the BZ at any fixed kz (groups 83, 84, 85, and 86).

(iv) δð�Þ;π
2 π is the Berry phase of a loop enclosing a
quarter of the BZ at kz ¼ π in the M ¼ �1 sector
(groups 83, 124, and 128).

(v) δð�Þ;0
2 π is the Berry phase of a loop enclosing a
quarter of the BZ at kz ¼ 0 in the M ¼ �1 sector
(groups 83, 84, and 87).

(vi) δ02π is the difference between the Berry phase of a
loop enclosing a quarter of the BZ at kz ¼ 0 in the
M ¼ þ1 sector and that of a loop and that at kz ¼ π
(group 83).

(vii) ϕ2π is the Berry phase of the loop indicated in Fig. 3
(group 87).

(viii) θ2π is conjectured to be the Berry phase of the loop
indicated in Fig. 1(c) (group 130).

(ix) α2π is the Berry phase of a loop enclosing half of the
BZ at kz ¼ 0 (groups 3, 168, 171, and 172).

(x) β2π is the Berry phase of a loop enclosing a quarter
of the BZ at kz ¼ 0 (groups 75 and 77).

(xi) γ2π is the Berry phase of a loop enclosing a quarter
of the BZ at kz ¼ π (group 27).

(xii) γ02π is the Berry phase of a loop enclosing quarter of
BZ at kz ¼ π (#37,184).

(xiii) γ002π is the Berry phase of a loop enclosing one-eighth
of the BZ at kz ¼ π (group 103).

(xiv) ω0
2π is the Berry phase of a loop enclosing a

quarter of the BZ at the kz ¼ 0 plane (groups 81
and 82).

(xv) ωπ
2π is the Berry phase of a loop enclosing a quarter

of the BZ at the kz ¼ π plane (group 81).
There is one special Z4 indicator, z4, that is not a Berry

phase but the number of nodal rings modulo four; z02 ¼
z4=2 is a derivative of z4 in space groups where z4 is
constrained by symmetries to be even.
Whenever any of the above Berry phases is π, we

immediately know that there are 1 mod 2 robust band
crossings in the area bounded by the loop. Whenever z4 or
z02 is nonzero, it gives us the total number of rings or lines.
These observations help us determine all possible configu-
rations of all the nodal loops and Weyl points given any set
of symmetry-based indicators mentioned above.
Importantly, the definitions of these indicators in most

cases require only several, but not all, symmetries in the
space groups in which they are defined, and they require
only that there is no band crossing along the loop on
which the Berry phase is defined, which means that, even
in band structures where compatibility relations are
violated, i.e., when there are band crossings along certain
high-symmetry lines, as long as the above requirements
hold, these indicators can still be applied to find band
crossings at generic momenta, away from the ones on
high-symmetry lines.
A very simple example helps illustrate this point. In

space group 75, which has a simple tetragonal lattice and a
single point-group generator C4, starting from a gapped
state, we consider a band inversion at Γ where the valence
band with ξ ¼ þ1 becomes one having ξ ¼ −1. This band
inversion is known to cause two band crossings along ΓZ,
since C4 is a good quantum number along this line, so the
band structure violates the compatibility relations of group
75. However, one easily confirms that β2 ¼ 1 after the band
inversion, so that, away from ΓZ, there are four additional
Weyl points on the kz ¼ 0 plane, having the same monop-
ole charge.
Topological semimetals are known to be “parent states”

for topologically gapped states. In fact, two possible
mechanisms have been established that give rise to non-
trivial topology: the Kane-Mele mechanism [19,20], where
topological band crossings open up a gap when spin-orbital
coupling is turned on, and the Bernevig-Hughes-Zhang
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mechanism [39], where band inversions occur due to strong
spin-orbital coupling. These two mechanisms (and their
generalized versions) are used and so far considered as
guiding principles for the search of topological materials
that are systematically applied in Ref. [26], which have
successfully yielded many a new material candidate.
(Among them are new types of “weak phases” termed
fragile topological phases, the understanding of which
opens new directions [40,41].) According to the Kane-
Mele mechanism, some topological semimetals, like
graphene, are just topological (crystalline) insulators
disguised by the small SOC. A question then naturally
presents itself at this point: Will the topological semi-
metals diagnosed by these indicators become topological
gapped states, such as topological insulators or topologi-
cal crystalline insulators [42], when spin-orbital coupling
is perturbatively added? For noncentrosymmetric space
groups, the answer is very simple: Each Weyl points splits
into two having the same charge, so that the system
remains a Weyl semimetal. For centrosymmetric space
groups, since neither a Weyl point or nodal line at generic
momenta is allowed, adding SOC will open full gaps for
all topological semimetals discussed in this work. But are
all these gapped states topologically nontrivial? A com-
plete answer to this question justifies an independent
work, but here we partly address this issue by connecting
the indicators in the orthogonal (without SOC) and the
symplectic (with SOC) classes. The topological informa-
tion carried by the nonzero indicators in the symplectic
class is discussed in a parallel work [43,44].
To be specific, we inspect all space groups that have a

nontrivial indicator group both with and without SOC. We
find the following quantitative relations between the
indicators in the two classes of Hamiltonians. First of
all, the indicators that depend only on inversion eigenvalues
z2;i¼1;2;3 and z4 have exactly the same definition in both
classes. The Fu-Kane formula shows that, with SOC,
z2;i¼1;2;3 and z4 mod 2 correspond to the three weak and
one strong invariants of time-reversal topological insula-
tors. When z2;i ¼ 0 and z4 ¼ 2, the corresponding gapped
states with SOC belong to a new class of topological
crystalline insulators, the surface states of which are
discussed in Refs. [43–45]. Among centrosymmetric space
groups having nontrivial indicator groups both with and
without SOC, these four indicators have comprehended the
indicator groups in both classes in all but the following five
space groups: 83, 87, 128, 175, and 192.
To find the relations between indicators without SOC

and those with SOC, we first need to determine what an
irreducible representation without SOC becomes when
SOC is turned on. To be specific, if a irreducible
representation without SOC at k is given by DðgÞ, where
g belongs to the little group of k, then the representation
matrix after considering an infinite small SOC becomes
DðgÞ ⊗ uðgÞ, where uðgÞ is the SU(2) rotation matrix of g.

In most cases, DðgÞ ⊗ uðgÞ becomes reducible and
reduces to several irreducible representations with
SOC. With this information obtained, we are able to
translate any symmetry data without SOC to symmetry
data with SOC. Following this method, we find the
following.

(i) Group 83.—The indicators in the absence of SOC are

δðþÞ;π
2 , δð−Þ;π2 , and δ02. The indicators in the presence of
SOC are z2w;1, z4m;π , and z8, wherein z2w;1 is theweak
index in the x direction, z4m;π is the mirror Chern
number (mod 4) at the kz ¼ π plane, and z8 mod 4 is
the sum of mirror Chern numbers at the kz ¼ 0 and
kz ¼ π planes (mod 4). The remaining case, z8 ¼ 4,
corresponds to either a C4-protected topological
crystalline insulator or a mirror Chern insulator with
mirror Chern numbers at the kz ¼ 0- and kz ¼ π
planes differing from each other by 4 (mod 8)
[43–46]. The mappings from indicators without
SOC to indicators with SOC are ð100Þ → ð024Þ,
ð010Þ → ð024Þ, and ð001Þ → ð004Þ.

(ii) Group 87.—The indicators in the absence of SOC

are ϕ2 and δðþÞ;0
2 , and the indicators in the presence

of SOC are z2w;1 and z8, which have the same
definitions in group 83 [43,44]. The mappings are
ð10Þ → ð04Þ and ð01Þ → ð04Þ.

(iii) Group 128.—The indicator in the absence of SOC is

δðþÞ;π
2 , and the indicator in the presence of SOC is z8,
which has the same definition in group 83 [43,44].
The mapping is 1 → 4.

(iv) Group 175.—The indicators in the absence of SOC

are zðþÞ
2 , zð−Þ2 , and z02 ¼ z4=2. The indicators in the

presence of SOC are z6m;π and z12, wherein z6m;π is
the mirror Chern number (mod 6) at the kz ¼ π plane
and z12 mod 6 is the sum of mirror Chern numbers
at the kz ¼ 0 and kz ¼ π planes. The remaining case,
z12 ¼ 6, corresponds to either a C6-protected topo-
logical crystalline insulator or a mirror Chern
insulator with mirror Chern numbers at the kz ¼ 0
and kz ¼ π planes differing from each other by 6
(mod 12) [43,44]. The mappings are ð100Þ → ð30Þ,
ð010Þ → ð30Þ, and ð001Þ → ð06Þ.

(v) Group 192.—The indicator in the absence of SOC is
z02, and the indicator in the presence of SOC is z12,
which has the same definition in group 175. The
mapping is 1 → 6.
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