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We study the Néel-paramagnetic quantum phase transition in two-dimensional dimerized S ¼ 1=2
Heisenberg antiferromagnets using finite-size scaling of quantum Monte Carlo data. We resolve the long-
standing issue of the role of cubic interactions arising in the bond-operator representation when the dimer
pattern lacks a certain symmetry. We find nonmonotonic (monotonic) size dependence in the staggered
(columnar) dimerized model, where cubic interactions are (are not) present. We conclude that there is a new
irrelevant field in the staggered model, but, at variance with previous claims, it is not the leading irrelevant
field. The new exponent is ω2 ≈ 1.25 and the prefactor of the correction L−ω2 is large and comes with a
different sign from that of the conventional correction with ω1 ≈ 0.78. Our study highlights competing
scaling corrections at quantum critical points.
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One of the best understood quantum phase transitions is
that between Néel antiferromagnetic (AFM) and quantum
paramagnetic ground states in bipartite two- and three-
dimensional dimerized Heisenberg models with inter- and
intradimer couplings J1 and J2 [1–6]. The ground state
hosts AFM order when g ¼ J2=J1 ≈ 1, and there is a
critical point at some model-dependent gc > 1. The 3D
version of this transition for S ¼ 1=2 spins has an exper-
imental realization in TlCuCl3 under high pressure [7,8].
While no 2D realization exists as of yet (though the
magnetic field driven transition has been realized [9]), this
case has been very important for developing the framework
for 2D quantum phase transitions of the Néel AFM state
[10]. The field theory of the AFM-paramagnetic transition
is now well developed, and efficient quantum Monte Carlo
(QMC) methods can be used to study ground states of
microscopic models with tens of thousands of spins [6].
Many nontrivial predictions for scaling in temperature,
frequency, system size, etc., have been tested [11–16].
Despite many successes, there are still questions sur-

rounding the 2D AFM-paramagnetic transition. A long-
standing unresolved issue is differences observed in QMC
calculations between two classes of dimer patterns [17–21],
exemplified by the often-studied columnar dimer model
(CDM) and the initially less-studied staggered dimer model
(SDM), both illustrated in Fig. 1. Indications from finite-
size scaling of a universality class different from the
expected 3D O(3) class in the SDM [17] led to several
follow-up studies [18–21]. The consensus now is that there

is no new universality class, as defined by the standard
critical exponents. However, because of the lack of a certain
local symmetry, cubic interactions arise in the bond-
operator description of the SDM, which in the renormal-
ization group corresponds to an irrelevant field that is
present neither in the CDM nor in the classical O(3) model
[20]. Thus, the SDM contains an interesting quantum effect
worthy of further investigations.
In this Letter we report detailed comparisons of the

finite-size (L) scaling corrections of type L−ω in the CDM
and SDM. While previous works on judiciously chosen
observables [19] and lattices with optimized aspect ratios
[21] have convincingly demonstrated O(3) universality,
the reasons for the unusual scaling behaviors of the SDM
have never been adequately explained. In Ref. [20], QMC
calculations indicated that the exponent of the leading

FIG. 1. The Heisenberg SDM and CDM studied in this work.
Black (thinner) and red (thicker) bonds represent intra- and
interdimer exchange Si · Sj, of strength (prefactor) J1 and J2,
respectively, between S ¼ 1=2 spins.
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correction is smaller than in the CDM, but the value,
ω ≈ 0.6 in the SDM [20,21] versus the conventional value
ω ≈ 0.78 [22,23] in the O(3) model and the CDM, is not
very different and cannot explain all the observed anoma-
lous finite-size scaling properties of the SDM.
We here study L × L CDM and SDM systems of size up

to L ¼ 256. Focusing on the scaling corrections, we fix the
leading critical exponents at their known O(3) values in our
finite-size analysis, which allows us to reliably investigate
also subleading corrections. In contrast to the previous
studies, we demonstrate that the SDM actually does not
have a smaller ω1 than the CDM. Instead, the cubic
interaction induces the next correction, which has ω2 ¼
1.25ð3Þ (where the number within parentheses here and
henceforth denotes the statistical error in the preceding
digit) and a large prefactor of sign different from that of the
first correction. This causes nonmonotonic finite-size
behaviors that were previously either not observed
[19,20] or not analyzed properly [21].
QMC and fitting procedures.—We here use the standard

stochastic series expansion QMC method [6,24] for
S ¼ 1=2 spins and set the inverse temperature β at L=2
(so that L=β is close to the spin-wave velocity [21]). At a
quantum phase transition with dynamic exponent z ¼ 1 (as
is the case here), as long as β ∝ L the temperature does not
appear as an independent argument in the scaling function
obtained from renormalization group theory. In the case of
a dimensionless quantity we have [25,26]

Oðg; LÞ ¼ f½ðg − gcÞL1=ν; λ1L−ω1 ; λ2L−ω2 ;…�; ð1Þ

if g is sufficiently close to gc. Here λi denotes the irrelevant
fields, which we order such that ωiþ1 > ωi > 0. Useful
dimensionless quantities to study in QMC calculations
include the Binder ratio R ¼ hm4

zi=hm2
zi2, where mz is the

component of the staggered magnetization along the
quantization axis, the L-normalized spin stiffness constants
Lρx and Lρy (with x and y referring to the lattice
directions), and the uniform susceptibility Lχu. We refer
to Ref. [6] for technical details.
To linear order in the first irrelevant field, Eq. (1) can be

written as

Oðg; LÞ ¼ f0ðδL1=νÞ þ L−ω1f1ðδL1=νÞ; ð2Þ

where δ ¼ g − gc and f0 and f1 are scaling functions
related to the original f. Thus, in the absence of corrections
(f1 ¼ 0), a dimensionless quantity is size independent at
gc, and by expanding f0 we see that Oðg; LÞ for different L
cross each other at gc. With the scaling correction included,
the crossing points only drift toward gc as L → ∞, and for
two different sizes L and L0 ¼ rL one can derive simple
expressions for the crossing value g�ðLÞ and the observable
O�ðLÞ at this point [27];

g�ðLÞ ¼ gc þ aL−ω1−1=ν; ð3aÞ

O�ðLÞ ¼ Oc þ bL−ω1 ; ð3bÞ

where only a and b depend on r. We use r ¼ 2 as a
convenient size ratio allowing for a large number of size
pairs ðL; 2LÞ, with size series of the form L ¼ s2n for a
range of integers n and several choices of s. Tests with other
r reveal no changes in the asymptotics.
We extract the crossings using third-order polynomial

fits to ten or more data points in the neighborhood of
gc ¼ g�ð∞Þ, with the window ½gmin; gmax� reduced as L is
increased. Such interpolations give reliable crossing points,
and statistical errors are computed using bootstrapping.
Examples of data with fits are shown in Fig. 2.
When fitting the crossing points g�ðLÞ and O�ðLÞ to

their appropriate finite-size scaling forms, the same system
size L can appear in two pairs, ðL; 2LÞ as well as ðL=2; LÞ.
There are therefore some covariance effects, which we take
into account by using the full covariance matrix (computed
using bootstrap analysis) in the definition of the goodness
of the fit χ2. When jointly fitting to two different quantities,
we also account for the associated covariance. For the
functional forms, we will go beyond the first-order expan-
sion leading to Eqs. (3), and this will be the key to our
findings and conclusions.
Finite-size scaling.—The size dependence of R crossing

points is shown in Fig. 3 for both models. A striking feature
is the nonmonotonic behaviors apparent for the SDM but
not present for the CDM. Note here that 1=L on the
horizontal axis refers to the smaller of the two system sizes
ðL; 2LÞ used for the crossing points, and the maximums in
g� and R� are at 2L ≈ 80. In the original discovery of the
anomalous behaviors for the SDM [17], the systems were
smaller and the correct asymptotic behaviors were therefore
not reached.
We will first assume that only one irrelevant field is

important but treat the corrections beyond the first-order
expansion in L−ω1 , Eq. (2). Later we will argue that one
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FIG. 2. Binder ratio of the SDM for several system sizes in
the neighborhood of gc. The curves are polynomial fits giving
crossing points ðg�; R�Þ between ðL; 2LÞ data.
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has to include also the L−ω2 term in the case of the SDM,
while for the CDM ω2 is much larger and does not have to
be considered. Even with only one irrelevant field, if the
associated exponent ω ¼ ω1 is small, the higher-order
terms such as L−2ω will also be important. As a guide to
how far to go, we here compare the previous estimates
ω1 ≈ 0.5–0.6 [20,21] in the SDM with the second correc-
tion of the O(3) model, with ω2 ≈ 1.8 [28], and note that
several additional corrections with exponents close to 2 are
expected [29]. It would then be pointless to go to higher
order than 3ω in the first irrelevant field, and with 1=ν ≈ 1.4
we also do not include mixed corrections with ω and 1=ν.
Thus, for the SDM we use

g�ðLÞ ¼ gc þ L−1=νða1L−ω þ a2L−2ω þ a3L−3ωÞ; ð4aÞ

R�ðLÞ ¼ Rc þ b1L−ω þ b2L−2ω þ b3L−3ω; ð4bÞ

and exclude small systems until good fits are obtained.
For the CDM, with ω1 ¼ 0.78, by the above arguments we
stop at 2ω.
The fitting coefficients ai and bi in Eq. (4) are not fully

independent of each other but are related because they
originate from the same scaling function, Eq. (1). We do not
write down the relationships here but fully take them into
account in joint fits of the g� and O� data. These nonlinear
fits are quite demanding, and we make use of a slow but
reliable stochastic approach [30]. The stability of the fits is

greatly aided by fixing 1=ν to its known 3D O(3) value,
1.406 [23]. The resulting curves are shown in Fig. 3. Here,
as in all cases below, all data points shown in the figure
were included in the fits (with smaller sizes excluded until
the fits have acceptable χ2 values).
For the CDM, our result for the critical coupling is

gc ¼ 1.90951ð1Þ. The value is consistent with the best
previous results, gc ¼ 1.90948ð4Þ [6] and gc ¼ 1.90947ð3Þ
[21], but with reduced statistical error. For the correction,
we obtain ω ¼ 0.80ð2Þ, which agrees with the O(3) value
ω1 ¼ 0.782ð13Þ [23].
For the SDM we obtain gc ¼ 2.51943ð1Þ. Using rec-

tangular lattices with optimized aspect ratio, a compatible
result, gc ¼ 2.51941ð2Þ, was obtained [21]. For the cor-
rection we obtain ω ¼ 0.60ð4Þ, which is clearly smaller
than the known O(3) value cited above but in good
agreement with the values presented in Refs. [20,21].
Although Rc is universal in the sense that it does not

depend on the microstructure of lattice and details of the
interactions, it does depend on boundary conditions [31,32]
and aspect ratios [21]. The CDM and SDM have different
critical spin-wave velocities and, therefore, effectively
different time-space aspect ratios even though β=L is the
same. This explains the different Rc values in Fig. 3; see
also Supplemental Material [33].
By also analyzing the spin stiffness and the uniform

susceptibility in the manner described above, we obtain the
results summarized in Table I. The results for the CDM
consistently reproduce the knownO(3) value ofω1, while in
the case of the SDM the different quantities produce a wide
range of results. The latter suggests that ω may not
be the true smallest correction exponent in the case of
the SDM, but, as also pointed out in Ref. [20], should
be regarded as an “effective exponent” influenced by
neglected further corrections. The inability of a single
irrelevant field to describe the data is actually not unex-
pected within the scenario of irrelevant cubic interactions
[20], because the standard leading correction with ω1 ≈
0.78 should still be present and may produce various
“effective” scaling behaviors over a limited range of system
sizes when combined with the cubic perturbation. Thus, a
reliable analysis of the SDM should require at least ω1

and ω2.
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FIG. 3. Inverse system size dependence of ðL; 2LÞ crossing
data for the SDM (a),(b) and the CDM (c),(d) along with joint fits
(green curves) of the forms in Eqs. (4). The exponent ω is
adjusted for optimal fits, giving ω ¼ 0.60ð4Þ for the SDM and
ω ¼ 0.80ð2Þ for the CDM. The insets show the large system data
on more detailed scales. The red curve in the inset of (a) shows a
fit with only the leading terms arising from the first and second
irrelevant fields, with ω1 ¼ 0.78 fixed and ω2 ¼ 1.22ð5Þ result-
ing from the fit; the corresponding fitting curve in (b) barely
changes and is not shown.

TABLE I. Results for the critical point and correction exponent
obtained from fits of various dimensionless quantities to scaling
forms analogous to Eqs. (4), keeping corrections up to 3ω for the
SDM and 2ω for the CDM.

SDM CDM

ω gc ω gc

Lρx 0.88(2) 2.51946(2) 0.77(3) 1.90953(2)
Lρy 0.39(5) 2.51942(3) 0.77(4) 1.90957(2)
Lχu 0.68(6) 2.51945(2) 0.78(3) 1.90956(3)
R 0.60(4) 2.51943(1) 0.80(2) 1.90951(1)
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We can generalize Eqs. (4) to two correction exponents,
ω1 and ω2, but in that case it is difficult to determine both of
them with sufficient precision. However, since the standard
leading correction should still be present [20], we now also
fix ω1 ¼ 0.78 and only treat ω2 as a free parameter. It is
then sufficient to go to linear order in the corrections and
yet obtain fully acceptable fits. We obtain gc ¼ 2.51945ð1Þ
and ω2 ¼ 1.22ð5Þ for the SDM. The new fitted curve is
shown in the inset of Fig. 3(a). The estimate of gc is a bit
higher than the previous value from R�, but the difference is
not statistically significant.
The key result here is clearly that ω2 comes out larger

than the leading O(3) exponent. It is, however, signifi-
cantly smaller than the expected second irrelevant O(3)
exponent with value ≈1.8 [28,29], and it is also less
than 2ω1. The new correction should therefore be due to
the cubic interactions [20] in the low-energy theory of
the SDM. To test the stability of ω2 across different
quantities, we also used a slightly different procedure of
fitting only to g� (instead of the joint fit with R�) and
requiring the same L → ∞ value of gc for all the
quantities considered. We still also fix 1=ν ¼ 1.406
and ω1 ¼ 0.78 but keep ω2 free for all individual
quantities. The SDM data with fits are displayed in
Fig. 4(a), with the resulting gc and ω2 estimates listed in
the caption. The fits are statistically good and all four
ω2 estimates are consistent with the value obtained
above. In the case of the CDM, shown Fig. 4(b), we
follow the same procedures but replace ω2 by 2ω1, and
there is no free exponent. This fit is only of marginally
acceptable statistical quality even when starting the fits
from L ¼ 16, indicating some effects still of the higher-
order terms that were included in Fig. 3(b). We therefore

keep the value from R in Table I as our best gc estimate
for this model.
To further ascertain our conclusions about the SDM, we

also consider the squared order parameter itself. Having
determined a precise estimate of gc, we study the scaling of
hm2i at this point, where we expect

hm2ic ∝ L−ð1þηÞð1þ b1L−ω1 þ b2L−ω2 þ � � �Þ: ð5Þ

We can then define a size-dependent exponent as

η�ðLÞ ¼ ln½hm2ðLÞic=hm2ð2LÞic�= lnð2Þ − 1; ð6Þ

which should scale as

η�ðLÞ ¼ ηþ c1L−ω1 þ c2L−ω2 þ � � � : ð7Þ

To test this form and extract ω2, we use the known value
η ¼ 0.0375ð5Þ [23] and fix ω1 ¼ 0.78. As shown in Fig. 5,
the form fits the data very well and gives ω2 ¼ 1.29ð5Þ.
Here, one can again see how access to only system sizes
less than L ¼ 80 could easily lead to the wrong conclusion.
A fit with two adjustable exponents givesω1 ¼ 0.77ð6Þ and
ω2 ¼ 1.31ð7Þ, perfectly consistent with the fit with ω1

fixed. In the case of the CDM, also shown in Fig. 5, we find
that the data are well described with a single correction with
the known value of the exponent.
Conclusions.—We have analyzed the SDM under the

scenario [20] of an O(3) quantum phase transition with an
additional irrelevant perturbation that is absent in the CDM.
Our results are consistent with this picture and demand a
new scaling correction with exponent ω2 ≈ 1.25 that is
larger than the also present conventional 3D O(3) exponent
ω1 ≈ 0.78 but smaller than the next known O(3) exponent.
Thus, the cubic interactions in the low-energy theory are
formally more irrelevant than previously believed [20,21],
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term in Eq. (7), with ω1 ¼ 0.78 fixed. In the SDM fit, ω1 ¼ 0.78
is also fixed and the second exponent ω2 ¼ 1.29ð5Þ is the result
of the fit.
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but their effects are important in finite-size scaling of many
quantities because of their different signs and larger
prefactors of the correction terms (4 times larger than
the factor of the leading correction in the case of the order
parameter), thus giving rise to nonmonotonic behaviors.
In addition to resolving the role of the cubic interactions

in the class of models represented by the SDM, our study
also serves as an example of finite-size behaviors that may
at first sight appear puzzling but can be understood once the
possibility of competing scaling corrections is recognized.
Nonmonotonic scaling has also been observed at the
deconfined quantum phase transitions, which has compli-
cated efforts to extract the critical point and exponents [34].
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