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We present a variational renormalization group (RG) approach based on a reversible generative model
with hierarchical architecture. The model performs hierarchical change-of-variables transformations from
the physical space to a latent space with reduced mutual information. Conversely, the neural network
directly maps independent Gaussian noises to physical configurations following the inverse RG flow. The
model has an exact and tractable likelihood, which allows unbiased training and direct access to the
renormalized energy function of the latent variables. To train the model, we employ probability density
distillation for the bare energy function of the physical problem, in which the training loss provides a
variational upper bound of the physical free energy. We demonstrate practical usage of the approach by
identifying mutually independent collective variables of the Ising model and performing accelerated hybrid
Monte Carlo sampling in the latent space. Lastly, we comment on the connection of the present approach to
the wavelet formulation of RG and the modern pursuit of information preserving RG.
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The renormalization group (RG) is one of the central
schemes in theoretical physics, whose impacts span from
high-energy [1] to condensed matter physics [2,3]. In
essence, RG keeps the relevant information while reducing
the dimensionality of statistical data. Besides its conceptual
importance, practical RG calculations have played impor-
tant roles in solving challenging problems in statistical
and quantum physics [4,5]. A notable recent development
is to perform RG calculations using tensor network
machinery [6-18].

The relevance of RG goes beyond physics. For example,
in deep learning applications, the inference process in
image recognition resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained neural network extracts a hierarchy of increasingly
higher-level concepts in its deeper layers [19]. In light of
such intriguing similarities, Refs. [20-23] drew connec-
tions between deep learning and the RG, Ref. [24] pro-
posed an RG scheme based on mutual information
maximization, Ref. [25] employed deep learning to study
holography duality, and Ref. [26] examined the adversarial
examples from a RG perspective. Since the discussions are
not totally uncontroversial [21,23,24,27,28], it remains
highly desirable to establish a more concrete, rigorous,
and constructive connection between RG and deep learn-
ing. Such a connection will not only bring powerful deep
learning techniques into solving complex physics problems
but also benefit theoretical understanding of deep learning
from a physics perspective.

In this Letter, we present a neural network based varia-
tional RG approach (NeuralRG) for statistical physics
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problems. In this scheme, the RG flow arises from iterative
probability transformation in a neural network. Integrating
the latest advances in deep learning including normalizing
flows [29-37], probability density distillation [38], and
tensor network architectures, in particular, the multiscale
entanglement renormalization ansatz (MERA) [6], the pro-
posed NeuralRG approach has a number of interesting
theoretical properties (variational, exact, and tractable like-
lihood, principled structure design via information theory)
and high computational efficiency. The NeuralRG approach
is closer in spirit to the original proposal based on Bayesian
net [20] than more recent discussions on Boltzmann
machines [21,23] and principal component analysis [22].

Figure 1(a) shows the proposed architecture. Each build-
ing block is a diffeomorphism, i.e., a bijective and differ-
entiable function parametrized by a neural network, denoted
by abijector [39,40]. Figure 1(b) illustrates one realization of
the bijector using real-valued nonvolume preserving flows
(Real NVP) [32,41], which is one of the reversible generative
models known as the normalizing flows [29-37].

The network relates the physical variables x and the
latent variables z via an invertible transformation x = ¢(z).
Their probability densities are also related [50]
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where g(x) is the normalized probability density of the
physical variables. And p(z) = N (z;0,1) is the prior
probability density of the latent variables chosen to be a
normal distribution. The second term of Eq. (1) is the

; (1)

Ing(x) =Inp(z) —In
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log-Jacobian determinant. Since the log probability can be
interpreted as a negative energy function, Eq. (1) shows that
the renormalization of the effective coupling is provided by
the log-Jacobian at each transformation step.

Since diffeomorphisms form a group, an arbitrary
composition of the building blocks is still a bijector.
This motivates the modular design shown in Fig. 1(a).
The layers alternate between disentangler blocks and
decimator blocks. The disentangler blocks in light gray
reduce correlation between the inputs and pass on less
correlated outputs to the next layer. While the decimator
blocks in dark gray pass only a subset of its outputs to the
next layer and treat the remaining ones as irrelevant latent
variables indicated by the crosses. The RG flow corre-
sponds to the inference of the latent variables given the
physical variables, z = g~!(x). The kept degrees of free-
dom emerge as renormalized collective variables at coarser
scales during the inference. In the reversed direction, the
latent variables are injected into the neural network at
different depths. And they affect the physical variables at
different length scales.

The proposed NeuralRG architecture shown in Fig. 1(a)
is largely inspired by the MERA structure [6]. In particular,
stacking bijectors to form a reversible transformation
is analogous to the quantum circuit interpretation of
MERA. The difference is that the neural network trans-
forms probability densities instead of quantum states.
Compared to the tensor networks, the neural network
has the flexibility that the blocks can be arbitrarily large
and long-range connected. Moreover, arbitrary complex
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FIG. 1. (a) The NeuralRG network is formed by stacking
bijector networks into a hierarchical structure. The solid dots
at the bottom are the physical variables x and the crosses are the
latent variables z. Each block is a bijector. The light gray and the
dark gray blocks are the disentanglers and the decimators,
respectively. The RG flows from bottom to top, which corre-
sponds to the inference of the latent variables conditioned on the
physical variables. Conversely, one can directly generate physical
configurations by sampling the latent variables according to the
prior distribution and passing them downwards through the
network. (b) The internal structure of the bijector block consists
of normalizing flows [32].

NeuralRG architecture constructed in a modular fashion
can be trained efficiently using differentiable programming
frameworks [51,52]. In practice, one can let the bijectors in
the same layer share weights due to the translational
invariances of the physical problem [53].

Compared to ordinary neural networks used in deep
learning, the architecture in Fig. 1(a) has stronger physical
and information theoretical motivations. To see this, we
consider a simpler reference structure shown in Fig. 2(a)
where one uses disentangler blocks at each layer. The
resulting structure resembles a time-evolving block deci-
mation network [54]. Since each disentangler block con-
nects only a few neighboring variables, the causal light
cone of the physical variables at the bottom can only reach
a region of latent variables proportional to the depth of the
network. Therefore, the correlation length of the physical
variables is limited by the depth of the disentangler layers.
The structure of Fig. 2(a) is sufficient for physical problems
with finite correlation length, i.e., away from the criticality.

On the other hand, a network formed only by the
decimators is similar to the tree tensor network [55]. For
example, the mutual information (MI) between the varia-
bles at each decimation step shown in Fig. 2(b) follows

I(A:B) =1(z; Va:buzy) =1(a:b). (2)

A B
FIG. 2. (a) A reference neural network architecture with only

disentanglers. The physical variables in the two shaded regions
are uncorrelated because their causal light cones do not overlap in
the latent space. (b) Mutual information is conserved at the
decimation step, see Eq. (2). (c) The arrangement of the bijectors
in the two-dimensional space. (d) Each bijector acts on four
variables. Disentanglers reduce mutual information between
variables. While for decimators, only one of its outputs is passed
on to the next layer and the others are treated as latent variables.
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The first equality is due to the MI being invariant under
invertible transformation of variables within each group.
While the second equality is due to the random variables z;
and z,4 being independent of all other variables. Applying
Eq. (2) recursively at each decimation step, one concludes
that the MI between two sets of physical variables is limited
by the top layer in a bijective net of the tree structure. One
thus needs to allocate sufficient resources in the bottleneck
blocks to successfully capture the MI of the data.

It is straightforward to generalize the NeuralRG archi-
tecture in Fig. 1 to handle data in higher dimensional space.
For example, one can stack layers of bijectors in the form of
Fig. 2(c). These bijectors accept 2 x 2 inputs as shown in
Fig. 2(d). For the decimator, only one out of four outputs is
passed on to the next layer. In a network with only
disentanglers, the depth should scale linearly with system
size to capture diverging correlation length at criticality.
While the required depth only scales logarithmically with
system size if one employs the MERA-like structure. Note
that different from the tensor network modeling of quantum
states [56], the MERA-like architecture is sufficient to
model classical systems with short-range interactions even
at criticality since they exhibit the MI area law [57].

Building the neural network using normalizing flows
provides a generative model with explicit and tractable
likelihoods compared to previous studies [21,23,24,58-60].
This feature is valuable for studying physical problems
because one can have unbiased and quantitative control of
the training and evaluation of the model. Consider a
standard setup in statistical physics, where one has accesses
to the bare energy function, i.e., the unnormalized prob-
ability density z(x) of a physical problem, direct sampling
of the physical configurations is generally difficult due to
the intractable partition function Z = [ dxz(x) [61]. The
standard Markov chain Monte Carlo (MCMC) approach
suffers from the slow mixing problem in many cases [62].

We train the NeuralRG network by minimizing the
probability density distillation (PDD) loss

L= / g (x)[in g (x) — In 7(x)]. 3)

which was recently employed by DeepMind to train the
Parallel WaveNet [38]. The first term of the loss is the
negative entropy of the model density ¢(x), which favors
diversity in its samples. While the second term corresponds
to the expected energy since —Inz(x) is the energy
function of the physical problem.

In fact, the loss function Eq. (3) has its origin in the
variational approaches in statistical mechanics [61,63,64].
To see this, we write

L+InZ = Kﬂ.(q(x)H”(Zx)) >0, 4)
where the Kullback-Leibler (KL) divergence measures the
proximity between the model and the target probability

densities [50,64]. Equation (4) reaches zero only when the
two distributions are identical. One thus concludes that the
loss Eq. (3) provides a variational upper bound of the
physical free energy of the system, —In Z.

For the actual optimization of the loss function, we
randomly draw a batch of latent variables according to the
prior probability p(z) and pass them through the generator
network x = ¢(z), an unbiased estimator of the loss Eq. (3) is

et (29) \ ~ina(f@)]. )

where the log-Jacobian determinant can be -efficiently
computed by summing the contributions of each bijector.
Notice thatin Eq. (5) all the network parameters are inside the
expectation, which amounts to the reparametrization trick
[50]. We perform stochastic optimization of Eq. (5) [65], in
which the gradients with respect to the model parameters are
computed efficiently using backpropagation. The gradient of
Eq. (5) is the same as the one of the KL divergence Eq. (4)
since the intractable partition function Z is independent of the
model parameter.

Since the KL divergence is asymmetric, the PDD is
different from the maximum likelihood estimation (MLE)
which amounts to minimizing the empirical approxi-
mation of the KL divergence in an opposite direction
KL(z(x)/Z||gq(x)) [50,64]. The most significant difference
is that in PDD one does not rely on an additional way (such
as efficient MCMC) to collect independent and identically
distributed configurations of the physical problem for
training. Moreover, optimizing the variational objectivity
Eq. (5) can be more efficient than MLE because one
directly makes use of the analytical functional form and
gradient information of the target density x(x). Finally, in
the variational calculation, it is always better to achieve a
lower value of the training loss Eq. (5) without the concern
of overfitting [41].

The variational approach can also be integrated seam-
lessly with the MCMC sampling to produce unbiased
physical results with enhanced efficiency. The partition
function of the physical problem can be expressed in terms
of the latent variables

_ dg()\ | _ / [ﬂ(g(Z))]

Z /dzn(g(z))‘det( % )’ dzp(z) Nk (6)
where the first equality simply invokes change of variables
from the physical space x to the latent space z using the
learned normalizing flow, and the second equality rear-
ranges terms using Eq. (1).

The integrand of Eq. (6) offers direct access to the
renormalized energy function in the latent space induced by
the flow z = g!(x). One sees that when the model density
q(x) perfectly matches the target density z(x)/Z, the
energy function of the latent variables reduces to one

L=Epe [1np(z) —1In
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associated with the prior p(z). The variational calculation
Eq. (4) would then always push the latent distribution
towards the independent Gaussian prior. Therefore, it
would be advantageous to perform Metropolis [42] or
hybrid Monte Carlo (HMC) sampling [43] in the latent
space for better mixing. Given samples in the latent space,
one can obtain the corresponding physical variable via
x = g(z). This generalizes the Monte Carlo updates in the
wavelet basis [66,67] to the case of adaptively latent space
for a given physical problem.

As a demonstration, we apply NeuralRG to the two-
dimensional Ising model, a prototypical model in statistical
physics. To conform with the continuous requirement of the
physical variables, we employ the continuous relaxations
trick of Refs. [68,69]. We first decouple the Ising spins
using a Gaussian integral, then sum over the Ising spins to
obtain a target probability density

= Ltk + an) i h 7
z(x) =exp (—zx( +al) x>gcos (x;), (7)

where K is an N x N symmetric matrix, / is an identity
matrix, and a is a constant offset such that K + al is
positive definite [70]. For each of the configurations, one
can directly sample the discrete Ising variables s = {41}®V
according to z(s|x) = [],(1 4+ e2%)~1. It is straight-
forward to verify that the marginal probability distribution
[ dxr(s|x)m(x) o« exp (3sTKs) = mng(s) restores the
Boltzmann weight of the Ising model with the coupling
matrix K. Therefore, Eq. (7) can be viewed as a dual version
of the Ising model, in which the continuous variables x
represent the field couple to the Ising spins. We choose K to
describe the two-dimensional critical Ising model on a
square lattice critical with periodic boundary condition.

We train the NeuralRG network of the structure
shown schematically in Fig. 1(a) where the bijectors are
of the size 2 x 2, as shown in Fig. 2(d). The results in
Fig. 3(a) shows that the variational free-energy continu-
ously decreases during the training. In this case, the exact
lower bound reads —InZ = —In Zyg,, — 5 Indet(K + al)+
(N/2)[In(2/7) — a], where Zygn, = > ¢ Tising(§) is known
from the exact solution of the Ising model [71] on the
finite periodic lattice [72]. We show results obtained in a
wider temperature range and generated samples in the
Supplemental Material [41].

To make use of the learned normalizing flow, we perform
the hybrid Monte Carlo (HMC) [41] sampling in the
latent space in parallel to the training using the effective
energy function Eq. (6). The physical results quickly
converge to the correct value indicated by the solid red
line. In comparison, the HMC simulation in the original
physical space using Eq. (7) as the energy function fails to
thermalize during the same HMC steps. Even taking into
account the overhead of training and evaluating the neural
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FIG. 3. Physical results obtained for the continuous field theory

of Eq. (7) equivalent to the Ising model on a N = 16 x 16 lattice
at critical coupling. (a) The relative error in the variational free
energy Eq. (3) decreases with training epochs. The exact free
energy is obtained from the analytical solution of the Ising model
[71,72]. (b) Uniform spin structure factor computed using
hybrid Monte Carlo sampling in the latent and the physical
spaces, respectively. The error bars are computed using inde-
pendent batch of samples. The solid red line is the result of
Eqryg(s)[ 21,808/ N?| computed directly for the Ising model.

network, sampling in the latent space is still significantly
more efficient.

To reveal the physical meaning of the learned latent
variables, we recall the wavelets interpretation of the RG
[73—75]. In our context, if each bijector performs the same
linear transformation, the network precisely implements the
discrete wavelet transformation [76]. Using the wavelets
language, the bijectors at each layer extract “smooth” and
“detail” components of the input signal separately. And the
bijectors in the next layer perform transformations only to
these smooth components.

We probe the response of the latent variables by
computing the gradient of the transformation z = g~!(x)
using backpropagation through the network. Figure 4(a)
visualizes the expected gradient E,_,)[0z;/0x] averaged
over a batch of physical samples, where z; are the four top-
level collective variables connecting to all of the physical
variables. Each of them responds similarly to a nonover-
lapping spatial region, which is indeed a reminiscence of
the wavelets. On the other hand, the gradient 0z;/0x also
exhibits variation for different physical variables. The
variation is an indication of the nonlinearity of the learned
transformation since, otherwise, the gradient is independent
of data in the ordinary linear wavelet transformation. Thus,
the latent variables can be regarded as a nonlinear and
adaptive learned generalization of the wavelet representa-
tion. Employing more advanced feature visualization and
interpretability tools in deep learning [77,78] may help
distill more useful information from the trained neural
network.
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FIG. 4. (a) The responses of the latent space collective variables
with respect to the physical variables E,..;x)[0z;/0x]. (b) Mutual
information between the latent variables and (c) the physical
variables. Note different scales in the color bars of (b) and (c).

Finally, to characterize the effective interactions in the
latent space, we plot estimated MI [79] between the latent
variables in Fig. 4(b). The network does not map the
physical distribution into ideally factorized Gaussian prior,
in line with the gap to the exact free energy Fig. 3(a).
However, the remaining MI between the latent variables is
much smaller compared to the ones between the physical
variables shown in Fig. 4(c). Obtaining a mutually inde-
pendent representation of the original problem underlines
the efficiency boost of the latent space HMC demonstrated
in Fig. 3(b). Adaptive learning of a nonlinear transforma-
tion is a distinct feature of the present approach compared
to linear independent component analysis and wavelet
transformations. These linear transformation approaches
would not be able to remove dependence between the
physical variables unless the physical problem is a free
theory.

The NeuralRG approach provides an automatic way to
identify mutually independent collective variables [80,81].
Note that the identified collective variables do not need to
be the same as the ones in the conventional RG. This
significant difference is due to the conventional approach
focusing on identifying the fixed points under the iterative
application of the same predetermined transformation to the
physical variables (e.g., block decimation or momentum
shell integration). While the present approach aims at
finding out a set of hierarchical transformations that map
complex physical probability densities to the predeter-
mined prior distribution. Thus, its application is particularly
relevant to off-lattice molecular simulations that involve a
large number of continuous degrees of freedom which are
often very difficult to simulate.

Last, the conventional RG is a semigroup since the
process is irreversible. However, the NeuralRG networks
built on normalizing flows form a group, which can be
useful for exploring the information preserving RG
[25,74,82] in conjunction with holographic mapping.
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