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Catalogue of topological electronic 
materials
tiantian Zhang1,2,9, Yi Jiang1,2,9, Zhida Song1,2,9, He Huang3, Yuqing He2,3, Zhong Fang1,4, Hongming Weng1,5,6,7,8* &  
chen Fang1,4,6,7,8*

Topological electronic materials such as bismuth selenide, tantalum arsenide and sodium bismuthide show unconventional 
linear response in the bulk, as well as anomalous gapless states at their boundaries. They are of both fundamental and 
applied interest, with the potential for use in high-performance electronics and quantum computing. But their detection 
has so far been hindered by the difficulty of calculating topological invariant properties (or topological nodes), which 
requires both experience with materials and expertise with advanced theoretical tools. Here we introduce an effective, 
efficient and fully automated algorithm that diagnoses the nontrivial band topology in a large fraction of nonmagnetic 
materials. Our algorithm is based on recently developed exhaustive mappings between the symmetry representations of 
occupied bands and topological invariants. We sweep through a total of 39,519 materials available in a crystal database, 
and find that as many as 8,056 of them are topologically nontrivial. All results are available and searchable in a database 
with an interactive user interface.

Symmetry and topology in solids are an entangled pair of concepts in 
modern physics. Since 2005, theorists1–3 have been aware that, in the 
presence of time-reversal symmetry, there are insulators (or nondegen-
erate ground states with a finite excitation gap in general) that deviate 
drastically from atomic insulators. These new special insulators host 
nontrivial topology in their electronic band structures, quantified by a 
new, global good quantum number—the Z2 invariant4,5. This invariant 
takes the value of either 0 or 1, and depends on the wavefunctions of 
the valence bands in the entire Brillouin zone.

Topological insulators, protected by time-reversal symmetry with 
the Z2 invariant, were only the first member of an entire family of topo-
logical materials to come in the following decade. It is now understood 
that topological invariants are the defining properties of all topolog-
ical materials and that they can take different forms, which depend, 
and depend only, on the dimensionality and the symmetries of the  
system6–8. These symmetries range from on-site symmetries such as 
time reversal and particle–hole interchange, to spatial symmetries 
such as translation3, reflection9, rotation10–12 and nonsymmorphic  
symmetries13,14, each of which brings new and independent topologi-
cal invariants. Hence a full characterization of the topology of a given 
crystal amounts to listing all of the invariants protected by all elements 
in the corresponding space group.

Parallel to this line of investigation has been the emergence of the 
field of topological semimetals15–20, in which the conduction and the 
valence bands have band crossings—that is, topological nodes that  
cannot be removed by symmetry-preserving perturbations. Depending 
on the degeneracy and dimensionality of their nodes, topological  
semimetals can be further classified into nodal-point and nodal-line 
semimetals. A topological semimetal is characterized by the number 
and the type of all of its band crossings21.

Numerical prediction of topological materials thus requires the 
evaluation of all topological invariants, or the identification of all  
topological nodes, both of which amount to involved calculations22. 

The expressions of some topological invariants are highly compli-
cated13,23,24 for direct evaluation, and some invariants do not even 
have close-form expressions10–12. The challenge has prevented people 
from carrying out any large-scale, comprehensive search for topological 
materials, and successful examples have been ascribed mostly to the 
experience and intuition of researchers.

Following the theory of topological quantum chemistry25 and that of 
symmetry-based indicators26, a series of recent theoretical works has 
greatly improved the situation by completely mapping the irreducible  
representations of valence bands onto topological invariants27–29 and 
topological nodes30. Recognizing that these theories can be fused 
together with first-principles numerical methods, we have developed 
a fully automated search algorithm that can readily be used to scan 
through large materials databases.

Algorithm
We now briefly describe the automatic diagnostic process that we have 
designed for any given nonmagnetic crystal (Fig. 1). Some important 
technical details needed to reproduce our findings are given in the 
Methods.

In the preparation phase, we import a material that is simultaneously 
registered in the online crystal database the Materials Project (https://
materialsproject.org)31 and the Inorganic Crystal Structure Database 
(ICSD; http://www2.fiz-karlsruhe.de/icsd_home.html)32. If the material  
has a magnetic moment higher than 0.1 µB per unit cell (according to its 
Materials Project record), we label it as ‘magnetic’ and stop further anal-
ysis, as the theory works for nonmagnetic materials only. Also excluded 
from further analysis are materials with an odd number of electrons 
per unit cell, which are labelled as ‘conventional metals’. Otherwise, we 
proceed to standardize the input crystal structure for the next phase.

In the calculation phase, the imported atomic positions and a certain 
set of pseudopotentials are first used to obtain the self-consistent elec-
tron density using the Vienna ab initio simulation package (VASP)33. 
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Once the density converges, it is used to compute the energy levels and 
wavefunctions at a given list of high-symmetry points in the Brillouin 
zone. At each high-symmetry point, we rank the energy levels from low 
to high, and we define the first N bands as the valence bands (Fig. 2), 
where N is the number of electrons per unit cell. (Note that this working 
definition deviates from the conventional notion of valence bands.) We 
store the wavefunctions of all occupied bands at high-symmetry points 
for the next phase.

In the analysis phase, using a script in conjunction with the data 
on the Bilbao Crystallographic Server34, we identify the irreducible 
representation for each (multiplet of) valence band(s). Then, from 
this, another script is used to check whether there is band touching or 
crossing between the Nth and the N+1-th band at any high-symmetry 
point or along any high-symmetry line, the latter of which requires an 
exhaustive list of compatibility relations, also available on the Bilbao 
Crystallographic Server thanks to recent efforts25,34. A material that 
has degeneracy at high-symmetry points or high-symmetry lines 
is labelled as high-symmetry-point semimetal (HSPSM) or high- 
symmetry-line semimetal (HSLSM), respectively. For a band structure  
that does not have such degeneracy, we proceed to compute all of its 
symmetry-based indicators. Symmetry-based indicators26 directly 
inform whether the material is a topological insulator, a topological 
crystalline insulator (TCI) or a topological semimetal, and give all  
possible sets of the topological invariants27,28 or topological nodes30. 
From the values of the indicators, the material can be labelled as 
generic-momenta semimetal (GMSM, having topological nodes at 
non-high-symmetry momenta), topological insulator or TCI. This 
concludes the final phase of the algorithm.

Identification of five topological classes
We have run the above algorithm through a total of 39,519 crystals, 
of which we find 10,348 to be magnetic, and 2,483 to be conventional 
metals. We carried out first-principles calculations for 26,522 materials, 
from which we detect 8,056 topological materials in the presence of 
spin–orbit coupling, sorted into 2,713 HSPSMs, 2,292 HSLSMs, 1,814 
topological insulators and 1,237 TCIs.

In electronic systems, the spin–orbit coupling is always finite, 
but there are materials consisting of light atoms that have negligible  
spin–orbit coupling—that is, the spin–orbit coupling is much smaller 
compared with other energy scales such as the Fermi energy or temper-
ature. For these materials, diagnosing the topology while assuming an 
absence of spin–orbit coupling is physically more relevant. For example,  
identifying graphene as a Dirac semimetal is more relevant than 
declaring it to be a topological insulator with a gap of roughly 10−6 eV. 
Because of this, for each material, we carry out the calculation and 
analysis twice—once with spin–orbit coupling (‘soc setting’) and once 
without (‘nsoc setting’). When using the nsoc setting, materials that 
have band degeneracy between the valence and conduction bands at 
high-symmetry points and along high-symmetry lines are also sorted 
as HSPSM and HSLSM, respectively. If the band structure does not 
have any such degeneracy, we proceed to calculate the symmetry-based 
indicators. In the absence of spin–orbit coupling, all indicators corre-
spond to topological nodes at non-high-symmetry momenta30, and 
therefore materials that have non-zero indicators are all GMSMs. The 
type and configuration of the topological nodes for each non-zero set 
of indicators are found in ref. 30. For the nsoc setting, we find 8,889 
materials to be topological, classified as 5,508 HSPSMs, 3,269 HSLSMs 
and 112 GMSMs.

Each material is now labelled with one of the following: HSPSM, 
high-symmetry point semimetal (both settings); HSLSM, high-symmetry  
line semimetal (both settings); GMSM, generic-momenta semimetal 
(nsoc setting only); TI, topological insulator (soc setting only); TCI, 
topological crystalline insulator (soc setting only); magnetic; conven-
tional metal; or insulator with trivial indicators. Out of these, we consider  
the first five classes to be topological materials; we list the materials 
according to their class in Supplementary Tables I–V. In Supplementary 
Table I, each HSPSM material is shown together with high-symmetry 
points at which partial fillings occur, and irreducible representations that 
are partially filled. Each HSLSM material in Supplementary Table II is 
shown together with the high-symmetry line(s) at which band crossings 
between the Nth and the N+1-th bands appear. Each GMSM, TI and TCI 
material—listed in Supplementary Tables III, IV and V respectively—is 
shown together with the values of its symmetry-based indicators.
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Fig. 1 | Flow chart for our automatic diagnostic algorithm. For a given 
material found in the ICSD and the Materials Project, we first check 
against the record at the Materials Project to see whether it is nonmagnetic 
(that is, does it have a magnetic moment less than 0.1 µB per unit cell), and 
whether there is an even number of electrons in one primitive unit cell. If 
yes for both, we feed the material into a density-functional-theory (DFT) 
calculation of the band structure and compute symmetry data, before 
checking whether there are partially filled irreducible representations at 
high-symmetry points. If not, the symmetry data are checked against all 

compatibility relations, and, should all relations be satisfied, the data are 
fed into the calculation of symmetry-based indicators. At each checkpoint, 
a material either goes on to the next step, or is labelled as magnetic, 
conventional metal, high-symmetry point semimetal or high-symmetry 
line semimetal. At the final step, depending on the values of indicators, a 
material is labelled as GMSM, TI, TCI or insulator with trivial indicators. 
At the first-principles calculation step and all following steps, two possible 
settings are applied to all steps: nsoc or soc. DFT, density functional 
theory; IND, symmetry-based indicator(s); SG, space group.

a b c d e

Fig. 2 | Definition of valence bands and conduction bands. The red 
band represents the top valence and the blue the bottom conduction band, 
for the following cases: a, insulator or semiconductor; b, compensation 
semimetal; c, topological semimetal; d, metal with an odd number of 
electrons per unit cell on a centrosymmetric lattice; and e, metal with 
an odd number of electrons per unit cell on a noncentrosymmetric 
lattice. The green dots in d, e represent Kramer’s degeneracy owing to 
time-reversal symmetry. Note that our definitions for d, e differ from 
conventional definitions.
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Our extensive sweep of materials includes a large fraction of all 
crystals ever synthesized, and we detect nontrivial topology in about 
30% of the 26,522 calculated nonmagnetic materials. This abundance 
of topological materials overturns the sentiment of many, including us, 
that they are special and rare in nature. Without any tuning parameter  
or human intervention, these many materials from the sweep include 
almost all topological materials known so far, such as bismuth  
selenide (Bi2Se3), a topological insulator; tin telluride (SnTe), a TCI; 
and sodium bismuthide (Na3Bi), a topological semimetal. More 
importantly, this catalogue includes materials for which the nontrivial 
topology was previously unknown.

Representative materials from the five topological classes
Below we choose one candidate from each class for discussion. Out of 
the five, four have not, to the best of our knowledge, been discussed 
previously in the literature, and four host new topological invariants or 
topological nodes that have not been experimentally discovered in real 
materials. We find barium phosphorus platinum (BaPPt; Fig. 3a)35,36 
to be a HSPSM, in which the conduction and the valence bands meet 
at the high-symmetry points Γ and R. The degeneracy at R is sixfold- 
stabilized by nonsymmorphic space-group symmetries, and importantly  
there is an electron pocket near R. These facts qualify BaPPt  
(soc setting) as a good candidate for the study of topological nodes 
beyond Weyl and Dirac nodes in real materials37.

From the HSLSM class, we highlight cubic barium fullerene (BaC20; 
Fig. 3b; nsoc setting), from space group 223; this material has one 
fullerene and three barium atoms per unit cell. The violation of com-
patibility relations along Γ–X, Γ–M and Γ–R indicates band crossings 
along these three lines and their symmetry partners. Further analysis 
(see Methods) shows that these crossing points are parts of the nine 
interconnected nodal rings that are centred at Γ.

The osmium double perovskite Sr2NiOsO6 (Fig. 3c; nsoc set-
ting), a GMSM, does not have any band crossings along any of the 

high-symmetry lines, but the symmetry indicators of (0002) imply 
that at generic momenta there must be 2-mod-4 nodal rings where 
the conduction and the valence bands cross. Each of the rings has  
Z2-topological charge38, making Sr2NiOsO6 the first candidate  
electronic material (with small spin–orbit coupling) that hosts Z2-
nontrivial nodal rings.

Sodium oxocuprate (NaCuO; soc setting) is a new noncentrosym-
metric topological insulator (Fig. 3d), having three band inversions 
between the d-orbital and the s-orbital at Γ, with an inverted bandgap  
of about 0.1 eV. For noncentrosymmetric systems, the classical  
Fu–Kane formula39 does not apply, so an eigenvalue diagnosis would be  
impossible without our new method.

Finally, zirconium titanium hydride (Zr(TiH2)2; Fig. 3e) has band 
crossings along L–W without spin–orbit coupling, but as the coupling 
turns on it opens a full gap of about 10 meV at all momenta, making the 
material a TCI. The symmetry indicators of (0002) pin down the topo-
logical invariants of this TCI to two possible sets. Our method cannot 
distinguish them further, but a calculation of the mirror Chern number 
at the kz = 0 plane helps us to choose the correct set (see Methods). In 
this set, all non-zero invariants are protected by screw-rotation symme-
tries or glide-plane symmetries, so that Zr(TiH2)2 is a materials candi-
date for a screw-axis Z2 TCI, having one-dimensional helical edge states 
on its surface without two-dimensional surface states for certain sample 
configurations (see Methods for details). Such TCIs are also known as 
second-order topological insulators40–42.

The entire catalogue is available at http://materiae.iphy.ac.cn/, which 
has an interactive user interface that facilitates searching of the vast 
amount of data. It also shows the band structures and density of states 
for each material diagnosed as topological.

Discussion
Although the abundance of topological materials in nature is good 
news, the immediate difficulty is that we do not have a simple way 
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Fig. 3 | The five candidates for the five classes of topological material. 
a, f, g, j, The HSPSM BaPPt, which has sixfold degeneracy near the Fermi 
energy at R. b, h, k, The HSLSM BaC20, which has negligible spin–orbit 
coupling and nine connected nodal rings centred at Γ. c, l, The GMSM 
Sr2NiOsO6, with nodal rings that have Z2-monopole charge (nsoc setting). 

d, m, The topological insulator NaCuO. e, i, n, The TCI Zr(TiH2)2. For 
each candidate material, we plot the band structure in a–e, the Brillouin 
zone with high-symmetry points in j–n, and if necessary, zoomed-in 
regions of the band structure f–i.
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of ranking these many candidates, because there is no universal 
standard for an ideal topological material. Sometimes it is one that 
has a topological bandgap or topological Fermi surface that does not 
coexist with trivial pockets of carriers; but sometimes we particularly 
look for the presence and interplay of the latter (for example in the 
case of the recently discovered topological superconductivity in iron 
selenide, FeSe43–45). Some people are interested in three-dimensional 
topological states46; but quasi-two-dimensional topological materi-
als are also desirable for good reasons47. Some want the coexistence 
of band topology and ferroelectricity48, and some are looking for a 
high receptibility to magnetic or superconducting dopants49. We have 
adopted a relatively traditional standard in the field of topological mate-
rials: that better topological gapped materials have larger energy gaps 
(for topological insulators and TCIs), and better topological gapless 
materials have a lower density of states (for HSPSMs, HSLSMs and 
GMSMs), with the caveat that the criterion of low density of states 
does not apply to nodal-line semimetals in general. For each material 
in the catalogue, we have computed the density of states versus energy, 
from which we have extracted the energy gap (if any) and the density 
of states at the Fermi energy. On the basis of these two pieces of data, 
we have ranked the materials from each class for every space group, 
using || to separate materials that are better by this standard from the 
rest (see Supplementary Information). We emphasize that our ranking 
should only be considered as a reference, and we suggest that readers 
interested in a particular candidate material should eye-inspect the 
band structure shown in our online database.

The main outcome of our work is the sorting of nonmagnetic mate-
rials into topological classes; we did not aim to find the ‘best’ topo-
logical materials. However, it is natural to ask how we would compare 
the materials found in this exhaustive, sweeping search with those 
found previously in an ad hoc fashion. We note that, as almost all pre-
viously known topological materials have already been included in the 
catalogue, we can only compare the known materials with the new 
members in each class. A simple comparison reveals that the newly 
found materials are not substantially better than the known ones, as 
judged by our standard of a large gap or smaller density of states. The 
previously known bismuth selenide (Bi2Se3) is still the best candidate 
for a topological insulator in the catalogue, having a gap of around 
0.31 eV—larger than the roughly 0.16-eV gap in the best new candidate, 
strontium lead telluride (Sr2Te4Pb). The most studied TCI is SnTe, with 
a gap of 0.188 eV, larger than the 0.072-eV gap of the new candidate 
Yb3PbO (an ytterbium perovskite). The best HSLSM in the literature 
is probably Na3Bi, with space group 194; among the newly discovered 
materials, the best such material is probably indium antimonide (InSb), 
with space group 186. The two materials both have Dirac points along 
Γ–A and a vanishing density of states.

Our method has demonstrated its power in showing the abundance 
of nontrivial topology that nature has to offer. However, it is equally, 
if not more, important to expound on the limitations of the method, 
and to offer caveats to users of the catalogue, which we summarize as 
follows.

First, the entire theoretical framework of our diagnosis is based on 
the assumption that valence electrons can be characterized by the phys-
ical picture of band theory. However, this assumption breaks down in 
the presence of strong electron correlation. For this reason, we cannot 
hope to include any strongly interacting symmetry-protected topolog-
ical states50 that have been theoretically proposed, such as the Haldane 
chain51.

Second, we have used first-principles simulations to calculate band 
structures without any corrections ascribed to electron correlation, 
for the latter require additional artificial parameters. For this reason, 
band structures of materials consisting of d- and f-electrons52,53 near 
the Fermi energy may be incorrect. Thus, in Supplementary Tables I–V, 
certain elements that are known to host partially filled d- or f-electrons 
in compounds are marked with blue or red, respectively. Users should 
be aware that the first-principles calculation has a tendency to overes-
timate the inverted bandgap.

Third, our method—or indeed any eigenvalue diagnosis method—
takes as inputs only those symmetry data that are found at certain 
high-symmetry points, and therefore cannot detect band inversions 
away from these points. This is the origin of the one-to-many nature of 
the mappings from symmetry-based indicators to topological invari-
ants27,28 or nodes30. Physically, it means that if some nontrivial topology 
derives from band inversions away from any high-symmetry point, the 
diagnosis would not detect it, instead identifying the material as trivial. 
This leads to the absence of the famous Weyl semimetal tantalum arse-
nide (TaAs) from the catalogue. TaAs54,55 has band inversions at Σ and 
S, neither of which is a high-symmetry point.

Fourth, our method assumes the nonmagnetic state of a material 
when diagnosing topology, but cannot diagnose magnetism itself. 
The magnetic moment listed on the Materials Project website has 
been calculated using a first-principles simulation with an addi-
tional parameter, Hubbard U, and a ferromagnetic initial state. This  
simple numerical diagnosis is not supposed to capture any type of 
antiferromagnetism, and may also misidentify some ferromagnetism 
as nonmagnetism (and vice versa). We suggest that readers interested 
in a particular material should check for possible magnetism in the 
experimental literature.

Fifth, in some materials—such as bismuth bromide (Bi4Br4) and lith-
ium silver antimide (Li2AgSb)—the ordering of bands near the Fermi 
energy depends critically on the lattice constants or the choice of pseu-
dopotential. As a rule, we have used the experimental lattice parameters 
without relaxation. But if the gap in a material is very small, we would 
suggest doing the calculation again with slightly different input parame-
ters (such as relaxed lattice constants) to see whether the result is stable.

Finally, conventional metals can in principle also be called HSPSMs, 
because at each of the eight time-reversal invariant momenta, the Nth 
and the N+1-th bands necessarily touch owing to Kramer’s degeneracy. 
However, these materials usually have trivial carrier pockets that are far 
larger than the topological ones, and we therefore exclude them from 
our list of topological materials.

Conclusion
We have designed an algorithm for quickly diagnosing nontrivial 
topology in nonmagnetic materials, using only the symmetry data 
from high-symmetry points in the Brillouin zone as inputs. We have 
applied the algorithm to all materials registered in the Materials Project 
and the ICSD. Contrary to popular thinking that nontrivial topology 
is exotic and scarce, we have found that more than 30% (8,056 out of 
26,688) of the studied materials are topological.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-0944-6.
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MEthodS
Choice of input crystal data. Crystal data—including space-group numbers, 
lattice parameters (a, b, c, α, β, γ) and atomic positions—are imported from the 
experimental values recorded in the Materials Project31,56. To the best of our knowl-
edge, the Materials Project collects experimental crystal data from the ICSD32 and 
reorganizes them. The ICSD has duplicated entries; to handle this, the Materials 
Project identifies two materials as the same if their lattice parameters and atomic 
positions differ by values less than a given threshold. The Materials Project also has 
a requirement for the accuracy of atomic positions, so that if the position of any 
atom cannot be experimentally determined up to a preset error, the corresponding 
material would not be added to the Materials Project. Taking into account dupli-
cates and data accuracy, the 199,466 records in ICSD become 39,519 records in 
the Materials Project.

The Materials Project is a database of materials with their properties obtained 
from standardized numerical simulations. One of the properties is magnetism, 
which is given in terms of the total magnetic moment per unit cell, in units of 
µB. This value is obtained from a density functional theory (DFT) calculation 
or a DFT + U calculation, with a ferromagnetic initial state of the electrons. We 
comment that a more reliable way of determining potential magnetism is to use 
various possible magnetic structures in the initial state, and to compare the con-
vergent energies, identifying the lowest energy state as the ground state. However, 
it is unclear how one could reasonably enumerate all candidate magnetic struc-
tures, so the diagnosis for magnetism is generally considered difficult. We note that 
for several materials, the calculated magnetic moment differs from experimental 
data. For example, MnAlCo2 and Fe5Si3 have been found to be ferromagnetic at 
lower temperatures, yet they show negligible magnetic moments in their Materials 
Project records. We note that antiferromagnetism is not thought to be captured by 
the numerical simulations either.

Band topology is mostly stable against small perturbations in the lattice 
parameters. Yet there are certain materials for which the gaps are so close to the 
inversion point that a small change in lattice parameters leads to a transition 
from nontopological to topological and vice versa. For example, for Ca3NBi and 
TlBiSe2, results of the topological diagnosis depend on whether the experimental 
value or the calculated value of the lattice constants is used. Here, the calculated 
value refers to the value after a simulated relaxation of the lattice, optimizing 
the total energy.

In addition, before feeding the crystal data to the DFT calculation, we check 
the consistency between the atomic positions and the space group. We find 166 
materials that do not pass the consistency test within an error of up to 0.1 Å, and 
exclude them from further processing.
Band topology in conventional metals. Materials that have an odd number of 
electrons per unit cell are labelled as conventional metals and excluded from fur-
ther diagnosis. The reason is simple: all these materials should be classified as 
HSPSMs, so analysis becomes unnecessary. This is because all bands are at least 
doubly degenerate at time-reversal momenta owing to Kramer’s degeneracy. Any 
odd number filling then necessarily leads to partial filling at every time-reversal 
momentum, making the material a HSPSM.

We note that further classification among these metals, which we do not per-
form here, amounts to determining the dimension of the band crossing. For 
example, if there is inversion symmetry, then time reversal and inversion jointly 
protect double degeneracy at every momentum in the Brillouin zone: this is three- 
dimensional crossing. In the presence of a twofold screw axis, this symmetry 
together with time reversal lead to double degeneracy at an entire high-symmetry 
plane, which is a two-dimensional crossing at the boundary of the Brillouin zone. 
In the presence of a glide plane, this symmetry together with time reversal lead to 
double degeneracy along certain lines at the boundary of the Brillouin zone, and 
this crossing is one dimensional. If none of screw axis, glide plane or inversion 
is present, the bands are generally nondegenerate at any momentum away from 
a time-reversal invariant momentum, so that these momenta are discrete Weyl 
points—that is, zero-dimensional crossings.
Settings for the first-principles calculation. All of the calculations herein are 
performed by VASP33,57–59 with the generalized gradient approximation (GGA) 
of the Perdew–Burke–Ernzerhof (PBE)-type exchange-correlation potential. The 
pseudopotential files that we used are from the VASP software package and are 
listed at http://materiae.iphy.ac.cn/. The cut-off energy of the plane wave basis set 
is set to be the ENMAX value in the pseudopotential file plus 25%. A Γ-centred 
Monkhorst–Pack grid with 30 k-points per Å−1 is used for the self-consistent 
calculations. A maximum number of electronic self-consistency steps is given in 
our calculations, such that a material for which the calculation does not converge 
within 300 self-consistency loop steps is labelled and discarded. Two itinerant 
schemes are used in this process: the special Davidson block iteration scheme, and 
residual minimization method direct inversion in the iterative subspace (RMM-
DIIS). About 400 materials are not converged or converge to wrong states in the 
nsoc setting, and 600 in the soc-setting.

While the mapping from symmetry data to topology data is mathematically 
rigorous, the validity of GGA depends on the actual material: if a material has a 
significant correlation effect at the Fermi energy, the results are likely to be inac-
curate. For example, for compounds containing rare-earth elements with possibly 
partial-filling f-orbitals, the strong correlation effect is dominant; we have left these 
materials for further detailed study. From experience, in Supplementary Tables I–V 
we have highlighted a few elements that often induce strong correlation effects 
in compounds owing to partially filled d- or f-shells (blue for d and red for f). 
We have not highlighted titanium, yttrium, zirconium, niobium, molybdenum,  
lanthanum, lutetium, hafnium, tantalum, tungsten and platinum because, although 
they have partially filled d-shells, in many known cases they do not bring about 
strong correlation effects.

The original data loaded from the Materials Project are not in a unified convention;  
for example, the orientation of the primitive cell is arbitrary, as is the choice of 
origin point. In order to implement automated high-throughput calculations and 
to ensure that VASP can find the right symmetry, we symmetrize and standardize 
the atomic positions using PHONOPY60 after loading the lattice parameters and 
atomic positions. At this step, we discarded 166 materials for discrepancy in the 
space groups identified in PHONOPY and those given in the databases, up to an 
error tolerance of 0.1 Å in atomic position.
Extracting irreducible representations. The irreducible representation for 
each group of degenerate valence bands is obtained by calculating the character 
of each symmetry operation and looking up the character tables on the Bilbao 
Crystallographic Server. To be specific, first the plane wave expansion coeffi-
cients of wavefunctions are read from the VASP output file, and then, by applying  
different space-group symmetry operations to the wavefunctions, we obtain the 
corresponding character. Attention needs to be paid in the choice of convention in 
symmetry operations, including the coordinate origin and orientation, as well as 
the spin rotation axis of the SU(2) part of the symmetry operation. In determining 
the presence of degeneracy, we use an energy error of min(0.5 meV, 0.1 Δk, where 
Δk is the gap between valence bands and conduction bands at the k-point) to avoid 
possible numerical level splitting from VASP. Failing to find irreducible representa-
tions formed by ‘degenerate’ bands identified in this way implies a low quality 
of convergence. In such cases we improve the convergence threshold and redo 
the self-consistent and non-self-consistent calculations until we can successfully 
identify each group of degenerate bands with a certain irreducible representation.
Nodal lines in BaC20. Using the nsoc setting, we identify BaC20 (space group 223) 
as an HSLSM, the band structure of which breaks compatibility relations 
along Γ–X, Γ–M and Γ–R. Below we show that these crossings are intersec-
tions of nine nodal rings with high symmetry lines in the Brillouin zone, 
wherein three of the rings lie in the = =k i x y z0( , , )i  planes and six lie in the 

± = = ≠k k i j x y z i j0( , , , , )i j  planes. The =k 0i  rings can be diagnosed from the 
crossings along Γ–X and Γ–M, both of which interchange a valence band having 
a mirror m({ 0})001  eigenvalue of −1 with a conduction band with a mirror eigen-
value of +1. Because of these crossings, the valence bands at Γ have one more (or 
less) −1 (or +1) mirror eigenvalue than the valence bands at X or M, implying 
nodal ring(s) protected by the mirror symmetry in the =k 0z  plane. Such mirror 
eigenvalues at Γ, X and M allow a few possible configurations of the ring(s). For 
example, there may be a single ring surrounding Γ; or there may be a single ring 
surrounding X, a single ring surrounding Y (that is, the C3 ({3 000})111  partner of 
X in the ky axis) and a single ring surrounding M; and so on. Further band- 
structure calculation shows that BaC20 belongs to the first case, that is, it has a 
single ring surrounding Γ in the =k 0z  plane. Owing to the C3 rotation symmetry, 
there are in total three nodal rings in the =k 0i  planes (Extended Data Fig. 1a). 
The ± =k k 0i j  rings can be diagnosed in a similar way: the crossings along the 
Γ–M and Γ–R interchange a valence band having a glide ∣m({ })110

1
2

1
2

1
2

 eigenvalue 
− ⋅ /e t ki 2 with a conduction band having a glide eigenvalue − − ⋅ /e t ki 2 , where 

= ( )t 1
2

1
2

1
2

. It follows that valence bands at Γ have one more (less) − ⋅ /e t ki 2 

− − ⋅ /e( )t ki 2  glide eigenvalue than the valence bands at M or R. On the other hand, 
the band structure along R–X, and along R–Z, where Z is the C3 partner of X in the 
kz axis, preserves all the compatibility relations; thus Z has the same glide eigen-
values with R and M. Therefore, similar to the case for the kz = 0 plane, the glide 
eigenvalues allow a few possible configurations for the ring(s) in the − =k k 0x y  
plane. For example, there may be a single ring surrounding Γ, or there may be a 
single ring surrounding M, a single ring surrounding R, and a single ring surround-
ing Z, and so on. Further band-structure calculation certifies the first case—that 
is, there is a single ring surrounding Γ in the − =k k 0x y  plane. Then, owing to the 
space-group symmetries, there are in total six nodal rings in the ± = ≠k k i j0( )i j  
planes (Extended Data Fig. 1b). Numerical calculations show that the rings in the 

± = ≠k k i j0( )i j  planes have a larger radius than the rings in the =k 0i  planes.
Topological invariants of Zr(TiH2)2. In order to determine the topological invar-
iants of Zr(TiH2)2 (space group 227) with the soc setting, we look up its symmetry- 
indicator set—which is (Z2w−1; Z2w−2; Z2w−3; Z4) = (0002) —in Extended Data 

http://materiae.iphy.ac.cn/
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Table 1 and find that there are only two possibilities for the invariants for this 
symmetry-indicator set. In the first case, the mirror Chern number on the 110 plane 
in the Brillouin zone (the yellow plane in Extended Data Fig. 2a) is 2 (mod 4),  
whereas in the second case this mirror Chern number is 0 (mod 4). By ab initio 
calculation, as described in the next paragraph, we find that this mirror Chern 
number is 0 and thus Zr(TiH2)2 belongs to the second case. In this case, nontrivial 
TCI invariants include: (i) an hourglass invariant protected by glide symmetry 
m{ 0}001

1
4

1
4

; (ii) a rotation invariant protected by {2 000}110 ; (iii) an inversion invar-
iant; (iv) a screw invariant protected by {4 0 }001

1
4

1
4

; and those invariants protected 
by symmetries equivalent with above symmetries. All of these invariants are  
Z2-type and correspond to either two-dimensional or one-dimensional anomalous 
surface states.

Here we propose two real space configurations to detect such surface states. In 
Extended Data Fig. 2c, we show the one-dimensional helical modes protected by 
screws and/or inversion. The cubic sample is cut out along the (100), (010) and 
(001) surfaces, all of which are fully gapped. As long as the cube preserves inversion 
symmetry, there must be an inversion-symmetric one-dimensional helical mode 
on the boundary, whose shape depends on the experimental situation. However, 
in presence of the fourfold screw symmetries, which protect nontrivial screw invar-
iants, the shape of helical mode is further constrained. We consider the sample to 
be large enough such that the fourfold screw symmetry, {4 0 }001

1
4

1
4

, is preserved 
on the side surfaces far away from the top and bottom surfaces. Then, as discussed 
in refs 9,10, four one-dimensional helical modes run along the screw axis and trans-
form to each other in turn under the screw operation. Similarly, along any equiv-
alent screw axis there also exist four one-dimensional helical modes. The helical 
mode shown in Extended Data Fig. 2c is a configuration satisfying all of the above 
symmetry conditions. In Extended Data Fig. 2d, we show the two-dimensional 
surface states protected by glide and/or twofold rotation symmetries. The sample 
is cut out along (110), (110) and (001) surfaces, wherein the (001) surface is fully 
gapped whereas the (110) and (110) surfaces are gapless. Owing to the hourglass 
invariant being protected by m{ 0}001

1
4

1
4

, the (110) surface must have an hourglass 
mode, and owing to the rotation invariant being protected by {2 000}110 , the (110) 
surface must have 2 (mod 4) Dirac nodes. In fact, the two kinds of surface states 
are consistent with each other: at an even filling number, which is necessary for an 
insulator in the presence of time-reversal symmetry, the two hourglass crossings 
protected by glide symmetry also play the role of Dirac nodes for the rotation 
invariant. Therefore the (110)  surface has a C2-symmetric hourglass mode. The 
(110) surface has a similar surface state because it is equivalent with the (110)  
surface.

Now let us briefly describe how we calculate the mirror Chern number. First, the 
parallelogram spanned by G1 and G2 (Extended Data Fig. 2a) is recognized as the 
minimal periodic cell in the mirror plane, wherein G1 is along the (110) direction 
and G2 is along the (111) direction (G1 and G2 are reciprocal lattice basis vectors). 
We therefore calculate the mirror Chern number within this parallelogram. For 
each point along the Γ G1 line, kG1, we define a Wilson-loop matrix as:
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where N is a large enough integer to describe the infinite limit; ∣ ⟩un k,  is the periodic 
part of the Bloch wavefunction; n, n′, ni are the valence-band indices; and V̂

G2 is 
the embedding operator61. For each kG1 we can define the mirror representation 
matrix as:

∣ ∣=′ ′kM u M u( ) ˆ
kG kGn n n n, , ,1 1

where M̂ is the operator of symmetry operation m{ 0}110 . One can prove that M(k) 
always commutes with W(k). Therefore, we can project the Wilson-loop matrix 
into the subspace having mirror eigenvalue +i; the mirror Chern number is then 
given simply by the winding number of the projected Wilson loop. In Extended 
Data Fig. 2b, we plot the eigenvalues of the projected Wilson-loop matrix as a 
function of k, from which one can find that the winding number is 0.
Ranking candidate materials. We rank the candidates in each class of topological 
materials with each space group by their density of states at the Fermi energy, from 
low to high, in Supplementary Tables I–V. For materials having zero density of 
states, we rank them by the size of the energy gap, from large to small. The density 
of states is obtained from a non-self-consistent calculation by using a Γ-centred 
Monkhorst–Pack grid with 40 k-points per Å−1, the tetrahedron method for 

Brillouin zone integrations, and a number of 5,000 grid points in energy from Ef 
−4 eV to +4 eV (where Ef is the Fermi energy for a material). The gap is extracted 
from the density-of-states profile, by finding the gap between the tails of the con-
duction and the valence bands. To be specific, we first find the highest unoccupied 
energy levels in presence of ±10−3 additional electrons per unit cell, and then 
calculate the gap as the difference of these two levels. The momentum grid that we 
use for the self-consistent calculation is not large enough to extract an accurate 
density of states at the Fermi energy, nor is it sufficient to resolve fine features in 
the density of states as a function of energy. The standard of zero density of states 
at the Fermi energy applies well to finding good topological insulators and topo-
logical crystalline insulators. However, for topological semimetals, this simple 
standard is not very reliable. Nodal-point semimetals—such as Weyl and Dirac 
semimetals—should ideally have a Fermi surface that shrinks to discrete points, 
and the density of states near the Fermi energy should scale as −~ E E( )f

2 . 
Therefore, it is the functional behaviour, rather than the absolute values, of the 
density of states that distinguish these semimetal states. Our calculation, as stated 
above, does not have sufficiently large momentum sampling to reliably extract such 
functional behaviours. For nodal-line semimetals, the standard is even more irrel-
evant, as the density of states of ideal nodal-line semimetals should be linearly 
dependent on the length of the nodal line, which is unknown a priori. We comment 
that the calculated density of states, and the ranking therein, should only be used 
as a reference in selecting candidates from the classes of HSPSM, HSLSM and 
GMSM for further research.
Topology beyond eigenvalue diagnosis. Our method, based on the theoretical 
tools developed in refs 25–28,30, is an eigenvalue diagnostic scheme, first introduced 
in refs 25,26. In ref. 26, it is proved that all of the symmetry eigenvalues at high- 
symmetry points in a band structure can be mapped to a certain element in a finite 
group called the symmetry-based indicators. The group structures of indicators 
are derived in ref. 26, and their explicit expressions in refs 27,28,30. The indicators for 
each space group, if they exist, are a set of several Zn numbers, and they (roughly 
speaking) quantify how any given symmetry data differ from those of an atomic 
insulator with the same crystal structure.

The symmetry indicators have the following properties: first, if any indicator  
is non-zero, the material is not an atomic insulator, that is, it is topologically  
nontrivial; second, two materials with different indicators are topologically distinct; 
and third, the topological distinction between two materials that have the same 
indicators cannot be diagnosed using symmetry data. We note that the third point 
means that all information on topology that may be extracted from symmetry data 
has been contained in the values of indicators. One should be aware that the third 
point implies that there are different topologies that cannot be distinguished using 
indicators. This is most easily seen in the example of mirror Chern numbers: ref. 28 
proves that if two systems have the same indicators, they may differ in the mirror 
Chern number by 2n, where n is the order of rotation symmetry in the system. In 
fact, refs 27,28 show that mapping from indicators to invariants is one-to-many in 
general: one given set of indicators maps to several inequivalent sets of topological 
invariants. Physically, this is because the band inversions can in principle happen 
away from any high-symmetry point; and given that band inversions may change 
the topology, there can be two topologically distinct band structures that have iden-
tical eigenvalues at all high-symmetry points, rendering powerless any eigenvalue 
diagnostic scheme. For the same reason, the materials that have zero indicators 
are not necessarily topologically trivial: we can only say that their topology, if any, 
is undetectable using our method or any eigenvalue diagnosis.
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Extended Data Fig. 1 | Nodal-ring configuration in BaC20 (nsoc 
setting). This material is in space group Pm3n. a, The three equivalent 
nodal rings in the = =k i x y z0( , , )i  planes, protected by the mirror 

symmetries on these planes. b, The six equivalent nodal rings in the 
± = = ≠k k i j x y z i j0( , , , , )i j  planes, protected by the glide symmetries on 

these planes.
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Extended Data Fig. 2 | Topological invariants and surface states of 
Zr(TiH2)2. a, Brillouin zone for Zr(TiH2)2, in which the yellow plane is 
m110. b, Wilson loop for Zr(TiH2)2 in the m110 plane. c, One-dimensional 

helical modes in a cubic Zr(TiH2)2 sample. d, Two-dimensional surface 
states on each surface of a cubic Zr(TiH2)2 sample.
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Extended data table 1 | Possible invariants for space group 227

Ζ2,2,2,4 weak m(2)
010 g001 g001 g101 2001 2011 i 2001

_
1 20111 40011 40013 4001

0002 000 2 1 1 1 0 0 1 10 0 0 0
0002 000 0 1 1 0 0 1 1 00 1 1 1
0000 000 2 0 0 1 0 1 0 10 1 1 1
0000 000 0 0 0 0 0 0 0 00 0 0 0

1_
4
1_
40

1_
4
1_
2

-1_
4
1_
40

-1_
4

Z2,2,2,4 are the four symmetry-based indicators. The remainder of the labels in the top row refer 
to topological invariants protected by various lattice symmetries as defined in ref. 27, in which: 
‘weak’ denotes weak topological indices; m(2)

010 shows the mirror Chern number which takes a 
value between −1 and +2, protected by the (010)-mirror plane; Gabc

mnl denotes the Z2 invariant 
protected by a glide plane perpendicular to the mnl direction with glide vector abc; i is the Z2 
invariant protected by inversion symmetry about the origin; and nk

mnl is the Z2 invariant protected 
by an n-fold rotation about the mnl direction followed by a translation along the same direction 
through the k/n lattice vector.
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