
 

Resolving Continua of Fractional Excitations by Spinon Echo
in THz 2D Coherent Spectroscopy

Yuan Wan1,* and N. P. Armitage2,3,†
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

2Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
3Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan

(Received 3 December 2018; published 25 June 2019)

We show that the new technique of terahertz 2D coherent spectroscopy is capable of giving qualitatively
new information about fractionalized spin systems. For the prototypical example of the transverse field
Ising chain, we demonstrate theoretically that, despite the broad continuum of excitations in linear
response, the 2D spectrum contains sharp features that are a coherent signature of a “spinon echo,” which
gives previously inaccessible information such as the lifetime of the two-spinon excited state. The effects of
disorder and finite lifetime, which are practically indistinguishable in the linear optical or neutron response,
manifest in dramatically different fashion in the 2D spectra. Our results may be directly applicable to model
quasi-1D transverse field Ising chain systems such as CoNb2O6, but the concept can be applied to
fractionalized spin systems in general.
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In recent years, wholly new classes of condensed matter
systems have become of intense interest. Topological
materials, quantum spin liquids, and strange metals are
characterized by Berry phase effects, fractional excitations,
and highly entangled ground states [1–4]. However, we can
measure many of their correlations only imperfectly with
existing tools. A promising direction is nonlinear response
that has been used to characterize the symmetry of semi-
conductors [5] and magnets [6], Berry phase in topological
semimetals [7–9], and exotic ground states and excitations
in correlated systems [10–12].
For quantum spin liquids, one of their most remarkable

properties is the emergence of fractional particles known as
spinons that may be understood as carrying half a conven-
tional spin degree of freedom. Spinons present a challenge
for conventional spectroscopy as they must be excited in
pairs. This typically leads to a broad continuum spectrum
that represents a convolution of all possible ways that
energy and momentum can be shared between two spinons.
In conventional linear magnetic susceptibility χð1ÞðωÞ of a
spin chain [13], light excites a pair of spinons with oppo-
site momenta [Fig. 1(a)]. Each pair gives rise to a peak in
the absorption spectrum Imχð1Þ centered at the frequency
ω ¼ λk þ λ−k, where λk is the dispersion relation of the
spinon. As there are infinitely many such pairs, the
absorption peaks congest the frequency axis, resulting in
a broad continuum [Fig. 1(b), top]. While the broad
continuum seen with terahertz (THz) optical spectroscopy
and neutron scattering has reasonably been taken as
evidence for spinons in spin chains [13–15], the situation
is less straightforward in higher-dimensional spin liquid
candidates, e.g., 2D Kitaev materials, Herbertsmithite, and

triangular lattices [16–21]. In such cases, the relative
importance of finite lifetime and disorder and even frac-
tionalization itself is unclear. In all cases, the intrinsic
spectral properties of spinons such as the linewidth and
shape are hidden in the continuum.

FIG. 1. (a) The experimental setup for THz 2D coherent
spectroscopy. Two linearly polarized magnetic field pulses A
and B arrive at the sample [in this case, TFIC] at time 0 and τ.
Magnetization is recorded at time τ þ t. In the FM phase, the
pulses excite a pair of spinons (domain walls) with momenta �k.
(b) Top: 1D spectroscopy probes the linear magnetic suscep-
tibility χð1ÞðωÞ of TFIC. Each pair of spinons with momenta �k
gives an absorption peak. The peaks congest the frequency axis,
resulting in a spinon continuum. Bottom: 2D spectroscopy probes
nonlinear magnetic susceptibilities of the TFIC. The signal due to
the third order susceptibility χð3Þðωt;ωτÞ can resolve the spinon
continuum by spreading it into the frequency plane. Spectral
congestion occurs along the diagonal, whereas the width of the
individual resonance peak is revealed along the antidiagonal
direction.
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In this work, we show that the new technique of THz
two-dimensional coherent spectroscopy (2DCS) [22,23]
can provide qualitatively new information on the dynamical
properties of spinons. We explore our ideas in the context
of the simplest minimal model for fractionalization—the
transverse field Ising chain (TFIC)—but the possibilities
are more general. In the optical and radio frequency range
[24–27], 2DCS is an established technique that probes
nonlinear susceptibilities. Thanks to recent technical
advances that enable tabletop high-intensity THz sources,
it has been extended recently to the THz range to study
graphene and quantum wells [22,23], molecular rotations
[28], and spin waves in the conventional magnet YFeO3

[29]. THz 2DCS uses two pulses in a collinear geometry to
excite a system at one frequency and detect at another, thus
producing a 2D spectrum. Applications of 2DCS include
quantifying nonlinear couplings between excitations and—
relevant to the present work—separating inhomogeneous
and homogeneous broadening [25–27]. A similar mecha-
nism will allow for the resolution of the spinon continuum
in the 2D spectrum [Fig. 1(b), bottom], where congestion
occurs along the 2D spectrum’s diagonal, but the intrinsic
linewidth of each spinon pair is revealed by the spectral
width along the antidiagonal.
The TFIC Hamiltonian is [30]

H ¼ −J
�XL−1

n¼1

σznσ
z
nþ1 þ ησzLσ

z
1

�
− h

X
n

σn: ð1Þ

Here, σx;y;zn are Pauli matrices, J > 0 is the ferromagnetic
exchange, h > 0 is the transverse field, and L is the chain
length. We shall use periodic (η ¼ 1) and open (η ¼ 0)
boundary conditions as they suit our purposes. Macroscopic
response functions are independent of such choices. This
system admits a twofold degenerate ferromagnetic (FM)
ground state for h < J and a single paramagnetic (PM)
ground state for h > J. While strictly speaking, the TFIC is
not a spin liquid—the domain wall excitations of the FM
phase are close analogues of spinons. Henceforth, we use
“domain wall” and “spinon” interchangeably.
We consider a setup similar to that used in Ref. [29]. Two

linearly polarized magnetic field pulsesA andB arrive at the
sample at time 0 and τ > 0 [Fig. 1(a)]. The magnetization at
time τ þ t along direction α,Mα

ABðτ þ tÞ, is a convolution of
applied field with the sample response [31]. The experiment
is then repeated but with pulse A or B alone and the
magnetization recorded as Mα

Aðτ þ tÞ and Mα
Bðτ þ tÞ. The

nonlinear signal is defined as Mα
NLðt; τÞ ¼ Mα

ABðτ þ tÞ−
Mα

Aðτ þ tÞ −Mα
Bðτ þ tÞ. The 2D spectrum is the Fourier

transform (FT) of Mα
NLðt; τÞ over the domain t > 0, τ > 0.

The nonlinear magnetization Mα
NLðt; τÞ is a direct mea-

sure of the second and/or third order magnetic susceptibil-
ities. For simplicity, we model the magnetic field as two
Dirac-δ pulses with the same polarization β, i.e., BβðsÞ ¼
Aβ
0δðsÞ þ Aβ

τ δðs − τÞ, where s is time and Aβ
0;τ the pulse

areas. In principle, the polarizations of pulses A and B
can be different. The nonlinear signal (see Supplemental
Material [32]) is

Mα
NLðt; τÞ ¼ Aβ

0A
β
τ χ

ð2Þ
αββðt; τ þ tÞ

þ ðAβ
0Þ2Aβ

τ χ
ð3Þ
αβββðt; τ þ t; τ þ tÞ

þ Aβ
0ðAβ

τ Þ2χð3Þαβββðt; t; τ þ tÞ þOðA4Þ: ð2Þ

Here, we have retained the dominant and subdominant
contributions. The two χð3Þ terms encode different physical
processes. In the first, pulse A couples to the sample at
second order, whereas pulse B couples at first order. In the
second, the contributions of A and B are switched.
We are primarily interested in the spinons in the

FM phase at zero temperature, and thus, we use the
representative model parameters h=ðhþ JÞ ¼ 0.3 in
the ensuing discussion. Since σxn excites spinon pairs,
we focus on the polarization α ¼ β ¼ x̂. We calculate

χð2Þxxx and χ
ð3Þ
xxxx analytically through the following procedure

(see the Supplemental Material [32] for details). We
map Eq. (1) to free fermionic spinons by using the
Jordan-Wigner transformation [30]. Each pair of spinons
with momenta �k form a two-level system (TLS),
whose ground (excited) state corresponds to the absence
(presence) of the said pair. The energy level splitting
is 2λk, where λk ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ h2 þ 2Jh cos k

p
is the spinon

dispersion. As the TLSs formed by different spinon pairs
are decoupled, the TFIC is equivalent to an ensemble of
independent TLSs, thereby permitting a straightforward
calculation of the nonlinear response [27].
In more realistic models, additions to Eq. (1) such as

additional exchange interactions and spin-lattice couplings
induce spinon interactions, which give effects such as
spinon decay. By the TLS analogy, we incorporate these
effects phenomenologically through a population time T1

and decoherence time T2 [5], which captures the essential
physics while maintaining the analytic tractability [32]. We
assume T1;2 are k independent for simplicity. The ideal
TFIC then corresponds to T1;2 ¼ 0.
We begin with the linear susceptibility per site,

χð1Þxx ðtÞ ¼ 2θðtÞ
L

X
k>0

sin2θke−t=T2 sinð2λktÞ; ð3Þ

where sin θk ¼ −2J sin k=λk is the optical matrix element.
The summation is over the positive half of the first Brillouin
zone (1BZ). Using the above TLS picture, we interpret
Eq. (3) as follows. The magnetic field pulse induces optical
transitions in all TLSs, producing a damped oscillatory
signal with frequency 2λk. The damping coefficient 1=T2

reflects the spinon decay. Since the frequency takes its
value from a dense spectrum given by k, dephasing leads to
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an additional decay of χð1Þxx ðtÞ, which is difficult to dis-
tinguish from the intrinsic decay due to finite T2. This
difficulty of unraveling the dephasing and the intrinsic
decay persists in the frequency domain. Here, each spinon

pair contributes an absorption peak in Imχð1Þxx centered at the
energy 2λk with width 1=T2. As k runs over the 1BZ,
the peaks form a broad continuum, which disguises the
intrinsic linewidth 1=T2. Comparing the continuum for
1=T2 ¼ 0 [Fig. 2(a)] and 1=T2 ¼ 0.2ðJ þ hÞ [Fig. 2(f)], the
difference is merely quantitative.
We then turn to the lowest order nonlinear response:

χð2Þxxxðt; τ þ tÞ ¼ 4θðtÞθðτÞ
L

X
k>0

sin2 θk cos θk

× fe−t=T1 cosð2λkτÞ
− e−ðtþτÞ=T2 cos½2λkðτ þ tÞ�g: ð4Þ

The first term on the right-hand side of Eq. (4) is non-
oscillatory in t. In the frequency domain, this gives rise to a
peak centered at ωt ¼ 0, appearing as the streak along the
ωτ axis shown in Fig. 2(b). Increasing 1=T1 from 0 leads to
broadening of the streak [Fig. 2(g)]. Viewing ωτ as the

pumping frequency and ωt the detecting frequency, this
streak is a THz rectification (TR) signal [29]. The second
term of Eq. (4) is oscillatory in tþ τ. Yet, similar to Eq. (3),
the dephasing leads to decay, which is further modulated
by the intrinsic decay due to T2. This results in a
diffusive, barely discernible signal in the first frequency
quadrant [Figs. 2(b) and 2(g)], which is similar to the
nonrephasing (NR) signal usually found in χð3Þ [29]. See
the Supplemental Material [32] for a detailed discussion of
these features.

Qualitatively different physics appears in χð3Þxxxx. It is
instructive to consider the more general form that corre-

sponds to a three-pulse process [Fig. 3(a)]: χð3Þxxxxðt3; t2þ
t3; t1 þ t2 þ t3Þ ¼ −½θðt1Þθðt2Þθðt3Þ=L�

P
k>0A

ð1Þ
k þ Að2Þ

k þ
Að3Þ
k þ Að4Þ

k , where

Að1Þ
k ¼ 8sin2θkcos2θk sin½2λkðt3 þ t2 þ t1Þ�

× e−ðt1þt2þt3Þ=T2 ; ð5aÞ

Að2Þ
k ¼ −8 sin2 θk cos2 θk sin½2λkðt2 þ t1Þ�

× e−ðt1þt2Þ=T2e−t3=T1 ; ð5bÞ

FIG. 2. 1D and 2D spectra in the FM phase [h=ðhþ JÞ ¼ 0.3] of the TFIC. From the top to bottom, the rows show (a–e) the case
with no dissipation (1=T1;2 ¼ 0), (f–j) with dissipation [1=T1;2 ¼ 0.2ðJ þ hÞ (other values of T1;2 bring no significant changes)], and

(k–o) with quenched disorder. From the left to right, the columns show, respectively, χð1Þxx ðωÞ, and the FTs of χð2Þxxxðt; τ þ tÞ,
χð3Þxxxxðt; τ þ t; τ þ tÞ, χð3Þxxxxðt; t; τ þ tÞ, and its profile along a cut indicated by the arrow. Only half of the frequency plane is shown; the
other half is related by complex conjugation. For the cases without disorder (top, middle rows), the calculation is done on a chain of
L ¼ 100 with the periodic boundary condition. For the disorder case (bottom row), we set hn ¼ han and Jn ¼ Jbn, where an, bn are
site-dependent dimensionless random numbers drawn uniformly from the interval (0.5,1.5). The spectra are calculated for a chain of
L ¼ 40 with open boundaries and averaged over 200 disorder realizations.
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Að3Þ
k ¼ 4 sin4 θk sin½2λkðt3 þ t1Þ�

× e−ðt1þt3Þ=T2e−t2=T1 ; ð5cÞ
Að4Þ
k ¼ 4 sin4 θk sin½2λkðt3 − t1Þ�

× e−ðt1þt3Þ=T2e−t2=T1 : ð5dÞ

Að1–4Þ
k encode distinct evolution paths of the density

matrix of the spinon pair with momenta �k due to the THz

pulses. While the forms of Að1;2;3Þ
k resemble that of χð2Þxxx,

Að4Þ
k is different in that t1 and t3 appear with opposite signs.

Regardless of the oscillation frequency 2λk, the phase
accumulated between the first and the second pulses (t1)
is canceled after the third pulse at t3 ¼ t1. Said differently,
the dephasing process during t1 is countered by the
rephasing process during t3. This rephasing process is
the incarnation of the photon echo in the context of spinon

dynamics. Tracing Að4Þ
k back to its originating density

matrix evolution sequence [Fig. 3(a)], we find the sequence
is identical to the photon echo process from a TLS [27,39].
Therefore, we term this process the “spinon echo.”
Photon echo and its analogues are a sensitive diagnostics

of dissipation [27,39]. Here, the rephasing signal from the
spinon echo allows for a direct measurement of T2. To see

this, we return to the χð3Þxxxx measured in the two-pulse setup

[Eq. (2)]. χð3Þxxxxðt; t; τ þ tÞ corresponds to the limit t1 → τ,

t2 → 0, t3 → t [Fig. 3(b)]. We may write
P

kA
ð4Þ
k ¼

fðt − τÞ exp½−ðtþ τÞ=T2�, where fðt − τÞ comes from
the sum of sin4 θk sin½2λkðt − τÞ� and decreases as jt − τj
increases due to dephasing. Crucially, the arguments of f
and the T2 term are orthogonal linear combinations of t
and τ. The FT of f is a broad continuum that depends on
ωt − ωτ, whereas the FT of the T2 term is a narrow
Lorentzian function of ωt þ ωτ. The product of the two

thus gives rise to a streak of rephasing signal in the

imaginary part of the FT of χð3Þxxxxðt; t; τ þ tÞ. The streak
runs along the diagonal of the fourth quadrant, mirroring
the energy range of spinon pairs. The width of the streak
along the antidiagonal is a direct measure of 1=T2: In the
limit of T2 → 0, the antidiagonal width vanishes, reflecting
the perfect phase cancellation in the spinon echo [Figs. 2(d)
and 2(e)]. With finite T2, imperfect phase cancellation
leads to a finite antidiagonal width that scales with 1=T2

[Figs. 2(f) and 2(g)].

By contrast, χð3Þxxxxðt; τ þ t; τ þ tÞ corresponding to the
limit t1 → 0, t2 → τ, t3 → t does not contain a spinon echo

[Fig. 3(b)]. In the limit of 1=T1 → 0, Að3;4Þ
k are functions of

t3 ¼ t only. In the frequency domain, this leads to a Dirac-δ
peak on the ωτ ¼ 0 line, which appears in the imaginary
part as a streak along the ωt axis [Fig. 2(c)]. Taking ωτðωtÞ
as the pumping (detecting) frequency, this may be inter-
preted as a pump-probe signal [29]. Increasing 1=T1

broadens the signal [Fig. 2(h)].

Both χð3Þxxxxs contain additional features that arise from

Að1;2;3Þ
k terms in Eq. (5). Their FTs contain a diffusive, weak

NR signal in the first quadrant. They also contain a weak
TR-like signal on the ωτ axis, which we discuss further in
the Supplemental Material [32].
To recap, the rephasing signal from the spinon echo

process can directly reveal the T2 time of spinon pairs.
Crucially, in the absence of dissipation (1=T1;2 ¼ 0), the
antidiagonal width of the rephasing signal is zero. We now
show that this feature is robust against quenched disorder.
To this end, we set the transverse field hn and exchange
constant Jn to be site dependent, namely, hn ¼ han,
Jn ¼ Jbn, where an, bn are dimensionless random numbers
drawn from a uniform distribution in the interval [0.5, 1.5].
The linear response [Fig. 2(k)] shows only small changes
compared to the clean case. Since this model remains
integrable, the spinons are still exact eigenstates, and
therefore, the antidiagonal width of the rephasing signal
remains resolution limited [Figs. 2(n) and 2(o)]. Its strong
sensitivity to dissipation protected by the robustness against
disorder shows the utility of 2DCS.
In the FM phase, the σyn operators can also excite spinon

pairs. We therefore expect the 2DCS spectrum with ŷ
polarization to be similar to x̂. However, since the σyn is a
nonlocal operator in the spinon basis, the analytic treatment
made for x̂ does not translate directly to ŷ. Nevertheless, as
shown in the Supplemental Material [32], the numerical
calculation finds that the 2D spectra along ŷ in the FM phase
(Supplemental Material Fig. S4 [32]) are qualitatively
similar to that of x̂. Note that in the PM phase, the streaklike
rephasing signal that is characteristic of fractional excita-

tions is absent. χð3Þyyyy instead shows sharp isolated peaks [32]
that are typical of nonlinear spin waves [12,29].
Using the TFIC as a prototypical example, we have

demonstrated that THz 2DCS can resolve the spinon

FIG. 3. (a) Three-pulse process associated with

χð3Þxxxxðt3; t2 þ t3; t1 þ t2 þ t3Þ. The spinon echo process that

produces the rephasing signal Að4Þ
k [Eq. (5)] is also shown. 0

(1) stands for the ground (excited) state of the two-level system
formed by the spinon pair �k. The density matrices during t1 and
t3 are Hermitian conjugate partners, and thus, their time evolu-
tions are effectively time reversals of each other. (b) The χð3Þ
terms measured in the two-pulse setup [Eq. (2)] are special limits
of the three-pulse process.
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continuum and directly reveal the intrinsic linewidth of
spinon pairs. We expect spinon echo to be a generic 2D
spectral feature of models that host spinons. Provided that
the spinons are coherent quasiparticles, the TLS picture
naturally extends to higher-dimensional spin liquids. In
general, spinon echo will produce a rephasing streak
qualitatively similar to that of the TFIC with finite T1;2.
In particular, the finite antidiagonal width of the streak
reflects the imperfect phase cancellation due to finite
quasiparticle lifetime.
Our results may be applicable to CoNb2O6, which

is the best-known material example of a quasi-1D
FM Ising chain [13,15,40]. CoNb2O6 orders at temper-
atures below ∼3 K, but at slightly higher temperatures,
the linear response is characterized by a broad line shape
made of superimposed two- and four-spinon continua
that hide information about spinon line shapes. We
expect that THz 2DCS can reveal the intrinsic spectral
properties of spinons in this system. Experiments can be
done in essentially the same fashion as previous
THz 2DCS measurements on the conventional magnet
YFeO3 [29]. Such experiments are under way. Analyzing
theoretically the 2D spectra of more realistic material
models will also prove fruitful. The spinon interactions
present in these models will produce additional spectral
features that are beyond the minimal model consid-
ered here.
With the information gained by establishing the tech-

nique on TFIC and its material realizations, we expect even
richer information can be gained by applying THz 2DCS to
higher-dimensional materials that are suspected to harbor a
spin liquid but have only been characterized spectroscopi-
cally as having broad line shapes such as Herbertsmithite
[16], 2D Kitaev magnets [17], and triangular lattices
[18–21]. By direct analogy to the present results, we expect
that one can measure the intrinsic lifetime of the multispinon
excitations. Sharp antidiagonal features may give direct
evidence for fractionalized excitations and may be readily
distinguished from highly damped conventional spin waves
that could alternatively be present. Finally, we want to stress
that our work is just an early step in understanding the utility
of THz 2DCS for quantum materials. We believe important
applications will be found in many systems including
superconductors and topological materials.
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