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Coherence distillation is one of the central problems in the resource theory of coherence. In this Letter,
we complete the deterministic distillation of quantum coherence for a finite number of coherent states under
strictly incoherent operations. Specifically, we find the necessary and sufficient condition for the
transformation from a mixed coherent state into a pure state via strictly incoherent operations, which
recovers a connection between the resource theory of coherence and the algebraic theory of majorization
lattice. With the help of this condition, we present the deterministic coherence distillation scheme and
derive the maximum number of maximally coherent states obtained via this scheme.
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Introduction.—Quantum coherence is a valuable re-
source in performing quantum information processing tasks
[1]. It can implement various information processing tasks
that cannot be accomplished classically, such as quantum
computing [2,3], quantum cryptography [4], quantum
metrology [5,6], and quantum biology [7]. Recently, the
resource theory of coherence has attracted a growing
interest due to the development of quantum information
science [8–18].
All quantum resource theories have two fundamental

ingredients: free states and free operations [19,20]. For the
resource theory of coherence, the free states are the
quantum states that are diagonal in a prefixed reference
basis. However, there is no general consensus on the set of
free operations. Based on different physical and math-
ematical considerations, a number of free operations were
proposed [8,9,11–15]. Here, we focus our discussion on
the strictly incoherent operations. This type of free oper-
ation was first given in Ref. [11] and it was shown that it
can neither create nor use coherence and has a physical
interpretation in terms of interferometry in Ref. [12]. Thus,
the strictly incoherent operations are a physically well-
motivated set of free operations for coherence and a strong
candidate for free operations.
One of the central problems in the resource theory of

coherence is the coherence distillation [9,11,19,21–30],
which is the process that extracts pure coherent states from
general states via free operations. This problem was
approached in two different settings: the asymptotic regime
[11,19,21,25–28] and the one-shot regime [23,24,29,30].
Although many interesting results have been obtained, there
are still some open fundamental questions remaining to be
solved. One of these is the deterministic coherence distil-
lation, whose aim is to find the condition of conversion from

a general mixed state to the maximally coherent state with
certainty [18,30,31]. Investigations on this topic have been
started in Ref. [30], where the deterministic coherence
distillation of pure coherent states under several classes of
incoherent operations was introduced. However, the deter-
ministic coherence distillation of general mixed states has
been left as an open question.
In this Letter, we address the above question by complet-

ing the framework for deterministic coherence distillation
under strictly incoherent operations. We first recall some
notions of the resource theory of coherence and the notions
of majorization lattice that are related to our topic. Then, we
present the necessary and sufficient condition for the trans-
formation from a general state into a pure state via strictly
incoherent operations, which recovers a connection between
the resource theory of coherence and the algebraic theory
of majorization lattice. With the help of this condition,
we present the deterministic coherence distillation scheme.
Then, we derive the maximum number of maximally
coherent states that can be obtained in this deterministic
coherence distillation scheme.
Resource theory of coherence.—Let H represent the

Hilbert space of a d-dimensional quantum system. A
particular basis of H is denoted as fjii; i ¼ 0; 1;…;
d − 1g, which is chosen according to the physical problem
under discussion. Specifically, a state is said to be incoher-
ent if it is diagonal in the basis. We represent the set of
incoherent states as I . Any state that cannot be written as a
diagonal matrix is defined as a coherent state. Note that the
term coherent state here is different from the canonical
coherent state or the spin coherent state [1]. For a pure state
jφi, we denote jφihφj as φ; i.e., φ ≔ jφihφj and we denote
jφd

mi ¼ ð1= ffiffiffi
d

p ÞPd−1
i¼0 jii as a d-dimensional maximally

coherent state.

PHYSICAL REVIEW LETTERS 123, 070402 (2019)

0031-9007=19=123(7)=070402(6) 070402-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.070402&domain=pdf&date_stamp=2019-08-13
https://doi.org/10.1103/PhysRevLett.123.070402
https://doi.org/10.1103/PhysRevLett.123.070402
https://doi.org/10.1103/PhysRevLett.123.070402
https://doi.org/10.1103/PhysRevLett.123.070402


A strictly incoherent operation is a completely positive
trace-preserving map, expressed as ΛðρÞ ¼ P

nKnρK
†
n,

where the Kraus operators Kn satisfy not only
P

nK
†
nKn ¼

I but also KnIK
†
n ⊂ I and K†

nIKn ⊂ I for Kn; i.e., each
Kn as well as K

†
n maps an incoherent state to an incoherent

state. With this definition, it is elementary to show that a
projector is an incoherent operator if and only if it has the
form Pα ¼

P
i∈Ijiihij with I ⊂ f0; 1;…; d − 1g. In what

follows, we denote Pα as strictly incoherent projective
operators. The dephasing map, which we denote as Δð·Þ,
is defined as Δρ ¼ P

d−1
i¼0 jiihijρjiihij.

Majorization and majorization lattice.—Majorization
[32] is a mathematical tool widely used in quantum
information theory [33–35]. For the n-dimensional prob-
ability distributions Pn, we say that a probability distri-
bution p ¼ ðp1; p2;…; pnÞ is majorized by q ¼
ðq1; q2;…; qnÞ, in symbols p ≺ q, if there are

P
l
i¼1

p↓
i ≤

P
l
i¼1 q

↓
i , for all 1 ≤ l ≤ n, where ↓ indicates that

the elements are to be taken in descending order. The
majorization lattice [36–38] is a quadruple ðPn;≺;∨;∧Þ.
Here ≺ is the relation introduced above. For every pair of
p;q ∈ Pn, p ∧ q is the unique greatest lower bound of
p, q up to a permutation transformation, which is defined
as a probability distribution; for every s ∈ Pn with s ≺ p,
s ≺ q, there is s ≺ p ∧ q, and p∨q is the unique least upper
bound of p, q, which is defined as a probability distribution
for every t ∈ Pn with p ≺ t and q ≺ t; then there is
p∨q ≺ t. Similarly, we write ⋀S as the unique greatest
lower bound of S and ⋁S as the unique least upper bound
of S, where S is a subset of Pn. Hereafter, we apply
majorization to density operators and write ρ1 ≺ ρ2 if and
only if the corresponding majorization relation holds for the
eigenvalues of ρ1 and ρ2. And⋁S ≺ ρ means that the least
upper bound (up to a unitary transformation) of S is
majorized by ρ.
Determined state transformation.—In the following, we

give the necessary and sufficient condition for a state ρ to
be transformed into a pure coherent state jφi via strictly
incoherent operations.
Theorem 1.—We can transform a mixed state ρ into a

pure coherent state φ via strictly incoherent operations if
and only if there exists an orthogonal and complete set of
incoherent projectors fPαg such that, for all α, there are

PαρPα

TrðPαρPαÞ
¼ ψα and Δψα ≺ Δφ; ð1Þ

where ψα are all pure coherent states. In other words, there
exists fPαg such that

⋁S ≺ Δφ; ð2Þ
where S is the set of fΔψαg.
Proof.—First, we show that ρ can be transformed into φ

via a strictly incoherent operation if and only if PρPt

(superscript t means transpose) can be transformed into φ
via a strictly incoherent operation, with P being a permu-
tation matrix.
For any two strictly incoherent operations Λ1 with Kraus

operators fK1
ng and Λ2 with Kraus operators fK2

mg, the
operation Λ ¼ Λ1∘Λ2 is also a strictly incoherent operation
with Kraus operators fKl ¼ K1

nK2
mg, since we can easily

verify it by examining KlIK
†
l ⊆ I and K†

l IKl ⊆ I . It is
straightforward to verify that, for any permutation matrix,
both P and its inverse are strictly incoherent operations.
With this knowledge, it is easy to show that ρ can be
transformed into φ via a strictly incoherent operation if
and only if PρPt can be transformed into φ via a strictly
incoherent operation. Hence, without loss of generality,
we let

ρ ¼ ⨁
μ
pμρμ; ð3Þ

corresponding to the Hilbert space H ¼⨁μ Hμ with each
ρμ being irreducible. Here, an irreducible matrix ρμ means
that it cannot be transformed into a block diagonal matrix
by using a permutation matrix.
Second, we show the if part of the theorem; i.e., if the

state ρ satisfies the condition in the theorem above, then we
can transform a mixed state ρ into a pure state φ via a
strictly incoherent operation.
Let ρ be a state satisfying the condition in the theorem

above. Then, according to the result in Refs. [13,33,34],
which says that a pure coherent state jψi can be trans-
formed into another pure coherent state jφi via strictly
incoherent operations if and only if there is Δψ ≺ Δφ, we
can always find strictly incoherent operations Λαð·Þ, which
act on the support of Pα, with Λαð·Þ ¼

P
nK

n
αð·ÞKn

α
†, such

that

ΛαðψαÞ ¼ φ;

for all α. With this result, we transform ρ into jφi by using
the operation

Λð·Þ ¼ ⨁
α
Λαð·Þ;

where the corresponding Kraus operators are

Kα;n ¼ Kn
α ⊕ 0:

Here, 0 represents a square matrix with all its elements
being 0. It is straightforward to show that Λð·Þ is a strictly
incoherent operation.
Third, we show the only if part of the theorem; i.e., if φ

can be obtained from a state ρ via a strictly incoherent
operation, then the state ρ should satisfy the condition in
the theorem above.
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Let us assume that we can obtain a pure coherent state φ
from a mixed state ρ by using a strictly incoherent operation
Λð·Þ. Then, there is

ΛðρÞ ¼
X
n

KnρK
†
n ¼ φ: ð4Þ

Substituting Eq. (3) into (4), we can obtain that

ΛðρÞ ¼
X
n;μ

pμKnρμK
†
n ¼ φ: ð5Þ

Since pure states are extreme points of the set of states,
there must be

KnρμK
†
n ¼ qn;μφ;

for all n and μ, where qn;μ ¼ TrðKnρμK
†
nÞ.

According to the definition of the strictly incoherent
operations, there is at most one nonzero element in each
column (row) of a strictly incoherent Kraus operator. Thus,
any Kn can always be decomposed into

Kn ¼ PπKD
n Pn; ð6Þ

where the operator Pπ is a permutation matrix, KD
n ¼

diagða1;…; an; 0; 0;…Þ is a diagonal matrix with ai being
nonzero complex numbers, and Pn is a projective operator
corresponding to KD

n , i.e., Pn ¼ diagð1;…; 1; 0; 0;…Þ.
Let fpμ;i; jψμ;iig be an arbitrary ensemble decomposition
of ρμ. Then, there is

KnρμK
†
n ¼

X
μ;i

pμ;iPπKD
n Pnψμ;iPnKD

n
†P†

π: ð7Þ

From Eqs. (5) and (7), we obtain that

ΛðρÞ ¼
X
n;μ;i

pμpμ;iPπKD
n Pnψμ;iPnKD

n
†P†

π ¼ φ:

Again, by using the fact that pure states are extreme points
of the set of states, we immediately obtain that

PπKD
n Pnψμ;iPnKD

n
†P†

π

TrðPπKD
n Pnψμ;iPnKD

n
†P†

πÞ
¼ φ or 0; ð8Þ

for all μ, i, and n. Clearly, jψμ;ii are states of the subspace
Hμ. Thus, we only need to consider the projective operator
Pn in Eq. (6) corresponding to the subspace Hμ and we
denoted it as Pn;μ. Since Λ is a trace-preserving map,

we can get that
P

nK
†
nKn ¼ I and, furthermore,P

nPn;μK
†
nKnPn;μ ¼ Iμ, with Iμ being the identity matrix

of the subspace Hμ. Here, since every ρμ is irreducible,
PπKD

n Pnjψμ;ii cannot be a zero vector at the same time.

From Eq. (8) and
P

nPn;μK
†
nKnPn;μ ¼ Iμ, we get that

Pn;μψμ;iPn;μ ¼ Pn;μψμ;jPn;μ or 0; ð9Þ

for all i and j. Both these two cases mean that ½Pn;μρμPn;μ=
TrðPn;μρμPn;μÞ� is a pure coherent state and we denoted it
as ψn;μ for the sake of simplicity. By using the condition
that ΛðρÞ ¼ φ and the condition in Eq. (9), we immediately
derive that

Λðψn;μÞ ¼ φ;

for every n and μ. Since the state ψn;μ can be transformed
into φ via a strictly incoherent operation if and only if
Δψn;μ ≺ Δφ, we immediately obtain the conclusion in our
theorem. This completes the proof of the only if part. ▪
From Theorem 1, we infer the following corollary:
Corollary.—We can transform ρ into a pure coherent

state ψ via strictly incoherent operations if and only if ψα

are all coherent states for some fPαg.
Proof.—The only if part follows directly from theorem 1.

To prove the if part, without loss of generality, let us assume
that jψαi ¼

Pdα
i¼1 c

α
i jii with the number of cαi > 0 being

dα ≥ 2, and cα1 ≥ � � � ≥ cαdα . From the definition of the
majorization lattice, we can immediately obtain that
⋁S ≺ ⋁S0, where S0 ¼ fΔψ 0

αg with jψ 0
αi ¼ cα1j1i þPdα

i¼2 c
α
i jii. Noting that the set S0 is an ordered set [32]

and cα1 < 1, we then obtain that ⋁S0 equals one of Δψ 0
α

and this corresponds to a coherent state jψi where jψi ¼
c1j1i þ c2j2i with 0 < c1 < 1. ▪
Deterministic coherence distillation.—Next, let us move

to the deterministic coherence distillation of a finite number
of coherent states.
Suppose that we have n coherent states,

ρ1; ρ2;…; ρn;

where ρ1; ρ2;…; ρn are not necessarily identical and n is a
finite number. The deterministic coherence distillation proc-
ess is the process that extracts pure coherent states from them
with certainty. Here, we concentrate our discussion on the
task that extracts as much of the two-dimensional maximally
coherent state jφ2

mi as possible from ρ1 ⊗ ρ2 ⊗ � � � ⊗ ρn
via strictly incoherent operations.
Based on the result above, we take the distillation

procedure as the following three steps (see Fig. 1).
First, for the given ρ ¼ ρ1 ⊗ ρ2 ⊗ � � � ⊗ ρn, we should

transform ρ into a block diagonal matrix.
To this end, one should calculate out the permutation

matrix P that can transform ρ into a block diagonal matrix,
i.e., the permutation matrix P such that

PðρÞ ¼ PρPt ¼ ⨁
L

μ¼1

pμρμ ⨁ 0; ð10Þ
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where each ρμ ¼
P

i;jρ
μ
ijjiihjj (μ ¼ 1; 2;…; n) is an irre-

ducible density operator defined on the dμ-dimensional
subspace Hμ, pμ > 0 satisfies

P
L
μ¼1 pμ ¼ 1, and 0 repre-

sents a square matrix of dimension d0 ¼ d −
P

L
μ¼1 dμ with

all its elements being 0.
Second, we should calculate out an incoherent projective

operators set fPαg in theorem 1.
To this end, let us first introduce the following three

matrices, which are useful to obtain the corresponding
fPαg. For ρ ¼ P

ijρijjiihjj, we can define two matrices jρj
and ðΔρÞ−1

2, where jρj reads jρj ¼ P
ijjρijjjiihjj and ðΔρÞ−1

2

is a diagonal matrix with elements

ðΔρÞ−1
2

ii ¼
(
ρ
−1
2

ii ; if ρii ≠ 0;

0; if ρii ¼ 0.

Next, we recall the following matrix with the help of jρj
and ðΔρÞ−1

2,

A ¼ ðΔρÞ−1
2jρjðΔρÞ−1

2: ð11Þ
A useful property of A is that all the elements of A are 1 if
and only if ρ is a pure coherent state [24]. By substituting
the expression in Eq. (10) into Eq. (11), we obtain that

A ¼ ðΔρÞ−1
2jρjðΔρÞ−1

2 ¼ ⨁
L

μ¼1

Aμ ⨁ 0;

where Aμ ¼ ðΔρμÞ−1
2jρμjðΔρμÞ−1

2 are also irreducible non-
negativematrices. Next, we should find out all themaximally
dimensional principal submatrices An

μ of Aμ with all its
elements being 1, where the maximal dimension means that
the dimension ofAn

μ cannot be enlarged. Let the correspond-
ing Hilbert subspaces of principal submatrices An

μ be Hn
μ

spanned by fji1μi; ji2μi;…; jidnμ ig ⊂ fj0i; j1i;…; jd − 1ig.
Then, the corresponding incoherent projective operators are

Pα ¼ ji1μihi1μj þ ji2μihi2μj þ � � � þ jidnμ ihidnμ j:

Performing fPαg on the state ρ, we obtain fψαg, i.e.,

PαρPα

TrðPαρPαÞ
¼ ψα:

By the way, we note that the set of fPαg in theorem 1 is not
necessarily unique, and we denote the set of fΔψαg
corresponding to the maximally dimensional principal sub-
matrices An

μ as Sm.
Third, we should calculate out the least upper bound of

the set Sm ¼ fΔψαg, i.e., ⋁Sm.
Without loss of generality, suppose that jψαi ¼Pdn
i¼1 c

i
αjii and the corresponding probability distributions

of jψαi are p↓
α ¼ ðjc1αj2; jc2αj2;…; jcdnα j2; 0; 0;…; 0Þ. Let us

show how to calculate out the least upper bound of Sm, i.e.,
⋁Sm. To this end, we first define a probability distribution
a ¼ ða1; a2;…; adÞ, where

ai ¼ max

(Xi

j¼1

jcj1j2;
Xi

j¼1

jcj2j2;…;
Xi

j¼1

jcjLj2
�
−
Xi−1
j¼1

aj:

We note that the elements of a ¼ ða1; a2;…; adÞ might not
be in nonincreasing order; i.e., it is not true in general that
aj ≥ ajþ1. Apart from a, we also need the following
lemma, which was proved in Ref. [36].
Lemma.—Let a ¼ ða1; a2;…; adÞ be a given probability

distribution, and let j be the smallest integer in f2;…; ng
such that aj > aj−1. Moreover, let i be the greatest

integer in f1; 2;…; j − 1g such that ai−1 ≥ ½ðPj
r¼i arÞ=

ðj − iþ 1Þ� ¼ a. Let the probability distribution q ¼
ðq1; q2;…; qdÞ be defined as

qr ¼
�
a; for r ¼ i; iþ 1;…; j;

ar; otherwise:

Then for the probability distribution q, we have that
qr−1 ≥ qr, for all r ¼ 2;…; j, and

P
k
s¼1 qs ≥

P
k
s¼1 as;

k ¼ 1;…; d. Moreover, for all t ¼ ðt1; t2;…; tdÞ such thatP
k
s¼1 ts ≥

P
k
s¼1 as; k ¼ 1;…; n, we also have

P
k
s¼1 ts ≥P

k
s¼1qs;k¼1;…;n.
By using the definition of a and the iterate application of

the above lemma, we can obtain the least upper bound of
Sm ¼ fΔψαg, i.e., ⋁Sm and we denoted it as Δψ .
Without loss of generality, let the maximum number

of φ2
m we can distill from ρ1 ⊗ ρ2 ⊗ � � � ⊗ ρn be N. The

generalization to d > 2 is straightforward. From theorem 1,
this distillation can be accomplished if the following
majorization relation holds:

Δψ ≺ diagð2−N;…; 2−N; 0…; 0Þ: ð12Þ

FIG. 1. Schematic picture of the deterministic coherence trans-
formation via strictly incoherent operations. Here, Πα ¼ Pα · Pα

for incoherent projective operator Pα, ψðSÞ is the pure coherent
state determined by ∨S, Λ̃α are the strictly incoherent operations
such that Λ̃αðψαÞ ¼ ψ , Λ̄ is the strictly incoherent operation such
that Λ̄ðψÞ ¼ φ, and all the others are the same as in the main text.
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The above relation can be fulfilled if and only if

kψk∞ ≤ 2−N; ð13Þ

where k · k∞ is the max norm on the matrix space. This can
be examined directly since if the first inequality of
majorization relation in Eq. (12) holds, then the other
inequalities for Eq. (12) are automatically satisfied.
Thus, the inequality in Eq. (13) gives the maximum

number of two-dimensional maximally coherent states that
can be distilled from ρ1 ⊗ ρ2 ⊗ � � � ⊗ ρn and the maxi-
mum number is

Nmax ¼ blog2kψk−1∞ c;

where bxc represents the largest integer equal to or less
than x.
We can then summarize the above results as theorem 2.
Theorem 2.—The maximum number of two-dimensional

maximally coherent states that can distill from a set of
states, such as ρ1; ρ2;…; ρn, is

Nmax ¼ blog2kψk−1∞ c: ð14Þ

In particular, if the states we chose are all pure coherent
states fjφγig with γ ¼ 1;…; n, then the maximum number
of two-dimensional maximally coherent states that we can
distill is Nmax ¼ blog2 ⊗n

γ¼1 kφγk−1∞ c, which corresponds
to the result in [30]. This is reminiscent of the case of
entanglement [35,39,40], where the deterministic entangle-
ment distillation of pure entangled states was studied.
We should note that there is a class of states that cannot be

distilled into any pure coherent state via strictly incoherent
operations. If we can transform ρ ¼ P

ijρijjiihjj with the
number of ρii ≠ 0 being m into a pure coherent state jφi ¼P

icijii with the number of ci ≠ 0 being n via a strictly
incoherent operation, then the rankofρ is atmostm=n. To see
this, suppose that we can distill a pure coherent state φ from
ρ, according to theorem 1, there must be an orthogonal and
complete set of incoherent projectors fPαg fulfilling the
condition in Eq. (1). Let the corresponding decomposition
of the Hilbert space of fPαg be H ¼ ⨁αHα, where the
dimension ofHα is dα, the projections fPαg of ρ onto each
Hα are fψαg, respectively, and ρ ¼ P

l
i¼1 λijλiihλij is a

spectral decomposition for ρ. Then, there are

PαjλiihλijPα

TrðPαjλiihλijPαÞ
¼ ψα;

for all i ¼ 1;…; l, with jψαi ¼
P

ic
i
αjii. This means that the

number, Dρ, of the linear independent vectors of the set
fjλiig must satisfy Dρ ¼ l −

P
αðdα − 1Þ ≤ m −

P
αdαþP

α1 ¼ P
α1. From theorem 1 and the definition of

Δψα ≺ Δφ, we can obtain that the number of ciα ≠ 0 is at

least as many as that of ci ≠ 0. Thus, there is Dρ ¼
P

α1 ≤
ðm=nÞ.
In passing, we point out that the phenomenon of bound

coherence under strictly incoherent operations was uncov-
ered in Refs. [23,27,28] recently; i.e., there are coherent
states from which no coherence can be distilled via strictly
incoherent operations in the asymptotic regime. The neces-
sary and sufficient condition for a state being a bound state
was presented in Refs. [27,28]. Their result shows that a state
is a bound state if and only if it cannot contain any rank-one
submatrix. Comparing this result with the corollary, we
obtain that, for any mixed state ρ, if we can transform it
into a pure coherent state jφi, then it cannot be a bound state.
However, in general, the converse is not true. Thus, the set of
states that can be transformed into a pure coherent state jφi is
a strictly smaller set of the set of distillable states.
Conclusions.—We have completed the operational task

of deterministic coherence distillation for a finite number
of coherent states under strictly incoherent operations.
Specifically, we have presented the necessary and sufficient
condition for the transformation from a mixed coherent
state into a pure coherent state via strictly incoherent
operations, which recovers a connection between the
resource theory of coherence and the algebraic theory of
majorization lattice. With the help of this condition,
we have presented the deterministic coherence distillation
scheme and we have derived the maximum number of
maximally coherent states that can be obtained via this
scheme.
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