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Differentiable programming is a fresh programming paradigm which composes parameterized
algorithmic components and optimizes them using gradient search. The concept emerges from deep
learning but is not limited to training neural networks. We present the theory and practice of programming
tensor network algorithms in a fully differentiable way. By formulating the tensor network algorithm as a
computation graph, one can compute higher-order derivatives of the program accurately and efficiently
using automatic differentiation. We present essential techniques to differentiate through the tensor networks
contraction algorithms, including numerical stable differentiation for tensor decompositions and efficient
backpropagation through fixed-point iterations. As a demonstration, we compute the specific heat of the
Ising model directly by taking the second-order derivative of the free energy obtained in the tensor
renormalization group calculation. Next, we perform gradient-based variational optimization of infinite
projected entangled pair states for the quantum antiferromagnetic Heisenberg model and obtain state-of-
the-art variational energy and magnetization with moderate efforts. Differentiable programming removes
laborious human efforts in deriving and implementing analytical gradients for tensor network programs,
which opens the door to more innovations in tensor network algorithms and applications.
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I. INTRODUCTION

Tensor networks are prominent approaches for studying
classical statistical physics and quantum many-body
physics problems [1–3]. In recent years, its application
has expanded rapidly to diverse regions, including the
simulation and design of quantum circuits [4–7], quantum
error correction [8,9], machine learning [10–14], language
modeling [15,16], quantum field theory [17–20], and
holographic duality [21,22].
One of the central problems relevant to many research

directions is the optimization of tensor networks in a
general setting. Despite highly successful optimization
schemes for one-dimensional matrix product states
[23–28], optimizing tensor networks in two or higher
dimensions has been a challenging topic. This difficulty is

partly due to the high computational cost of tensor
contractions and partly due to the lack of an efficient
optimization scheme in the high-dimensional situation.
The challenge is particularly pressing in optimizing

tensor network states for infinite translational-invariant
quantum systems. In these cases, the same tensor affects
the variational energy in multiple ways, which results in
a highly nonlinear optimization problem. Optimization
schemes based on approximate imaginary time projection
[29–33] struggle to address nonlocal dependence in the
objective function. References [34,35] applied gradient-
based optimization and showed that it significantly
improved the results. However, it is cumbersome and error
prone to derive the gradients of tensor network states
analytically, which involves multiple infinite series of
tensors even for a simple physical Hamiltonian. This fact
has limited broad application of gradient-based optimiza-
tion of tensor network states to more complex systems.
Alternative approaches, such as computing the gradient
using numerical derivatives, have limited accuracy and
efficiency; therefore, they only apply to cases with few
variational parameters [36,37]. Deriving the gradient man-
ually using the chain rule is only manageable for purposely
designed simple tensor network structures [38].
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Differentiable programming provides an elegant and
efficient solution to these problems by composing the whole
tensor network program in a fully differentiable manner and
optimizing them using automatic differentiation.In this
paper, we present essential automatic differentiation tech-
niques that compute (higher-order) derivatives of tensor
network programs efficiently to numeric precision. This
progress opens the door to gradient-based (and evenHessian-
based) optimization of tensor network states in a general
setting. Moreover, computing (higher-order) gradients of
the output of a tensor network algorithm offers a straightfor-
ward approach to compute physical quantities such as the
specific heat andmagnetic susceptibilities. The differentiable
programming approach is agnostic to the detailed lattice
geometry, Hamiltonian, and tensor network contraction
schemes. Therefore, the approach is general enough to
support a wide class of tensor network applications.
We focus on applications that involve two-dimensional

infinite tensor networks where the differentiable program-
ming techniques offer significant benefits compared to the
conventional approaches. We show that after solving major
technical challenges such as numerical stable differentia-
tion through singular value decomposition (SVD) and
memory-efficient implementation for fixed-point iterations,
one can obtain the state-of-the-art results in variational
optimization of tensor network states.
The organization of this paper is as follows. In Sec. II,

we introduce automatic differentiation in the context of
tensor network algorithms and formulate tensor network
contractions as computation graphs. In Sec. III, we present
the key techniques for stable and scalable differentiable
programming of tensor network algorithms. In Sec. IV, we
demonstrate the ability of the approach with applications
to the classical Ising model and the quantum Heisenberg
model on the infinite square lattice. Finally, we give our
outlook for future research directions in Sec. V. Our code
implementation is publicly available (see Ref. [39]).

II. GENERAL THEORY

Automatic differentiation through a computation graph
is a unified framework that covers training neural net-
works for machine learning, optimizing tensor networks
for quantum physics, and many more. We first review the
core idea of automatic differentiation and then explain its
application to various tensor network contraction algo-
rithms formulated in terms of computation graphs.

A. Automatic differentiation

Automatic differentiation mechanically computes
derivatives of computation processes expressed in terms
of computer programs [40]. Unlike numerical differentia-
tion, automatic differentiation computes the value of
derivatives to machine precision. Its performance has a
general theoretical guarantee, which does not exceed the
algorithmic complexity of the original program [41,42].

Automatic differentiation is the computational engine of
modern deep learning applications [43,44]. Moreover, it
also finds applications in quantum optimal control [45]
and quantum chemistry calculations such as computing
forces [46] and optimizing basis parameters [47].
Central to the automatic differentiation is the concept of

the computation graph. A computation graph is a directed
acyclic graph composed of elementary computation steps.
The nodes of the graph represent data, which can be scalars,
vectors, matrices, or tensors [48]. The graph connectivity
indicates the dependence of the data flow in the compu-
tation process. The simplest computation graph is the
chain shown in Fig. 1(a). Starting from, say, vector-valued
input parameters θ, one can compute a series of inter-
mediate results until reaching the final output L, which we
assume to be a scalar. The so-called forward evaluation
simply traverses the chain graph in sequential order, θ →
T1 → � � � → Tn → L.
To compute the gradient of the objective function with

respect to input parameters, one can exploit the chain rule

∂L
∂θ ¼ ∂L

∂Tn

∂Tn

∂Tn−1 � � �
∂T2

∂T1

∂T1

∂θ : ð1Þ

Since we consider the case where the input dimension is
larger than the output dimension, it is more efficient to
evaluate the gradient in Eq. (1) by multiplying terms from
left to right using a series of vector-Jacobian products.
In terms of the computation graph shown in Fig. 1(a), one
traverses the graph backward and propagates the gradient
signal from the output back to the input. Computing
the derivative this way is called reverse-mode automatic
differentiation. This approach, commonly referred to as the

(a)

(b)

FIG. 1. Reverse-mode automatic differentiation on computation
graphs. Black arrows indicate the forward function evaluation
from inputs to outputs. Red arrows indicate backward steps for
adjoint backpropagation. (a) A chain graph. (b) A more general
computation graph. In the backward pass, the adjoint of a given
node is computed according to Eq. (2).
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backpropagation algorithm [43], is arguably the most
successful method for training deep neural networks.
It is instructive to introduce the adjoint variable T̄ ¼

∂L=∂T to denote the gradient of the final output L with
respect to the variable T. One sees that the reverse-mode
automatic differentiation propagates the adjoint from
Tn ¼ L̄∂L=∂Tn, with L̄ ¼ 1, all the way back to

Ti ¼ Tiþ1∂Tiþ1=∂Ti, with i ¼ n − 1;…; 1, and finally

computes θ̄ ¼ T1∂T1=∂θ. In each step, one propagates
the adjoint backward via a local vector-Jacobian product.
The adjoint backpropagation picture generalizes well to

more complex computation graphs. For example, the data
node T1 in Fig. 1(b) affects the final output via two different
downstream computation paths. In the backward pass, one
needs to accumulate all contributions from its child nodes
for its adjoint. In general, the backpropagation rule reads

Ti ¼
X

j∶ child of i

Tj ∂Tj

∂Ti : ð2Þ

The reverse-mode automatic differentiation algorithm
can be understood as a message-passing process on the
computation graph. After a topological sort of the compu-
tation graph defined by the forward pass, one visits the
graph backward from the output node with adjoint L̄ ¼ 1.
Each node collects information from its child nodes to
compute its own adjoint and then passes this information to
its parents. Thus, one can compute the gradient with respect
to all parameters in one forward and one backward pass.
Typically, one caches necessary information in the forward
pass for efficient evaluation of the vector-Jacobian product
in the backward pass.
The building blocks of a differentiable program are called

primitives. The primitives can be elementary operations
such as addition, multiplication, and math functions [50].
Each primitive has an associated backward function in
addition to the ordinary forward function. The backward
function backpropagates the adjoints according to the vector-
Jacobian product Eq. (2). Note that one does not need to
explicitly instantiate or store the full Jacobian matrices.
Moreover, one can group many elementary computation
steps together as a primitive. For example, the linear algebra
operations such as matrix multiplication can be regarded as a
primitive. In this way, the forward pass of these customized
primitives can be operated as a black box. Designing the
differentiable program in such a modular way allows one to
control the level of granularity of automatic differentiation.
There are several advantages of crafting customized prim-
itives for domain-specific problems. First, this can reduce the
computation and memory cost. Second, in some cases, it is
numerically more stable to group several steps together.
Third, one can wrap function calls to external libraries into
primitives, without the need to track each individual com-
putation step.

Modern machine learning frameworks support automatic
differentiation via various mechanisms. For example,
TensorFlow [51] explicitly constructs computation graphs
using a customized language; autograd [52], PyTorch [53],
and Jax [54] track the program execution order at run time;
and Zygote [55] performs source code transformation at the
compiler level. These frameworks allow one to differentiate
through function calls, control flows, loops, and many other
computation instructions. Building on these infrastructures,
differentiable programming is emerging as a new program-
ming paradigm that emphasizes assembling differentiable
components and learning the whole program via end-to-end
optimization [44]. Letting machines deal with automatic
differentiation mechanically has greatly reduced laborious
human efforts and reallocated human attention to design
more sophisticated and creative deep learning algorithms.
Finally, we note that it is also possible to evaluate Eq. (1)

from right to left, which corresponds to the forward-
mode automatic differentiation. The operation of the
forward-mode automatic differentiation is akin to pertur-
bation theory. One can compute the objective function and
the gradient in a single forward pass without storing any
intermediate results. However, the forward-mode automatic
differentiation is not favorable for computation graphs
whose input dimension is much larger than the output
dimension [44]. Therefore, the majority of deep learning
work employs the reverse-mode automatic differentiation.
For the same reason, we focus on the reverse-mode
automatic differentiation for tensor network programs.

B. Computation graphs of tensor network contractions

A tensor network program maps input tensors to an
output, which we assume to be a scalar. Depending on the
context, the input tenors may represent classical partition
functions or quantum wavefunctions, and the outputs can be
various physical quantities of interest. It is conceptually
straightforward to apply automatic differentiation to a tensor
network program by expressing the computation and, in
particular, the tensor network contractions as a computa-
tion graph.
As a pedagogic example, consider the partition function

of the infinite one-dimensional Ising model Z ¼
limN→∞TrðTNÞ, where T ¼

� eβ e−β

e−β eβ
�
is a second-rank

tensor (matrix) representing the Boltzmann weight. One can
numerically access the partition function in the thermody-
namic limit by repeatedly squaring the matrix T and tracing
the final results. The computation graph has a simple chain
structure shown in Fig. 1(a). Differentiating with respect to
such a computational process involves backpropagating the
adjoint through matrix trace and multiplication operations,
which is straightforward.
At this point, it is also worth distinguishing between the

exact and approximate tensor network contraction schemes.
Tensor networks on a treelike graph can be contracted
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exactly and efficiently. However, other exact approaches,
such as the one used for counting and simulating quantum
computing [56,57], in general, exhibit exponentially scaling
with the problem size. Nevertheless, it is straightforward
to apply automatic differentiation to these exact algorithms
since they mostly involve tensor reshape and contractions.
We focus on the less trivial cases of differentiating

through approximate tensor contractions, which typically
involve truncated tensor factorization or variational approx-
imations. They cover important tensor network applica-
tions, which show great advantages over other numerical
methods [1–3]. In particular, we are interested in con-
tracting infinite tensor networks, where the fundamental
data structure is the bulk tensor. The contraction schemes
loosely fall into three categories: those based on coarse-
graining transformations [58–64], those based on the corner
transfer matrix [65–67], and those based on matrix product
states [2,24,68]. Since the last two contraction schemes
are closely related [2], in the following, we focus on
automatic differentiation for the tensor renormalization
group (Sec. II B 1) and corner transfer matrix renormaliza-
tion group approaches (Sec. II B 2), respectively.

1. Tensor renormalization group

The tensor renormalization group (TRG) method con-
tracts the tensor network by factorizing and blocking the
bulk tensors iteratively [58]. Figure 2(a) shows one step of
the TRG iteration as the computation graph, which includes
(1) splitting the bulk tensor in two ways using SVD, where
we have truncated the singular values and vectors to a
prescribed bond dimension χ, and (2) assembling the four
3-leg tensors generated in the last step into a 4-leg tensor.
After this contraction, we obtain a new tensor for the next
iteration.

The TRG method grows the lattice size exponentially
fast. So, one quickly reaches the thermodynamic limit after
a few tens of iterations. Note that for numerical stability,
one needs to rescale the tensor elements after each iteration.
The computational cost of the TRG method scales as
Oðχ6Þ, and the memory cost scales as Oðχ4Þ. After
unrolling the iterations, the computation graph of the
TRG method is similar to the simple chain graph shown
in Fig. 1(a). Within each iteration step, the basic operations
are tensor index permutation, truncated SVD, and tensor
contractions. Since each of these operations is differen-
tiable, one can backpropagate through the TRG procedure
to compute the derivative of a downstream objective
function with respect to the input tensor.

2. Corner transfer matrix renormalization group

The computation graph of the corner transfer matrix
renormalization group (CTMRG) [65] has a more interest-
ing topology. The goal of CTMRG calculation is to obtain
converged corner and edge tensors that represent the
environment degrees of freedom (d.o.f.) of the bulk tensor.
In cases where the bulk tensor has the full symmetry of

the square lattice, the steps of one CTMRG iteration is
shown in Fig. 2(b): (1) Contract the bulk tensor with the
corner and edge tensors to form a 4-leg tensor, (2) perform
truncated SVD to the 4-leg tensor, keeping the singular
dimensions up to the cutoff χ (keep the truncated singular
matrix as the isometric projector); (3) apply the isometry to
the 4-leg tensor from the first step to find a new corner
tensor; (4) apply the same isometry to find a new edge tensor
for the next step. Iterate this procedure until convergence.
One sees that the same bulk tensor with bond dimension d
appears in each step of the CTMRG iteration. For this
reason, the converged environment tensors will depend on
the bulk tensor in a complicated way.
Unlike the TRG method [58], the CTMRG approach

grows the system size linearly. So, one may need to iterate a
bit more steps to reach convergences in CTMRG. On the
other hand, the computational complexity Oðd3χ3Þ and
memory costOðd2χ2Þ of CTMRG are smaller than the ones
of TRG in terms of the cutoff bond dimension.

III. TECHNICAL INGREDIENTS

To compute gradients of a tensor network program using
reverse-mode automatic differentiation, one needs to trace
the composition of the primitive functions and propagate
the adjoint information backward on the computation
graph. Thankfully, modern differentiable programming
frameworks [51–55] have taken care of tracing and back-
propagation for their basic data structure, differentiable
tensors, automatically.
What one needs to focus on is to identify suitable

primitives of tensor network programs and define their
vector-Jacobian products for backpropagation. The key

(b)

(a)

FIG. 2. (a) The iteration step of TRG. (b) The iteration step of
CTMRG. Each tensor is a node in the computation graph. The
primitive functions in the computation graphs are SVD and tensor
contractions.
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components of tensor network algorithms are the matrix
and tensor algebras. There are established results on
backpropagation through these operations [69–71]. First
of all, it is straightforward to wrap all BLAS routines as
primitives with customized backward functions. Next,
although less trivial, it is also possible to derive backward
rules for many LAPACK routines such as the eigensolver,
SVD, and QR factorization [69]. By treating these linear
algebra operations as primitives, one can compose a
differentiable program with efficient implementation of
matrix libraries.
However, there are a few practical obstacles to stable

and scalable implementation of differentiable tensor net-
work programs. First, the backward pass for the eigensolver
and SVD may face numerical instability with degeneracy
in the eigenvalues or singular values. Second, the reverse-
mode automatic differentiation may incur large memory
consumption, which prevents one from reaching the same
bond dimension of an ordinary tensor network program.
We present solutions to these problems below.

A. Stable backward pass through linear
algebra operations

We present several key results on matrix derivatives
involving linear algebra operations that are relevant to
tensor network algorithms. Thanks to the modular nature of
reverse-mode automatic differentiation, one just needs to
specify the local backward function to integrate these
components into a differentiable program. We comment
on their connections to the physics literature and pay
special attention to stable numerical implementations
[39]. For more information, one can refer to Refs. [69–71].

1. Symmetric eigensolver

The forward pass reads A ¼ UΛUT , where Λ is the
diagonal matrix of eigenvalues λi and each column of
the orthogonal matrix U is a corresponding eigenvector.
In the computation graph, the node A has two child nodesU
and Λ.
In the backward pass, given the adjoint Ū and Λ̄, we have

[69,71]

Ā ¼ U½Λ̄þ F ⊙ ðUTŪ − ŪTUÞ=2�UT; ð3Þ

where Fij ¼ ðλj − λiÞ−1 if i ≠ j and zero otherwise. The
symbol ⊙ denotes an elementwise Hadamard product. One
can readily check that the gradient is also a symmetric
matrix.
Equation (3) can be regarded as “reverse” perturbation

theory. When the downstream calculation does not depend
on the eigenstate, i.e., Ū ¼ 0, the backward equation is
related to the celebrated Hellmann-Feynman theorem [72],
which connects the perturbation to the Hamiltonian and its
eigenvalues. Reference [73] applied the special case of

Eq. (3) to an inverse Hamiltonian design based on energy
spectra.
The appearance of the eigenvalue difference in the

denominator of F is a reminder of the first-order non-
degenerate perturbation theory. Reference [47] was con-
cerned about the stability of the backpropagation through
the eigensolver, thus turned to less efficient forward-mode
automatic differentiation for variational optimization of the
Hartree-Fock basis. In many physical problems, the final
objective function depends on the eigenvalues and eigen-
states in a gauge-independent way, e.g., a quadratic form of
occupied eigenstates. In these cases, only the eigenvalue
difference between the occupied and unoccupied states will
appear in the denominator of F, which is a familiar pattern
in the linear response theory [74]. Therefore, degenerate
eigenvalues would not necessarily cause a problem for these
physical applications [75]. In practice, we found that, by
using a Lorentzian broadening with 1=x→x=ðx2þεÞ with
ε ¼ 10−12, one can stabilize the calculation at the cost of
introducing a small error in the gradient; see also Ref. [71].

2. Singular value decomposition

A ubiquitous operation in tensor network algorithms is
the matrix SVD, which is used for canonicalization and
factorization of tensor networks [1,2,25]. The forward pass
reads A ¼ USVT , where A is of the size ðm; nÞ, and U;VT

has size ðm; kÞ and ðk; nÞ, respectively, and k ¼ minðm; nÞ.
Note that S is a diagonal matrix that contains singular
values si. In the reverse-mode automatic differentiation,
given the adjoints Ū; S̄ and V̄, one can obtain [70]

Ā¼ 1

2
U½Fþ⊙ ðUTŪ− ŪTUÞþF− ⊙ ðVTV̄− V̄TVÞ�VT

þUS̄VT þðI−UUTÞŪS−1VT þUS−1V̄TðI−VVTÞ;
ð4Þ

where ½F��ij ¼ f½1=ðsj − siÞ� � ½1=ðsj þ siÞ�g for i ≠ j
and zero otherwise. To prevent the numerical issue in
the case of degenerate singular values, we use the same
Lorentzian broadening as Sec. III A 1 for the first term,
which works well in our experience. In practice, for
variational tensor network calculation starting from random
tensors, the chance of having exact degenerate eigenvalues
is small. Even if this happens, applying the rounding is a
reasonable solution. However, for the case of degeneracy
due to intrinsic reasons [60,62,76,77], one will still obtain
the correct gradient as long as the end-to-end gradient is
well defined. Lastly, inverting the vanishing singular values
in Eq. (4) is not a concern since the corresponding space is
usually truncated.

3. QR factorization

QR factorization is often used for canonicalization
of tensor networks [1,2,25]. In the forward pass, one
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factorizes A ¼ QR, where QTQ ¼ I and R is an upper
triangular matrix [78]. Depending on the dimensions ðm; nÞ
of the matrix A there are two cases for the backward
function.
For the input shape of the A matrix m ≥ n, R is an n × n

matrix. The backward pass reads [71]

Ā ¼ ½Q̄þQcopyltuðMÞ�R−T; ð5Þ

where M ¼ RR̄T − Q̄TQ and the copyltu function
generates a symmetric matrix by copying the lower
triangle of the input matrix to its upper triangle,
½copyltuðMÞ�ij ¼ Mmaxði;jÞ;minði;jÞ. We can handle the
multiplication of R−T by solving a linear system with a
triangular coefficient matrix.
For the case of m < n, Q is of the size ðm;mÞ, and R is

an m × n matrix. We denote A ¼ ðX; YÞ and R ¼ ðU;VÞ,
where X and U are full-rank square matrices of size
ðm;mÞ. This decomposition can be separated into two
steps: First, X ¼ QU uniquely determines Q and U, and
then we calculate V ¼ QTY. Applying the chain rule, the
backward rule gives

Ā ¼ ð½ðQ̄þ V̄YTÞ þQcopyltuðMÞ�U−T; QV̄Þ; ð6Þ

where M ¼ UŪT − ðQ̄þ V̄YTÞTQ.

B. Memory-efficient reverse-mode automatic
differentiation with checkpointing function

A straightforward implementation of the reverse-mode
automatic differentiation for tensor networks has a large
memory overhead because one needs to store intermediate
results in the forward pass for evaluating the vector-
Jacobian products in the backward pass. The number of
stored variables is related to the level of granularity in the
implementation of the automatic differentiation. In any
case, the memory consumption of reverse-mode automatic
differentiation will be proportional to the depth of the
computation graph. This overhead is particularly worri-
some for tensor networks with large bond dimensions and a
large number of renormalization group (RG) iterations.
The solution to the memory issue of reverse-mode

automatic differentiation is a well-known technique called
checkpointing [50,79]. The idea is to trade the computational
time for memory usage. Taking the chain computation graph
in Eq. (1) as an example, one can store the tensor every
few steps in the forward process. In the backward pass,
one recomputes intermediate tensors whenever needed by
running a small segment of the computation graph forward.
In this way, one can greatly reduce the memory usage with
no more than twice the computational effort.
In another perspective, checkpointing amounts to defin-

ing customized primitives, which encapsulates a large part
of the computation graph. These primitives have their own
special backward rules that locally run the forward pass

again and then backpropagate the adjoint. Therefore, in the
forward pass, one does not need to cache internal states of
these checkpointing primitives.
Checkpointing is a general strategy that is applied to the

computation graph of any topological structure. When
applied to tensor network algorithms, it is natural to regard
the renormalization steps shown in Fig. 2 as checkpointing
primitives. In this way, one avoids storing some large
intermediate tensors in the forward pass.

C. Backward through fixed-point iteration

Fixed-point iteration is a recurring pattern in tensor
network algorithms. For example, one iterates the function
Tiþ1 ¼ fðTi; θÞ until reaching a converged tensor T� and
uses it for downstream calculations. To compute the
gradient with respect to the parameter θ, one can certainly
unroll the iteration to a deep computation graph and
directly apply the reverse-mode automatic differentiation.
However, this approach has the drawback of consuming
large memory if it takes long iterations to find the fixed
point.
One can solve this problem by using the implicit function

theorem on the fixed-point equation [80]. Taking the
derivative on both sides of T� ¼ fðT�; θÞ, we have

θ̄ ¼ T� ∂T�

∂θ ¼ T�
�
I −

∂fðT�; θÞ
∂T�

�
−1 ∂fðT�; θÞ

∂θ
¼

X∞
n¼0

T�
�∂fðT�; θÞ

∂T�

�
n ∂fðT�; θÞ

∂θ : ð7Þ

The second line expands the matrix inversion in the
square brackets as a geometric series. Therefore, to
backpropagate through a fixed-point iteration, the basic
operation involves just the vector-Jacobian products with
the single-step iteration function. In the backward func-
tion, one performs iteration to accumulate the adjoint θ̄
until reaching its convergence. The geometric series
shows the same convergence rate to the fixed point as
the forward iteration [80].
Many of the tensor network contraction schemes, includ-

ing the CTMRG method reviewed in Sec. II B 2, fall into
the framework of fixed-point iterations. Thus, one can use
Eq. (7) for backward through CTMRG calculations, where
the iteration is over the RG step shown in Fig. 2(b). We note
that the analytical gradient of infinite tensor network
contraction derived in Refs. [34,35] contains a similar
pattern, which is a summation of geometric series.
Similar to the checkpoint technique of Sec. III B, Eq. (7)

also reduces the memory usage in the reverse-mode
automatic differentiation since one does not need to store
a long chain of intermediate results in the forward iteration.
Moreover, since the downstream objective function is
independent of how the fixed-point tensor is obtained,
one can also exploit an accelerated iteration scheme [81] in
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the forward process [82]. However, there is a caveat when
applying Eq. (7) to differentiating tensor network RG
algorithms. One may need to pay special attention to the
redundant global gauge in the RG iterations to ensure that
the fixed-point equation indeed holds.

D. Higher-order derivatives

Since the gradient can also be expressed as a compu-
tation graph, one can compute the second-order deriva-
tives by applying automatic differentiation to the graph
again. In this way, one can, in principle, compute arbitrary
higher-order derivatives of a program using automatic
differentiation [50]. Deep learning frameworks [51–55]
have out-of-the-box support for computing higher-order
derivatives.
The ability to compute higher derivatives supports

Hessian-based optimization of tensor network states, such
as the Newton method [83]. However, computing and
inverting the full Hessian matrix explicitly could be pro-
hibitively expensive and unnecessary. One can efficiently
compute the Hessian-vector product via

P
j½ð∂2LÞ=

ð∂θi∂θjÞ�xj ¼ ½∂=ð∂θiÞ�fPjð∂LÞ=ð∂θjÞ�xjg without con-
structing the Hessian matrix explicitly [84]. This process is
sufficient for iterative linear equation solvers used for the
Newton method.

IV. APPLICATIONS

We present two applications to demonstrate the versatility
of the differentiable programming tensor network approach
for statistical physics and quantum many-body problems.
Our publicly available code implementation [39] employs
PyTorch [85] with a customized linear algebra automatic
differentiation library for improved numerical stability (see
discussions in Sec. III A). However, we note that one can
readily reproduce the results with other modern deep
learning frameworks such as autograd [86], TensorFlow
[87], Jax [88], and Zygote [89].

A. Higher-order derivative of the free energy

Consider an Ising model on the square lattice with
inverse temperature β; its partition function can be
expressed as a two-dimensional tensor network with bond
dimension d ¼ 2,

ð8Þ

The bulk tensor is [90]

ð9Þ

where λu ¼ eβ þ ð−1Þue−β. We contract the infinite tensor
network using the TRG approach discussed in Sec. II B 1.
We use a cutoff bond dimension χ ¼ 30 and iterate for 30
TRG steps. Finally, we obtain the partition function Eq. (8)
and the free energy by tracing out the bulk tensor.
Next, we compute the physical observables such as

energy density and specific heat by directly taking deriv-
atives of the free energy using automatic differentiation, as
shown in Fig. 3. Note that the energy density shows a kink,
and the specific heat exhibits a peak around the critical
temperature βc ¼ lnð1þ ffiffiffi

2
p Þ=2 ≈ 0.44068679. Unlike

numerical differentiation, these results are free from the
finite difference error [61,91]. Accurate computation of
higher-order derivatives of the tensor network algorithm
will be useful to investigate thermal and quantum phase
transitions. We note that it is, in principle, possible to obtain
the specific heat by directly computing the energy variance
[35,92], which, however, involves cumbersome summation
of geometric series expressed in terms of tensor networks.
There are alternative ways to compute the specific heat

with automatic differentiation. For example, one can
directly compute the energy by using the impurity tensor
and then take the first-order derivative to obtain the specific
heat. Alternatively, one can also use forward-mode auto-
matic differentiation since there is only one input parameter
β to be differentiated. We have purposely chosen the
present approach to highlight the power of differentiable
programming with the reverse-mode automatic differentia-
tion technique. Backpropagating through the whole TRG
procedure, and, in particular, the SVD, allows one to
compute physical observables using higher-order deriva-
tives. It is remarkable that this method works, given many
of the degenerate singular values due to the Z2 symmetry of
the Ising model [47]. To obtain correct physical results, it is

FIG. 3. Energy density and specific heat of the 2D Ising model.
They are computed by taking the first- and second-order
derivatives of the free energy obtained after 30 TRG iteration
steps with a cutoff bond dimension χ ¼ 30. Solid lines are exact
solutions [93].
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crucial to implement the SVD backward function in a
numerically stable way as explained in Sec. III A 2.

B. Gradient-based optimization of iPEPS

We consider a variational study of the square lattice
antiferromagnetic Heisenberg model with the Hamiltonian

H ¼
X
hi;ji

Sxi S
x
j þ Syi S

y
j þ SziS

z
j: ð10Þ

We consider an infinite projected entangled pair state
(iPEPS) as the variational ansatz. The variational param-
eters are the elements in the iPEPS,

ð11Þ

where s denotes the physical indices, and the remaining
indices u, l, d, r are for virtual d.o.f. of the bond dimension
D. We initialize the tensor elements with random Gaussian
variables. The overlap of the iPEPS forms a tensor network,
where the bulk tensor is the double-layer tensor with
squared bond dimension D2,

ð12Þ

To contract the infinite tensor network formed by this bulk
tensor, we use the CTMRGmethod reviewed in Sec. II B 2.
We initialize the corner and edge tensors by partially
tracing out legs from the bulk tensor; we then perform
the CTMRG iteration until we reach convergence in the
corner and edge tensors. After contraction, we can evaluate
the expected energy hψ jHjψi=hψ jψi. Because of the trans-
lational invariance of the problem, it is sufficient to
consider the expected energy on a bond,

ð13Þ
where the black rectangle in Eq. (13) is the Hamiltonian
operator acting on a bond. We have performed a basis
rotation to the Hamiltonian so that the ground state will
have a single-site unit cell. We use cutoff bond dimensions
χ ¼ 30, 50, 80, 100, 144, 160 for D ¼ 2; 3;…; 7, respec-
tively. Since the expected energy decreases with the cutoff
dimension [36,94], the approximated CTMRG contraction
gives a variational upper bound to the ground-state energy.
The expected energy in Eq. (13) has both explicit and
implicit dependence on the variational parameters in
Eq. (11) via the corner and edge tensors.
We compute the gradient of Eq. (13) with respect to the

single-layer tensor Eq. (11) using automatic differentiation,
which automatically resolves the intricate dependence

structure in the computation graph of Fig. 2(b). The gradient
computation takes time comparable to the forward evaluation
of the expected energy. Then, we optimize the iPEPS using
a quasi-Newton L-BFGS algorithm [83] with an automati-
cally computed gradient. One quickly reaches an optimum
after a few hundreds of function and gradient evaluations.
Figure 4(a) shows the relative error in energy compared
to extrapolated quantum Monte Carlo (QMC) results [95]
for various bond dimensions. The accuracy of the ground-
state energy is comparable to state-of-the-art results
[34,35], which were shown to be more accurate than
imaginary-time projection-based simple and full update
algorithms [29–33] [96]. Note that both the ansatz in
Ref. [35] and our ansatz contain only half of the variational
parameters as the one in Ref. [34], so the energy results are
slightly higher than in Ref. [34] at D ¼ 2, 3. However, for
larger bond dimensions D ¼ 4, 5, 6, 7, our calculation
reaches the lowest variational energy for the infinite
square lattice Heisenberg model. Figure 4(b) shows the
staggered magnetization measured on the optimized state,

(a)

(b)

FIG. 4. (a) The relative error in the energy of the 2D S ¼ 1=2
antiferromagnetic Heisenberg model compared to previous varia-
tional results [34,35]. The accuracy is measured relative to the
extrapolated QMC result [95]. (b) A comparison of the staggered
magnetization, where the dashed line is the extrapolated QMC
result [95]. The simple and full update reference data are also
from Ref. [34].
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which approaches the extrapolated QMC results at larger
bond dimensions.
To obtain results for bond dimension D > 4, we need to

employ either the checkpoint technique in Sec. III B or the
fixed-point iteration in Sec. III C to keep the memory budget
low enough to fit into a single Nvidia P100 GPU card with
12G memory. It is rather encouraging that with moderate
effort, one can reach the state-of-the-art performance in
variationally optimizing iPEPS [34,35]. The success is also a
nontrivial demonstration that one can indeed stabilize
reverse-mode automatic differentiation for linear algebra
operations appearing in scientific computation [47].
We note that the present approach applies as well to finite

systems or problems with larger unit cells, more complex
Hamiltonians [97–100], and more sophisticated contraction
schemes with improved efficiency [94], which is promising
to deliver new physical results to quantum many-body
problems.

V. DISCUSSIONS

Computing the gradient via automatic differentiation
significantly boosts the power of existing tensor network
algorithms. Researchers can focus on the core tensor net-
work contraction algorithms without worrying about the
tedious gradient calculations. The computational complexity
of automatic differentiation is the same as the forward
contraction of the tensor networks.
Besides greatly reducing human efforts, the automatic

differentiation approach also computes a slightly different
gradient than Refs. [34,35]. The present approach computes
the numerically exact gradient of an approximated energy
density via automatic differentiation, while Refs. [34,35]
first derive analytical expression of the energy gradient as
infinite tensor networks and then contract these networks
approximately to obtain an approximated gradient. Thus, the
two approaches differentiate the approximation and approxi-
mate the derivative, respectively [44]. Other than the general
recommendation of Ref. [44], we find that differentiating
through approximated tensor network contraction can be
advantageous for infinite systems whose analytical deriva-
tive is complicated to derive and approximate.
In this paper, we have focused on the high-level

applications of automatic differentiation that differentiates
through the whole contraction algorithms for optimizing
tensor networks and computing physical observables. The
same techniques are also applicable to low-level cases such
as finding optimal truncation bases or variational trans-
formation of tensor networks [64]. Moreover, besides the
optimization of the expected energy of quantum problems,
the approach is also relevant to variational contraction of
tensor networks [2,101]. We expect that differentiable
programming techniques will become an integral part of
the standard tensor network toolbox.
A bonus of implementing tensor network programs

using deep learning frameworks [51,53–55] is that one

can readily enjoy the GPU acceleration. The calculations
of this work were done with a single GPU card. Pushing
this line of research further, we envision that it will be
rewarding to deploy tensor network algorithms on emerg-
ing specialized hardware on a larger scale.
Finally, it is useful to comment on the difference of

automatic differentiation for tensor networks and neural
networks. Typical neural network architectures do not
involve sophisticated linear algebra operations. However,
with the development of tensorized neural networks [102]
and applications of various tensor networks to machine
learning problems [10–14,103], the boundary between the
two classes of networks is blurred. Thus, results presented
in this paper would also be relevant to tensor network
machine learning applications when one moves to more
sophisticated contraction schemes.
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