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Abstract
In single microdisks, embedded active emitters intrinsically affect the cavity modes of the microdisks, resulting in trivial
symmetric backscattering and low controllability. Here we demonstrate macroscopic control of the backscattering
direction by optimizing the cavity size. The signature of the positive and negative backscattering directions in each
single microdisk is confirmed with two strongly coupled microdisks. Furthermore, diabolical points are achieved at the
resonance of the two microdisks, which agrees well with theoretical calculations considering the backscattering
directions. Diabolical points in active optical structures pave the way for an implementation of quantum information
processing with geometric phase in quantum photonic networks.

Introduction
Diabolical points (DPs) and exceptional points (EPs)

describe degeneracies of systems depending on para-
meters1,2. EPs refer to degeneracies of non-Hermitian
systems with coalescent eigenstates, which are quite
popular in systems with gain and loss such as parity-time-
symmetric systems3–5. DPs indicate the degeneracy of a
Hermitian system with twofold orthogonal eigenstates.
Compared to EPs with gain and loss, DPs have more
practical feasibility, provide a geometric phase with a
controlled phase shift, and introduce new approaches to
the study of topological or quantum DP behaviors6–11.
Thus photons in photonic structures at DPs have poten-
tial applications in quantum information and quantum
computation12–15. Meanwhile, active emitters in photonic
structures are essential for a coherent electron–photon
interface to implement quantum information processing

in a quantum photonic network16–20. However, the DPs
or EPs of backscattering in optics can be achieved in
optical structures with a few individually controlled
defects or scatterers21–23. In active cavities with multiple
quantum emitters, the quantum emitters affect the cavity
mode as scatterers themselves24,25. The random positions
of multiple emitters make the system difficult to control.
More importantly, multiple scatterers result in symmetric
backscattering in a single microdisk26,27. Symmetric
backscattering forbids a degeneracy with only trivial
eigenstates; thus a coherent interface between electrons
and photons at DPs is difficult to achieve.
Single microdisks have two-dimensional Hamiltonians

based on clockwise (CW) and counterclockwise (CCW)
modes28. Symmetric backscattering results in splitting of
the eigenstates, corresponding to the absolute value of the
backscattering coupling strength. Previous studies on
active microdisks mainly focused on the splitting in the
spectrum, and further investigations have been limited by
low controllability29–31. In contrast, two strongly coupled
microdisks have supermodes with four-dimensional
Hamiltonians. The detuning between the microdisks can
be controlled, and not only the absolute value but also the
sign of the backscattering coupling strength can be
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investigated. This feature makes coupled cavities a good
platform for studying the fundamental physics of back-
scattering in active microdisks.
Here we demonstrate Hermitian degeneracy at DPs in

two coupled microdisks with embedded quantum dots
(QDs). Despite the low controllability originating from the
randomly positioned QDs, macroscopic control by the
cavity size is achieved based on the competition between
the backscattering from QDs and defects31. Then the sign
of the backscattering coupling strength is investigated via
the coupling between the cavities. A balanced competition
is clearly demonstrated by the distributed backscattering
coupling strength from negative to positive values. Fur-
thermore, the balanced competition provides the basis for
the observation of Hermitian degeneracy at DPs, which
occurs when the backscattering coupling strengths in two
microdisks are opposite. Our work demonstrates DPs in
active optical structures. The coupled cavities pave the
way for scaling up quantum information processing32–34,
and the QDs can serve as quantum emitters if brought
into resonance with the cavity modes. Therefore, our

work provides a potential approach to integrate photons
at DPs into a quantum network in the future.

Results
Concept and design
Two coupled microdisks (A and B) without back-

scattering have two eigenstates, as shown in Fig. 1a. For
the perfect single microdisk A (B), the eigenstate is a(b)
with the eigenvalue ωa(ωb). When two microdisks are
coupled, there is a coupling strength g between them.
When two microdisks are on resonance ωa= ωb, the two
eigenstates are ψ ¼ a± bð Þ= ffiffiffi

2
p

. For active microdisks
with multiple scatterers, the degeneracy of the eigenstates
of a single microdisk is lifted by backscattering. The CW
and CCW modes of the single microdisk A (B) are acw,ccw
(bcw,ccw), respectively. The backscattering in each cavity is
symmetric between the CW and CCW modes, with
strengths of Ja for microdisk A and Jb for microdisk B. The
frequencies of the cavity modes ωa,b and the back-
scattering Ja,b can contain an imaginary part corre-
sponding to energy loss21,25. The coupling between the
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Fig. 1 Schematics of two coupled cavities with backscattering and their eigenvalues. a Schematics of two pairs of reversal states with
backscattering. The red arrows refer to +, while the blue arrows refer to −. b Four eigenvalues with different values of Ja,b. The pink lines refer to
results with Ja= Jb. The green lines refer to results with Ja=−Jb.
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cavities is only allowed between states with the same
propagation directions (acw and bccw, accw and bcw) with
strength g35. Owing to the backscattering, the two pairs of
originally degenerate reversal states ψ1,3 and ψ2,4 (Fig. 1a)
now couple to each other, resulting in new eigenstates.
The Hamiltonian on resonance (ωa,b is set to 0 for

brevity) with the basis vector ψi is

g 0 ðJa þ JbÞ=2 ðJa � JbÞ=2
0 �g ðJa � JbÞ=2 ðJa þ JbÞ=2

ðJa þ JbÞ=2 ðJa � JbÞ=2 g 0

ðJa � JbÞ=2 ðJa þ JbÞ=2 0 �g

0
BBB@

1
CCCA

where the order of the basis in the matrix is ψ1 to ψ4.
Figure 1b shows the calculated eigenvalues with real
backscattering coupling strengths. As shown in the
Hamiltonian above, the internal coupling of the system
is significantly affected by the sign of the backscattering
coupling strength. When Ja= Jb (pink lines), the system is
highly symmetric, and the coupling occurs between the
reversal states, as shown in Fig. 1a. When Ja=−Jb (green
lines), the coupling between the reversal states is
destructive and only occurs between ψ1 and ψ4 or
between ψ2 and ψ3. Eigenstates without reversal symmetry
in the system with reversal symmetry indicate sponta-
neous symmetry breaking36. Furthermore, the system only
has two eigenvalues, corresponding to Hermitian degen-
eracy at the DPs.
The degenerate eigenspace at the DPs is an important

feature, providing the basis for quantum states with
continuous phases. The eigenstates can also be expressed

by phases θa; ϕa; θb; ϕb; ϕ1; and ϕ2 as

S′ ¼ sinϕ1e
iϕ2=2 sin θae

iϕa=2acw þ cos θae
�iϕa=2 accw

� �

þ cosϕ1e
�iϕ2=2 sin θbe

iϕb=2bccw þ cos θbe
�iϕb=2 bcw

� �

In this form, the phase of the left microdisk is defined by
the normalized amplitudes of acw and accw with θa and ϕa.
The normalized amplitude of acw is sin θaeiϕa=2; and the
normalized amplitude of accw is cos θae�iϕa=2 37,38. Simi-
larly, the phase of the right microdisk is defined by θb and
ϕb, where the normalized amplitude of bccw is sin θbeiϕb=2

and the normalized amplitude of bcw is cos θbe�iϕb=2. The
twofold degeneracy in the four-dimensional Hamiltonian
results in two two-dimensional eigenspaces, and the
reduced degrees of freedom result in correlation between
the phases of the two microdisks. Figure 2a shows one
eigenspace at the DP, and the correlation is
tan θb ¼ tan θa � sin γð Þ= 1� tan θa sin γð Þ, where tanγ=
J/g. Figure 2b shows the advantage of DPs with the phase
shift by a comparison between different cases. Without
degeneracy, the system is trivial (nondegenerate) and only
permitted at the black dots. The blue line refers to the
eigenspace at the DP without backscattering, which is
linear with no phase change between two microdisks. The
solid (dashed) red line refers to a point in the upper
(bottom) green line in Fig. 1b at the DP with back-
scattering. The nonlinear correlations result in a phase
shift between two microdisks, which is potentially
applicable to quantum networks. For example, if wave-
guides are coupled to the microdisks, the phases of the
CW and CCW modes in the microdisks are related to the
forward and backward signals in the waveguides. Thus the
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Fig. 2 Correlation between phases of two microdisks at DP. a One eigenspace with different values of γ, Ja=−Jb= J and ϕa= ϕb= 0. This
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line in Fig. 1 (b).
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coupled microdisks at the DP can be used for the phase
shift of a signal in two waveguides as a quantum node.
Meanwhile, γ(g) can be controlled by the gap between the
two microdisks but does not affect the DP (Ja=−Jb),
indicating more potential applications such as control-
lable directional lasers. More detailed calculations can be
found in Supplementary Information.

Macroscopic control to achieve DPs
In an experiment, microdisks with a radius of 1 μm were

fabricated on a 250-nm-thick GaAs slab. One layer of
InAs QDs was grown in the center of the slab with a
density of 30 μm−2. The gap between the microdisks was
designed to range from 50 to 130 nm. Figure 3a shows
scanning electron microscopic (SEM) images of the
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cavities. The QDs were excited by a laser with a wave-
length of 532 nm at 4.2 K. Figure 3b shows two spectrally
resolved peaks resulting from backscattering in a single
microdisk. The cavity modes are redshifted by 7 nm by the
thermo-optic effect with increasing excitation power39.
Meanwhile, the splitting and peak linewidths are barely
affected, as shown in Fig. 3c. Therefore, the detuning
between the two microdisks can be controlled by a
selective excitation.
For the two coupled microdisks, the DPs require ωa=

ωb and Ja=−Jb for both the real and imaginary parts. In
realistic active microdisks, the backscattering is difficult to
precisely control. The approaches used to control back-
scattering in passive microdisks are invalid here due to the
randomly positioned QDs. Instead, the devices are
designed to improve the possibility of DPs. The possibility
of equal imaginary parts of ωa,b (linewidth) is improved by
the identical design and fabrication of the two coupled
microdisks. The linewidth difference between the two
split modes, which is the imaginary part of J, is smaller
than the resolution of our spectrometer, as shown in Fig.
3d. The linewidth difference (average value of 0.02 nm) is
also much smaller than the mode splitting (average value
of 0.24 nm as shown in Fig. 3e), which represents the real
part of J. Thus the imaginary part of Ja,b is almost zero.
The symmetric backscattering and the very small ima-
ginary part can be attributed to an average effect of ran-
domly positioned multiple scatterers, as discussed in
Supplementary Information. Then the main challenge for
the DPs is to control the system toward opposite real
parts of the backscattering coupling strength Ja=−Jb. To
solve the problem of low controllability, we propose to use
macroscopic control based on the competition between
different types of scatterers.
The microdisk contains two types of scatterers. One

type is the defects on the surface, and the other type is the
embedded QDs40,41. Although the detailed distribution of
defects and QDs is random, the main role of the two types
of scatterers is related to the perimeter/area ratio deter-
mined by the microdisk size. Previous studies mainly
focused on splitting in single microdisks, corresponding
to the absolute value of the backscattering coupling
strength29–31. Thus the competition between the two
types of scatterers was only qualitatively described31. In
contrast, the competition here is further investigated,
including the sign of the backscattering coupling strength.
The backscattering of the scatterers is related to the dif-
ference between the dielectric permittivities of the scat-
terers and the surrounding medium21,25,29. Defects serve
as low-refractive-index scatterers with positive contribu-
tions to J, and conversely, QDs serve as high-refractive-
index scatterers with negative contributions. Thus the
sign of the backscattering coupling strength is affected by
the dominant type of scatterers. When the competition is

balanced, both positive and negative values of J can be
predicted from the distribution, paving the way for DPs at
Ja=−Jb. Based on the results in previous work31 and the
parameters of our devices, the microdisk radius is
designed to be 1 μm for balanced competition. Figure 3e, f
show the statistics of the splitting 2|J| with a nearly half-
Gaussian distribution, corresponding to a Gaussian dis-
tribution of J with a mean value close to zero. This result
demonstrates good balance in the competition. More
design and fabrication details are shown in Supplementary
Information.
Excitation-power-dependent photoluminescence (PL)

spectroscopy by a selective excitation was performed on
various coupled microdisks. Figure 4 shows four typical
PL mappings of supermodes as well as theoretical fits
(solid lines). Two anti-crossings (yellow arrows) indicating
strong couplings between the supermodes (one pair of
green lines and another pair of gray lines) are observed in
all measurements. The two and only two anti-crossings
are the result of symmetric backscattering. More detailed
discussions and additional data are shown in Supple-
mentary Information. Figure 4a shows the case for Ja= 0
and Jb ≠ 0, which means that splitting in the first micro-
disk is not observed. Figure 4b, c shows the case for JaJb >
0, which means that the backscattering coupling strengths
in the two microdisks are both positive or both negative.
In particular, Fig. 4c shows the case for Ja= Jb, which
results in two simultaneous anti-crossings on resonance
(purple dashed line). Figure 4d shows the remarkable case
with Hermitian degeneracy at the DPs, where Ja=−Jb.
Strong couplings occur between the different pairs of
supermodes compared to the coupling behaviors of two
pairs of supermodes in Fig. 4b, c, which is the key dif-
ference between the cases with JaJb > 0 and JaJb < 0. The
different couplings refer to the significance of the sign of
the backscattering coupling strength in coupled cavities,
in contrast to previous work where only the absolute value
is characterized by resolving the splitting in single cav-
ities29–31.

Discussion
The fitted results in Fig. 4d show a coupling strength of

g= 145 μeV and Ja=−Jb= 200 μeV. The linewidths of all
four peaks are approximately 0.20 nm. This means that
the two cavities are brought into resonance, where ωa=
ωb for both the real and imaginary parts. Meanwhile, the
same linewidth of the two peaks from the single micro-
disks indicates that the imaginary parts of Ja and Jb are
zero. Therefore, the Hermitian degeneracy and DPs on
resonance (purple dashed line) are demonstrated, in good
agreement with the theoretical result shown by the green
lines in Fig. 1b. The eigenstates split by the backscattering
in the single microdisks are degenerate because of the
coupling between the two microdisks. The ratio of the
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backscattering coupling strength to the coupling strength
between the microdisks is J/g= 1.38= tan(0.30π). Thus
the two Hermitian degeneracies correspond to two paths,
as shown by the red lines in Fig. 2b. The achieved DPs
demonstrate the potential of macroscopic control in
active microdisks with multiple QDs. In addition, as fab-
rication technology and QD growth techniques
improve42,43 and g is controlled by a tunable gap44,45,
backscattering in coupled active cavities may also be
precisely controlled in the future.
In summary, we have demonstrated DPs in two strongly

coupled active microdisks. The coupling between the
cavities reveals that the sign of the backscattering cou-
pling strength is an important physical property. Macro-
scopic control of the backscattering is achieved based on a
competition between defects and emitters, solving the
problem of low controllability originating from randomly
positioned scatterers. The competition is balanced by an

optimized microdisk size and experimentally demon-
strated, providing the basis for the successful observation
of DPs. This work paves the way for DPs or EPs in optical
structures with active emitters and thus has potential for
applications in quantum photonic networks. In addition
to individual quantum devices46–49, coupled cavities can
also be designed with more exotic phenomena and
applications.

Materials and methods
Growth of the sample with QDs
The sample for our device was grown by molecular

beam epitaxy, which consists of a 250-nm-thick GaAs
slab, a 1-μm-thick AlGaAs sacrificial layer, and a GaAs
substrate. One layer of self-assembled QDs was grown at a
low growth rate to achieve a low density and a large dot
size in the middle of the GaAs slab. The QD density is
approximately 30 μm−2. One ground state and at least two
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excited states could be observed from the PL spectrum of
ensemble QDs. The wavelength of the ground state is
approximately 1200 nm, and the wavelength of the first
excited state is approximately 1120 nm.

Microdisk fabrication
Microdisks were fabricated by employing electron beam

lithography to pattern the resist, followed by dry etching
using induced coupled plasma to form circular pillars.
Then wet etching using hydrofluoric acid solutions was
performed to dissolve the sacrificial layer and form a
supporting pillar. The gaps between the two microdisks
were designed to range from 50 to 130 nm.

Optical measurement
The optical measurement was implemented with a

conventional confocal microPL system. The device was
mounted on a three-dimensional nanopositioner and
cooled down to 4.2 K by exchanging helium gas with a
helium bath. A solid-state laser with an emission wave-
length at 532 nm was first used to selectively excite and
heat one of the microdisks. The excited GaAs substrate
then excites the wetting layer below the QDs, and the
QDs are subsequently excited. Finally, all the cavity modes
were excited by the QDs within their spectral range of
emission. Owing to the random emission direction of the
QDs, the QDs will not selectively excite CW or CCW
modes. The PL spectra were collected by a linear array of
InGaAs detectors dispersed through a spectrometer with
a resolution of 0.1 nm.
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