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low energy (around 1–10 fJ per event).[3] 
The human brain has a special architec-
ture that can perform massive parallel 
operating and solve complex problems. 
Therefore, simulating the operation of 
the human brain provides a route for con-
fronting the bottleneck of von Neumann 
architecture.[4] Learning behavior in the 
human brain is achieved by reconfiguring 
the connection strength among synapses, 
which is called synaptic plasticity. There-
fore, the construction of an artificial 
synaptic device that can emulate synaptic 
plasticity is a key step toward the realiza-
tion of artificial neural networks.[5–10]

Two-terminal memristors with multiple 
intermediate conductance states are quali-
fied synaptic devices that can resemble 
the brain synapse structure and perform 
a variety of synaptic plasticity tasks.[11] 
Various types of memristors, for example, 

conductive filament memories,[6,12–14] phase change memories 
(PCMs),[15,16] resistive switching memories based on ion migra-
tion,[17] and ferroelectric tunnel junctions (FTJs),[18] have been 
proposed for achieving high performance such as nonvola-
tility, a gradual resistance change, a threshold feature, a simple 
structure, and energy efficiency.[19] Among these devices, a 
promising candidate for mimicking artificial synaptic devices 
and performing neural network operations is FTJ,[18] which is an 
ultrathin ferroelectric film sandwiched by two electrodes whose 
resistance depends on the polarization direction (Figure 1b).[20–23]  
The pioneering work by Chanthbouala et  al. demonstrated 
that the gradual switching of the ferroelectric domain and the 
resulting change of resistance states can ensure a memristor 
response in FTJs.[21] Subsequently, several works have explored 
the possibility of FTJs as artificial synapses.[18,24,25] Recently, 
Boyn et  al. realized unsupervised learning using FTJ based 
simulations.[26]

In this work, we demonstrate an artificial synapse with 
ultralow femtojoule energy consumption based on Pt/BaTiO3/
Nb-doped SrTiO3 FTJ devices. FTJ devices with metal/
ferroelectric/semiconductor structures features with an extra 
depletion region on the semiconductor surface at the high 
resistance states (HRSs).[20] By analyzing the time-dependent 
transport and piezoresponse force microscopy measurements, 
the domain switching dynamics of the FTJ devices were inves-
tigated. Essential synaptic plasticity was mimicked in this FTJ 
device. The present device exhibits the coexistence of good 
short-term and long-term plasticity, and it is different from pre-
vious studies on long-term plasticity. Two different databases, 

Neuromorphic computing consisting of artificial synapses and neural 
network algorithms provides a promising approach for overcoming the 
inherent limitations of current computing architecture. Developments 
in electronic devices that can accurately mimic the synaptic plasticity of 
biological synapses, have promoted the research boom of neuromorphic 
computing. It is reported that robust ferroelectric tunnel junctions can be 
employed to design high-performance electronic synapses. These devices 
show an excellent memristor function with many reproducible states (≈200) 
through gradual ferroelectric domain switching. Both short- and long-term 
plasticity can be emulated by finely tuning the applied pulse parameters 
in the electronic synapse. The analog conductance switching exhibits high 
linearity and symmetry with small switching variations. A simulated artificial 
neural network with supervised learning built from these synaptic devices 
exhibited high classification accuracy (96.4%) for the Mixed National Institute 
of Standards and Technology (MNIST) handwritten recognition data set.

The rapid developments in intelligent tasks, such as artificial 
intelligence, big data analytics, autonomous vehicles, speech 
and image recognition, have put forward higher requirements 
for calculation speed and energy consumption.[1,2] The improve-
ment of computer operation speed is limited by the data transfer 
rate between the central processing unit and the memory 
in the conventional von Neumann architecture. The human 
brain, which contains about 1011 neurons with 1015 intercon-
necting synapses, is particularly efficient at storing and pro-
cessing information simultaneously (Figure 1a) with extremely 
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an 8 × 8  pixel image version (small image) of handwritten 
digits from the University of California at Irvine (UCI) image 
data set[27] and a 28 × 28 pixel image version (large image) of 
handwritten digits from the Mixed National Institute of Stand-
ards and Technology (MNIST) data set[28] were employed for 
image recognition. Supervised learning simulations in this 
work exhibited very high learning accuracies of 96.5% for the 
UCI image data set and 96.4% for the MNIST handwritten data 
set. Synaptic devices based on ultrathin ferroelectric domain 
switching open a novel approach for building efficient neuro-
morphic networks.

The ferroelectric tunnel junction, an ultrathin ferroelectric 
film sandwiched between two conductive electrodes, was fabri
cated to emulate biological synapses. High-quality BaTiO3 
(BTO) epitaxial films with a thickness of ≈2.8  nm were 
prepared on 0.7 wt% Nb-doped SrTiO3 (SNTO) substrates 
through pulse laser deposition (PLD). A high deposited oxygen 
pressure of 20 Pa was used to avoid the effect of oxygen vacancy 
migration on our electronic synapses.[29] Using the standard 

lithography technique, Pt circular electrodes with a thickness of 
100 nm were patterned on the BTO films (see the Experimental 
Section).

The piezoresponse force microscopy (PFM) technique 
was employed to characterize the ferroelectricity of the BTO 
ultrathin film. Figure  1c shows the out-of-plane PFM image 
with writing voltages of ±6.5  V. The typical local PFM phase 
and amplitude hysteresis loops versus voltage are shown in 
Figure  1d. The clear domain boundary in Figure  1c and the 
180° phase contrast in Figure  1d indicate that ferroelectric 
domains with opposite polarization directions can exist in the 
ultrathin BTO layer. In conjunction with the result of PFM, a 
conductive atomic force microscopy (C-AFM) measurement 
over the two antiparallel domains is also shown in Figure  1e. 
A DC bias of 0.5  V was applied to the polarization-patterned 
area to acquire the current mapping properties. The current 
of the domain exhibited an increase upon application of posi-
tive electric bias, which indicates a lower resistance state for the 
downward-polarized domain. After applying external bias, the 
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Figure 1.  A schematic representation and electrical characterizations of the BTO based FTJ devices. a) A sketch of a biological synapse. b) A schematic 
illustration of a two-terminal Pt/BTO/SNTO FTJ device in which the Pt and SNTO electrodes mimic the pre- and postsynapse, respectively. c) A PFM 
out-of-plane phase contrast image of BTO/SNTO heterostructure. The two opposite phases were written by scanning the conductive-tip bias with 
±6.5 V. d) The local phase (upper panel) and amplitude (lower panel) hysteresis loops of the BTO/SNTO heterostructure. e) A C-AFM image of the 
same area in (c). The read voltage was 0.5 V. f) Repeatable current-voltage loops for 300 cycles.
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modification of the local conduction was more intuitive in the 
current–voltage (I–V) curves (Figure 1f). As shown in Figure 1f, 
typical I–V loops for 300 cycles with good reproducibility were 
achieved, indicating good fatigue property of the devices. In 
fact, after more than 1.1 × 104 cycles, the device still main-
tained the pristine ON/OFF ratio of a few hundred (Figure S1, 
Supporting Information), which implies good endurance. The 
retention characteristic is another important parameter for 
evaluating the performance of the device. In the retention test 
with a read voltage of 0.05 V, both HRS and low resistance state 
(LRS) could be stable for more than 104 s at room temperature 
and for more than 4000 s at 100 °C (Figure  S2, Supporting 
Information).

We confirmed the dominant role of ferroelectric domain 
switching in the BTO-based FTJs grown under high oxygen 
pressures, by comparing to nonferroelectric SrTiO3 (STO)-
based devices.[29] Figure  2a exhibits the evolution of conduct-
ance-voltage (G–V) hysteresis loops as the pulse width varies 
while keeping the voltage range between -3.4 and +2.2 V. The 
conductance of LRS increases gradually as the pulse width 
increases, and eventually, a saturation value is reached when 
the pulse width is more than 10  ms. The conductance states 
of FTJ can be finely adjusted depending on the pulse ampli-
tude and duration (Figure S3, Supporting Information). Here, 
the switching kinetics of the ferroelectric domains is crucial 
for modulating multilevel conductance states and realizing 
memristor function in FTJs. It has been widely accepted that 
the nucleation process of the ferroelectric domain and the 
propagation of domain walls in ferroelectric thin films can 

be described well by the nucleation-limited-switching (NLS) 
model.[30] In the NLS model, several areas have inhomogeneous 
polarization switching and independent switching kinetics. The 
time-dependent change in the reverse area (S) can be written as 
follows[31]
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where SON is the normalized down polarized area, n is the effec-
tive dimension, t0 is the characteristic switching time for the 
domain growth, and F(log t0) can be described as Lorentzian 
distribution
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where A is the normalization constant and w is the half-width 
of half-maximum.

In ultrathin ferroelectric films, the junction conductance G 
can be simplified as a parallel connection of small conductance 
with up polarization (GON) and large conductance with down 
polarization (GOFF):

G S G S G1 ON OFF ON ON( )= − × + × � (3)

Hence, SON of the middle conductance states can be 
rewritten as
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Figure 2.  The domain switching kinetics of the FTJ device governed by nucleation-limited-switching model. a) Multiple G–V hysteresis loops as a 
function of pulse width. b) The normalized reversed areas as a function of pulse width under various pulse amplitudes. The lines are calculated from 
the NLS model. c) The rescaled normalized reversed areas as a function of fitting parameters for the NLS model. d) The evolution of the switching 
time as a function of the inverse of the positive switching field, which complies with Merz’s Law. e) Switching field-dependent half-width of the 
half-maximum of the Lorentz distribution.
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where “ratio” is the ratio of the conductance of the middle con-
ductance states to GOFF and the ratiomax is the ON/OFF ratio of 
the devices.

Figure S4 (Supporting Information) shows the conductance 
ratios under single pulses with different pulse amplitudes and 
widths. The device was pre-poled by negative pulses of -5  V 
and 1 µs before applying the write pulses. The ratio remained 
almost unchanged when the amplitude and width of the pre-
spike were relatively small. Subsequently, the conductance ratio 
increased gradually and then reached a saturation value (≈500). 
According to Equation  (4), the values of SON were extracted 
from Figure  S4 (Supporting Information) and were plotted as 
data points in Figure 2b. The experimental SON could be repro-
duced well by Equation (1) with n = 2 (the lines in Figure 2b), 
indicating that the NLS model provided a good agreement 
with our results. If SON is rescaled by (log t  − log t0)/w, all 
curves overlap into a single arctangent curve (Figure  2c). The 
scaling behavior suggests that the Lorentzian fit accounts for 
the switching behavior, which means independent switching 
kinetics always dominate in our devices. Figure S5 (Supporting 
Information) presents the Lorentzian distribution functions of 
different bias, illustrating the main trends of t0 and w with the 

magnitude of the electric field. As the bias increases, t0 and w 
show significant decreases. The evolution of log (t0) versus 1/E 
(Figure 2d) and w versus 1/E2 (Figure 2e) demonstrate that log 
(t0) and w were proportional to their abscissas. The exponential 
dependence of t0 on 1/E (Figure 2d) is consistent with Merz’s 
law (t0  ∝ exp(E0/E), where E0 is the activation field of about 
7  V  nm−1).[32] The gradual switching process of polarization 
was also confirmed by the PFM phase and amplitude plots with 
varying pulse durations (Figure  S6, Supporting Information). 
All these results confirm the gradual manipulation of the ferro-
electric domain accompanied with multilevel conduction states 
in FTJs, which can be harnessed to construct artificial synapses.

Synaptic plasticity (short-term plasticity and long-term plas-
ticity) is the basis for synapses to execute signal processing 
and neural computation. The synaptic weight can be updated 
temporarily (short-term plasticity, STP) or permanently (long-
term plasticity, LTP) based on the ferroelectric polarization 
switching dynamics as a function of pulse amplitude and repeti-
tion. Typical STP behaviors based on the FTJ devices are emu-
lated by applying low biases (Figure 3a). Excitatory postsynaptic 
currents (EPSCs) are triggered by the presynaptic spikes and 
decay gradually to the pristine current, reflecting the temporal 
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Figure 3.  The pulse training, evolution of EPSC, and STDP characteristics of the Pt/BTO/SNTO device. a) The instantaneous current triggered by 
a presynaptic spike. The upper panel shows the shape of the applied voltage pulse, which consisted of a read voltage of 0.05 V and programming 
voltages of 0.1, 0.25, and 0.4 V with the duration of 50 ns. The green curves are the fitting lines. b) The EPSCs recorded in response to the stimulus 
train with six frequencies in the short-term potentiation mode. The pulse amplitudes were 0.4, 0.5, and 0.6 V, respectively. The pulse width was 50 ns. 
c) The device’s relaxation performance showing the variation of current with different pulse numbers and amplitudes in the LTP mode. The pulse width 
was 50 ns and the pulse interval was 500 ns. d) The retention properties of the middle states for 2 × 103 s. e) Long-term potentiation and depression 
demonstrating 200 discrete states for 500 cycles. The potentiating and depressing pulses were +1.3 and −1.75 V in amplitude, respectively, and 50 ns 
in width. f) Weight-dependent STDP learning with an antisymmetric Hebbian learning rule. The synaptic weight (current) changes as a function of Δt. 
The solid lines show the fitting results according to Equation (5).
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strengthening connection of two adjacent synapses. The calcu-
lated capacitance by fitting the relaxation currents (Figure  3a) 
is in good agreement with the measured value (Figure S7 and 
Note S1, Supporting Information). Thus, the STP behavior 
in our FTJs is ascribed to the charging and discharging process 
of the depletion region at HRS. In the STP mode, the response 
of the artificial synapse to the pulse stimulation signal is unaf-
fected by the previous pulse when the pulse interval exceeds the 
time during which EPSC decays to the resting state (Figure S8, 
Supporting Information). The calculated energy consumption 
per spike (0.2–146 fJ) with a pulse width of 20 ns was several 
orders of magnitude lower than that (≈900 pJ) of artificial syn-
apses based on conventional complementary metal-oxide semi-
conductor (CMOS) circuits, and can be compared with that 
(1–10 fJ) of human synapses (Figure  S9, Supporting Informa-
tion). If the interval between the stimulus pulses is shorter 
than the EPSC recovery time, then the synaptic response to 
the previous stimulus signal enhances the response to the fol-
lowing stimulus signal. Figure  3b shows the EPSC responses 
with varying presynaptic stimulus trains with different frequen-
cies. The presynaptic stimulus train at each frequency consisted 
of 10 pulses with a pulse width of 50 ns and pulse amplitudes 
of 0.4, 0.5, and 0.6 V, respectively. The temporal increased cur-
rents exhibits a strong dependence on the pulse amplitude 
and frequency. We investigated the effects of the pulse dura-
tion and interval on the EPSC (Figure  S10, Supporting Infor-
mation). The increase of the pulse duration can enhance the 
EPSC, and the decrease of the pulse interval can also enhance 
the EPSC. Paired-pulse facilitation (PPF) is one of the most 
well-known physiological characteristics in recoding temporal 
information.[3,33] PPF is a form of STP phenomena, depicting 
the apparent enhancement of EPSC evoked by the second pulse. 
In FTJ devices, electric stimuli can be used to simulate the PPF 
phenomena. Figure S11 (Supporting Information) demonstrates 
the PPF characteristic of the FTJ device, and the initial state has 
little effect on the PPF property. If successive stimuli with pulse 
intervals that are comparable or shorter than the relaxation time 
of the EPSC are applied to the FTJ device, then the EPSCs of 
the following pulse are effectively potentiated (Figure S11, Sup-
porting Information). This result shows the designed FTJ device 
had good short-term plasticity. Note S2 (Supporting Informa-
tion) provides additional calculation details about PPF pro-
cess. The device would show a paired-pulse depression (PPD) 
behavior, with a smaller pulse voltage, shorter pulse width, and 
longer pulse interval (Figure S12, Supporting Information).

The transition from STP to LTP in FTJs can be realized by 
applying presynaptic pulse amplitudes larger than the threshold 
voltage of the ferroelectric domain switching. Figure  3c illus-
trates the EPSCs obtained by applying stimuli with different 
pulse amplitudes and numbers. The pulse width and pulse 
interval were fixed to 50 and 500 ns, respectively. The training 
results show that the postsynaptic currents presented obvious 
potentiation and could not decay to the pristine value after modi
fication by the presynaptic spikes, which suggests the existence 
of a long-term memory effect in the FTJ device. As the ampli-
tude and number of the presynaptic spike increases, the current 
of the postsynapse increases significantly, corresponding to 
the enhancement of synaptic weight. More single pulses with 
different amplitudes and widths are applied to exhibit the  

multilevel resistance states (Figure  S13, Supporting Infor-
mation). The intermediate conductance states showed good 
stability and remained unchanged for more than 2 × 103 s 
(Figure 3d). The transition from STP to LTP could occur with 
an increase in the pulse frequency (Figure  S14, Supporting 
Information).

LTP usually consists of long-term potentiation and long-term 
depression, and it is the core design requirement for brain-
like computing. Long-term potentiation is widely considered 
to be the main mechanism for learning and memory. 
Long-term potentiation effectively enhances the synaptic weight 
and maintains this enhancement for a long time. In contrast, 
long-term depression is an important mechanism with the 
opposite function to long-term potentiation. This means that 
the synaptic weight is modified from high to low and the con-
nection between two neurons becomes weaker. Long-term 
depression contributes to forgetting memories and information 
storage. By alternately applying a series of 200 identical pulses 
(+1.3 and -1.75  V, 50  ns), long-term potentiation and depres-
sion with high-density nonvolatile states were obtained within 
a specific conductance range of 12–150 µS (Figure  3e). The 
long-term potentiation and depression processes for one cycle 
are shown in Figure S15 (Supporting Information). Figure S16 
(Supporting Information) shows a typical current curve during 
the application of the pulses. A parameter ΔG is introduced 
to indicate the conductance change after two adjacent pulses. 
The obtained stepped conductance states in both the rising and 
falling processes showed stable values. In addition, the con-
ductance state exhibits a linear relation with the ferroelectric 
domain evolution (Equation (3)), which allows the introduction 
of less additional “errors” for neural network calculation. Five 
hundred potentiation and depression cycles could be mimicked 
continuously by applying consecutive negative and positive 
spikes, reflecting reproducible switching. These results confirm 
good long-term plasticity in this FTJ device.

Spike-timing-dependent plasticity (STDP) is referred as being 
a form of Hebbian learning to illustrate the synaptic modifica-
tion affected by the relative timing of fired spikes of connected 
neurons. It often plays a major role in information processing 
or brain network functions.[34,35] The synaptic weight increases 
and long-term potentiation occurs when a presynaptic spike is 
triggered momentarily (tens of nanoseconds) ahead of a post-
synaptic spike (Δt > 0, where Δt is the relative time interval of 
the pre- and postsynaptic spikes). In contrast, when the order is 
reversed (Δt < 0), the synaptic weight decreases and long-term 
depression occurs. Meanwhile, the sign and magnitude of the 
change of synaptic weight precisely rely on Δt. As mentioned 
before, the top and bottom electrodes of the FTJ device can be 
regarded as the pre- and postsynaptic neurons, respectively. 
STDP forms with microsecond-scale times (four orders of mag-
nitude faster than that in the human brain) were achieved in 
our FTJ device. Antisymmetric Hebbian learning STDP forms 
were implemented by following the typical series of spikes used 
in biological synapses and electronic synapses (Figure 3f). ΔW 
represents the nonvolatile modification of synaptic weight. The 
spike schemes of the pre- and postsynapse are demonstrated 
in Figure  S17 (Supporting Information). The change of syn-
aptic weight is a function of Δt: LTP occurs if Δt > 0 and LTD 
occurs if Δt < 0. The shorter the Δt is, the higher the obtained  

Adv. Mater. 2020, 32, 1905764
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ΔW is. Interestingly, in response to specific stimuli, the initial 
state was found to be an important parameter for the STDP 
characters (Figure  3f). As the resistance of the initial state 
decreases, a higher ΔW was obtained for the potentiation case 
and lower a ΔW is obtained for the depression case. The law 
of antisymmetric Hebbian learning STDP can be simply fitted 
through an exponential function, as follows

W A
t

Wexp 0τ
∆ =

−∆



 + � (5)

where A is the scaling factor, τ is the time constant, and W0 
is a constant. The values of these parameters are summarized 
in Table S1 (Supporting Information). The fitting results are 
indicated by solid lines in Figure  3f. In addition to antisym-
metric Hebbian learning, symmetric Hebbian learning STDP 
form was also simulated in the FTJ device. The synaptic spike 
scheme, experimental data, fitting formula, and fitting results 
are provided in Figure S18 (Supporting Information).

To prove the STP and LTP properties, the memoriza-
tion of three letters with a 5 × 5 synapse array was initiated.  

The synapse array was operated on 25 individual FTJ devices. 
The electrical train memorized three letters in the synapse array: 
1) a letter “I” via the STP mode was stored using 10 stimuli 
with a low amplitude of 0.9 V and a high frequency of 5 MHz; 
2) a letter “O” via the LTP mode was stored using 10  stimuli 
with a high amplitude of 1.3 V and a high frequency of 5 MHz; 
3) a letter “P” via the STP mode was stored using 10  stimuli 
with a high amplitude of 1.3 V and a low frequency of 0.5 MHz 
(Figure  4a). All the synapses were initialized to a high resist-
ance state before electrical stimuli. The blue and orange arrows 
in Figure 4a indicate the event of the last pulse and the event 
25 µs after the last pulse, respectively. Figure S19 (Supporting 
Information) shows a typical EPSC curve corresponding to the 
stimuli trains. After training with the letter “I,” temporarily 
enhanced currents were rapidly attenuated to the initial state 
(Figure  4b,c). After training with the letter “O,” long-term 
memory occurred and the EPSC becomes larger (Figure 4d,e). 
After training with the letter “P,” short-term memory occurred. 
The excitatory pixels of the letter “O” are maintained after the 
pulses of “P” (Figure 4f,g). In summary, only the letter “O” was 
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Figure 4.  The dynamic process of short-term potentiation and long-term potentiation in a 5 × 5 artificial synapse array. a) Images of the letters “I,” 
“O,” and “P,” and the corresponding three kinds of pulse sequences, each of which consisted of ten consecutive stimulus pulses with duration of 
50 ns, amplitudes of 0.9 and 1.3 V, pulse frequencies of 5  and 0.5 MHz, which were inputted into the synapse array for representing “I,” “O,” and 
“P.” b,d,f) The images of “I,” “O,” and “P” just after the last pulse (expressed by the blue arrows in (a)). c,e,g) The images of “I,” “O,” and “P” at the  
25 µs moment after the last pulse (expressed by the orange arrows in (a)). The letters “I” and “P” were memorized in the short-term potentiation mode 
and the letter “O” was memorized in the long-term potentiation mode.
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memorized after the electrical training process because of its 
long-term memory nature. Separate processes for each letter 
“I,” “O,” and “P” are illustrated in Figures S20–S22 (Supporting 
Information), respectively. This experimental result clearly 
showed both good STP and LTP properties in one FTJ device.

Simulations of supervised learning using experimental 
long-term potentiation and depression were carried out 
based on a back propagation algorithm (Figure 5a). Here, the 
8 × 8 pixel image version (small image) of handwritten digits 
from the UCI image data set,[27] and the 28 × 28 pixel image 
version (large image) of handwritten digits from the MNIST 
handwritten data set[28] were utilized for learning. A crossbar 
with N input rows (green horizontal lines) and M output 
columns (blue vertical lines) was employed to carry out the 

weight updates for matrix operations (Figure 5b). In the back 
propagation algorithm, the crossbar was used to perform the 
vector-matrix multiplication and outer product update opera-
tions as part of a “neural core.” In order to properly simulate 
the device nonideality, the data in the long-term potentiation 
and depression processes were analyzed in detail. The cycle-to-
cycle variation is characterized in Figure 5c, in which the con-
ductance at each resistance state showed minor changes over 
500 switching cycles.

The minor conductance variation facilitates a reduction of 
the writing noise during the training process.[36,37] In addition 
to the conductance variation between cycles, the linearity of 
the weight update in the long-term potentiation and depres-
sion processes can also significantly affect the accuracy of the 
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Figure 5.  The simulation of back propagation in the FTJ device. a) A schematic diagram of a three layer neural network. b) A schematic diagram of a 
neural core with a crossbar structure to perform the analog matrix operations. The grayscale of each pixel is represented by the value of input voltage 
and the output value is represented by the value of output current. The synaptic weight is indicated by the conductance of each resistive memory. c) The 
overlapping plot of the long-time potentiation and depression processes over 500 cycles. The statistical ΔG versus conductance plots for d) potentiation 
and e) depression. The training accuracy of BTO and STO based devices for f) a small image and g) a large image.
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training process. Here, the linearity of the weight update can be 
defined quantitatively as[38]

L
G n G n

G G

P D

P P

max ( ) (201 )

(200) (1)
for n 1 to 200=

− −
−

= � (6)

where GP(n) and GD(n) are the conductance values after the 
nth potentiation pulse and nth depression pulse, respectively. 
For an ideal linear update case, linearity should be zero. The 
switching linearity of our FTJ-based device is the best one 
among two-terminal electronic synapses, to the best of our 
knowledge (Table S2, Supporting Information). It is only 
poorer than several three-terminal electrolyte-gated synaptic 
transistors, which decouple the write/read processes by 
using an additional gate terminal. The conductance devia-
tion between experimental values of long-term potentiation 
and depression processes is plotted in Figure  5d,e, respec-
tively. The neural network training[39] based on this BTO FTJ 
device achieved a high recognition accuracy (Figure  5f,g). 
The results of the training were comparable to the ideal 
accuracy, which represents the neural network algorithm 
limit. For recognizing a small image, an accuracy as high 
as 96.5% was achieved. The accuracy for recognizing large 
image approached 96.4%, which is a little lower than the 
numeric accuracy of 98%. However, the classification accura-
cies are only about 92% and 70% for small and large images 
in STO-based synapses with resistive switching, respectively. 
Table S2 (Supporting Information) shows the state-of-the-
art device performance of the artificial synapses. Our well-
designed synaptic device showed good performance in not 
only ferroelectric based devices but also other conductive 
filaments, ion migration, and phase change based memris-
tive devices.

In conclusion, we presented high-performance electronic 
synapses with ultralow femtojoule energy consumption, fast 
operation speed, and high “write” linearity using FTJs. By finely 
tuning the applied pulse parameters, the device can emulate 
both short- and long-term plasticity. These types of artificial syn-
apses emulate various biological synaptic plasticity by harnessing 
robust ferroelectric domain switching dynamics accompanied by 
the manipulation of the conductance states. One simple applica-
tion by using both LTP and STP is emulating associative learning 
with the famous classical conditioning Pavlov’s dog experi-
ments.[40] More importantly, we think that coexistence of LTP and 
STP in the same device could enable designing efficient brain-
like architectures. A simulated artificial neural network with 
supervised learning consisting of these synaptic devices exhib-
ited very high learning accuracies of 96.5% for the UCI image 
data set and 96.4% for the MNIST handwritten data set. These 
results demonstrate the device’s potential through ferroelectric 
domain switching for applications in energy-efficient neuromor-
phic computing.

Experimental Section
Device Preparation: BTO and STO epitaxial films were grown by 

PLD on (001)-oriented SNTO single-crystalline substrates using a 
XeCl excimer laser with a wavelength of 308 nm and a repetition rate 
of 2  Hz. The BTO films were deposited at 750 °C and cooled down 

to room temperature at 20 °C min−1 in a flowing oxygen atmosphere 
of 20  Pa. The STO films were deposited at 750 ˚C and cooled down 
to room temperature at 20 °C min−1 in a flowing oxygen atmosphere 
of 1 Pa. The deposition rate of BTO and STO films was calibrated by 
X-ray Reflection (XRR). Top platinum electrodes with a radius of 10 µm 
were fabricated on the films using ultraviolet lithography and e-beam 
evaporation.

Characterization: The surface morphology, PFM imaging, local 
ferroelectric properties, and current mapping of BTO/SNTO 
heterostructure were performed using a commercial scanning probe 
microscope (Asylum Research MFP3D). Pt/Ti-coated silicon cantilevers 
were used for the surface morphology and PFM imaging. Conductive-
diamond-coated silicon cantilevers were adopted in the C-AFM 
measurements. Local hysteretic behaviors of the PFM phase and 
amplitude signals were collected in DART (dual A.C. resonance tracking) 
mode and the signals were recorded while the voltage was off. High 
quality of BTO epitaxial films was confirmed by scanning transmission 
electron microscopy measurements.[29]

Electrical Measurements: Electrical measurements were performed 
in vacuum by a Keithley 4200 semiconductor analyzer with 4225-PMU 
Ultra-Fast IV Modules. The shortest pulse that the ultrafast module 
could generate was 20  ns. The FTJ sample was placed in a LakeShore 
TTPX cryogenic probe station with 3 µm W probes. The test pulses 
were applied to the Pt top electrodes and the SNTO substrates were 
grounded, where positive bias means currents flow from the metal 
electrodes to the SNTO substrates.

Neural Network Simulations: The performance of a neural network was 
simulated on the basis of the platform CrossSim.[36] The simulator was 
based on backpropagation algorithm using experimentally measured 
conductance levels, linearity, and noise.[39,41] As shown in Figure  5a, 
the simulated neural network consisted of three layers including the 
input layer, hidden layer, and output layer. It was implemented by two 
crossbars. The number of input points was dependent on the number 
of image pixels, and the number of output points was dependent on 
the number of images to be identified. For small images (8 × 8 pixels), 
the network size of 64 (input layer) × 36 (hidden layer) × 10 (output 
layer) was used. Hence, the first crossbar structure comprised 64 input 
lines and 36 output columns. The data for each pixel were input at the 
same time. The number of inputs of the second crossbar was the same 
as the number of outputs of the first crossbar. The second crossbar 
structure comprised 36 input lines and 10 output columns. After 
training with 3823 images, the system was used to recognize a separate 
1979-image testing set. For large images (28 × 28 pixels), the network 
size was 784 × 300 × 10. A 60 000-image training set and a 10 000-image 
testing set were used.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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