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Canonical transformation plays a fundamental role in simplifying and solving classical Hamiltonian
systems. Intriguingly, it has a natural correspondence to normalizing flows with a symplectic constraint.
Building on this key insight, we design a neural canonical transformation approach to automatically
identify independent slow collective variables in general physical systems and natural datasets. We present
an efficient implementation of symplectic neural coordinate transformations and two ways to train the
model based either on the Hamiltonian function or phase-space samples. The learned model maps physical
variables onto an independent representation where collective modes with different frequencies are
separated, which can be useful for various downstream tasks such as compression, prediction, control, and
sampling. We demonstrate the ability of this method first by analyzing toy problems and then by applying it
to real-world problems, such as identifying and interpolating slow collective modes of the alanine dipeptide
molecule and MNIST database images.
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I. INTRODUCTION

The inherent symplectic structure of classical
Hamiltonian mechanics has profound theoretical and prac-
tical implications [1]. For example, the symplectic sym-
metry underlies Liouville’s theorem [2], which states that
the phase-space density is incompressible under the
Hamiltonian evolution. Canonical transformations which
preserve the symplectic symmetry in the phase space
have been a key technique for simplifying and solving
Hamiltonian dynamics. Respecting the intrinsic symplectic
symmetry of Hamiltonian systems is also crucial for stable
and energy-conserving numerical integration schemes [3]
which play central roles in the investigations of celestial
mechanics and molecular dynamics.
Molecular dynamics (MD) simulation investigates the

dynamical and statistical properties of matter by integrating
the equations of motion of a large number of atoms. MD is
a vital tool for understanding complex physical, chemical,
and biological phenomena, as well as for practical

applications in material discovery and drug design.
Modern MD simulation generates huge datasets, which
encapsulate the full microscopic details of the molecular
system [4]. However, this also poses challenges to the
development of data analysis tools. In particular, one
typically is interested in the emerging slow modes, which
are often related to the collective property of the system.
Moreover, identifying such degrees of freedom is also
crucial for an enhanced sampling of molecular conforma-
tions. See Refs. [5,6] for recent reviews.
Techniques of machine learning provide promising sol-

utions to these problems in MD. For example, the time-
lagged independent component analysis [7–11] separates a
linear mixture of independent time-series signals. The
approach shows a close connection to the dynamic mode
decomposition scheme developed in the fluid mechanics
community [12,13]. Many of these linear analysis methods
have nonlinear generalizations based on kernel approaches
[14,15]. More recently, several approaches of deep learning
have also been proposed to identify a nonlinear coordinate
transformation of dynamical systems [16–20]. Parallel to
these efforts, it is also an active research direction to extract
slow features in general time-series data [14,21,22] within
the community of machine learning.
In this paper, we develop a different approach by

exploiting the inherent connection between canonical
transformation and normalizing flows [23,24]. We design
a class of learnable neural canonical transformations to
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simplify complex Hamiltonian dynamics of the physical
variables towards independent collective motions in the
transformed phase space. Correspondingly, the canonical
transformation also reduces complex phase-space densities
towards an independent Gaussian prior distribution. After
learning, one can directly control nonlinear collective
variables with different frequencies by tuning independent
collective variables in the latent space of the normalizing
flows. We present learning algorithms and discuss appli-
cations of the neural canonical transformation on the
extraction of slow collective variables of the physical
and realistic dataset. We stress that most techniques that
target the extraction of dynamical information require time-
series data. However, in the present approach, the dynami-
cal information is imposed on the structure of the neural
canonical transformation, so that the training scheme does
not necessarily follow a specific time step, and the data
sample may come from other types of sampling methods,
such as Monte Carlo, biased dynamics, etc.
There have been related research works exploiting

the symplectic property in tasks of machine learning.
Reference [25] solves Hamiltonian equations using neural
networks. Reference [26] learns a Hamiltonian dynamics
from observed data using neural networks. Both studies
found that exploiting the symplectic structure in the learning
helps in boosting the performance.More recently, there have
beenmore preprints on related topics [27–31]which also aim
at improving the performance in tasks ofmachine learning by
imposing physics-motivated inductive biases in the design of
neural network. Our work finds the closest connection to
Ref. [32], which investigates classical integrable systems
using symplectic neural networks. Our paper targets more
general settings and aims to identify nonlinear slow collec-
tivemodes of complex systems. In addition, we also note that
there are efforts on learning neural networks for the force
fields of molecular dynamics [33–39], wherein imposing the
physical invariance is also crucial.
The organization of the paper is as follows. In Sec. II, we

reveal the key connection of canonical transformation to
normalizing flows with the symplectic condition. In Sec. III,
we present the design and training of the symplectic neural
networks for canonical transformation. We also discuss
potential applications of the neural canonical transforma-
tion. In Sec. IV we demonstrate applications of the neural
canonical transformation to toy problems and realistic data.
Finally, we discuss possible prospects of neural canonical
transformation in Sec. V.

II. THEORETICAL BACKGROUND

We review the canonical transformation and its con-
nection to the normalizing flow model.

A. Canonical transformation of Hamiltonian systems

We denote the canonical variables, namely the momenta
and coordinates of a Hamiltonian system, as a row vector

with 2n elements x≡ ðp; qÞ. The Hamiltonian equation can
be concisely written as _x ¼ ∇xHðxÞJ, where _x denotes the
time derivative of the canonical variables. HðxÞ is the
Hamiltonian function and

J ¼
�

I

−I

�

is a 2n × 2n symplectic metric matrix.
The canonical transformation is a bijective mapping from

the original canonical variables to a new set of canonical
variables, i.e., T ∶x ↦ z≡ ðP;QÞ, whose Jacobian matrix
Mij ¼ ∇xjzi satisfies the symplectic condition

MJMT ¼ J: ð1Þ

Canonical transformation preserves theHamiltonian equa-
tion, i.e., one has _z¼∇zKðzÞJ, where KðzÞ¼H∘T −1ðzÞ is a
transformed Hamiltonian in terms of the new phase-space
variables. The canonical transformation establishes a
bijective mapping between the Hamiltonian trajectories
in the original and the transformed phase spaces. Thus, one
can search for canonical transformations which simplify
and even solve the Hamiltonian dynamics. One such
searching strategy is to compose elementary canonical
transformations since the symplectic condition Eq. (1)
forms a group.

B. Normalizing flow models

Generative modeling aims at modeling the joint distri-
bution of complex high-dimensional data [40]. A gener-
ative model can capture the key variations of the dataset and
draw samples efficiently from the learned probability
distribution. A large class of generative models achieves
these goals by learning a transformation from a simple
latent distribution to a complex physical distribution.
Examples well known to the machine-learning community
include the generative adversarial networks (GAN) [41],
the variational autoencoders (VAE) model [42], and the
normalizing flow models [23,24].
The normalizing flow models, or the flow-based gen-

erative models, are particularly suitable for our purpose
since they employ a bijective mapping from the latent space
z to the target space x for the probability transformation.
Essentially, the normalizing flow models perform a change
of variables to induce transformations in the probability
densities. Typically, the normalizing flow model transforms
a simple prior distribution of the latent variables following,
e.g., the Gaussian distribution N ðz; 0;ΣÞ with zero mean
and covariance Σ to the more complex distribution of the
realistic data, and vice versa.
There have been a great variety of normalizing flow

models [43–47] that achieved nice performance in applica-
tions ofmachine learning. Compared toGANandVAEs, the
normalizing flow models have appealing features such as
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tractable likelihood for anygivendatax and exact reversibility
between z from x. These features are particularly attractive
for principled and quantitative scientific applications such
as learning renormalization group flow [48], holographic
mapping [49], Monte Carlo sampling [50–52], molecular
simulations [53], and spin glasses [54]. Interestingly, in the
continuous-time limit, the normalizing flow model exhibits
intriguing connections to a variety of topics including
dynamical systems, ordinary differentiation equations, opti-
mal transport theory, and fluid dynamics [55–57].

C. Connections between canonical transformation
and normalizing flow models

Since canonical transformations are changes of variables
in the phase space, they can be naturally parametrized
and learned as normalizing flow models with the added
symplectic condition. Moreover, it is instructive to consider
the probabilistic interpretation of this change of variables.
Consider the phase-space density in the canonical ensemble
πðxÞ ¼ e−βHðxÞ=Z, where Z ¼ R

dxe−βHðxÞ is the partition
function, β ¼ kBT is the inverse temperature. The change
of variables to a simplified Hamiltonian function KðzÞ
implies reaching a simplified density in the latent phase
space e−βKðzÞ=Z. Thus, one can regard the canonical
transformation as a flow-based generative model connect-
ing the physical and latent phase spaces and the associated
phase-space densities. There is, however, a crucial sym-
plectic constraint in Eq. (1) on the transformation compared
to ordinary normalizing flow models. From the generative
modeling perspective, the additional symplectic condition
further restricts the expressibility of the network. On the
other hand, the symplectic inductive bias offers a physical
guarantee and interpretability on the training results, e.g.,
the network will always be a canonical transformation that
preserves the dynamics in the latent space. Table I summa-
rizes the connection between canonical transformation and
normalizing flow.
This key insight has several profound consequences.

First, one can search for canonical transformations by
learning the flow models in the phase space, which
simplifies complex Hamiltonians both in the statistical
and in the dynamical senses. Second, the learned latent
spaces attain the physical meaning of transformed

canonical variables which can be useful for various down-
stream tasks. Last, the symplectic neural network neces-
sarily has the volume-preserving property, which can be
computationally efficient since the Jacobian determinant is
always unity by construction.

III. CANONICAL TRANSFORMATION USING
NORMALIZING FLOW MODELS

It is usually difficult to devise useful canonical trans-
formations for generic Hamiltonians since it typically
involves solving a large set of coupled nonlinear equations.
However, building on the connections of canonical trans-
formation and normalizing flow models [23,24], we can
construct a family of expressive canonical transformations
with symplectic neural networks and train them with
optimization techniques.
To train the model, one can follow either the variational

approach or the data-driven approach. As a result, the
neural canonical transformation helps simplify the dynam-
ics and identify nonlinear slow collective variables of
complex Hamiltonians.

A. Model architectures

As a flow-based generative model, the neural canonical
transformation consists of a symplectic network and a prior
distribution which corresponds to the transformation and
the target phase density distribution, respectively. In the
most general setting, the canonical transformation can
even mix the momenta and coordinates. Here, we restrict
ourselves to point transformations [58] for balanced flex-
ibility and interpretability. We list several other possible
implementations of the neural canonical transformations
in the Appendix A. We note that one can compose
symplectic neural networks to form more expressive
canonical transformations.

1. Neural point transformations

In the point transformation, one performs a nonlinear
transformation to the coordinates q and a linear trans-
formation to the momenta p accordingly,

Q ¼ F ðqÞ; ð2Þ

P ¼ pð∇qQÞ−1 ¼ p∇Qq: ð3Þ

The overall transformation in the phase space T ∶x ¼
ðp; qÞ ↦ z ¼ ðP;QÞ satisfies the symplectic condition
Eq. (1) [58]. Training of point transformation will involve
both momenta and coordinates in the phase space. Since
the coordinate transformation Eq. (2) is independent of
momenta, we can use the resulting coordinates Q alone as a
set of collective coordinates.
The coordinate transformation F∶q ↦ Q in Eq. (2) can

be any nonlinear bijective mapping. We implement it with a

TABLE I. The correspondence of a canonical transformation
and normalizing flow. See Sec. II C for explanations of the
connection.

Canonical transformation Normalizing flow

x ¼ ðp; qÞ Physical variables
z ¼ ðP;QÞ Latent variables
x ↔ z Symplectic flow
e−HðxÞ=Z Physical phase-space density

e−KðzÞ=Z Latent phase-space density
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real-valued non-volume-preserving (real NVP) network
[45], which is a typical normalizing flow model [23,24].
The momenta transformation has the form of a vector-
Jacobian product, which is commonly implemented for the
reverse mode automatic differentiation [59]. So we can
leverage the automatic differentiation mechanism for the
momentum transformation. In practice, we run the coor-
dinate transformation first forward and then reverse for
q ¼ F−1ðQÞ. Then, we compute its inner product with the
initial momenta p · q. Finally, we compute the derivative of
the scalar with respect to Q to obtain the transformed
momenta P in Eq. (3).

2. Latent-space Hamiltonian and prior distribution

We assume the transformed Hamiltonian in the latent
space has the simple form of an independent harmonic
oscillator

KðzÞ ¼
Xn
k¼1

P2
k þ ω2

kQ
2
k

2
; ð4Þ

where ωk are learnable frequencies for each pair of
conjugated canonical variables. Without loss of generality,
we set the inverse temperature in the latent space to be
one. Therefore, in terms of canonical density distribution,
the prior density in the latent space is an independent
Gaussian N ðz; 0;ΣÞ ¼ ½ðQn

k¼1 ωkÞ=ð2πÞn�e−KðzÞ, where
Σ ¼ diagð1;…; 1|fflfflffl{zfflfflffl}

n

;ω−2
1 ;…;ω−2

n|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n

Þ is a diagonal covariance

matrix. In this setting, each pair of canonical variables in
the latent space corresponds to an independent collective
mode with a learnable frequency. Thus, after training one
can select a desired number of slow modes according to the
frequencies.

B. Training approaches

The principle for training is to match the phase-space
density of the generative model ρ to the target density π.
Depending on specific applications one may either have
direct access to the Hamiltonian function or the samples
from the target distribution. Thus, we devised two training
schemes of the neural canonical transformation based on
variational calculation and the data-driven approach,
respectively.

1. Variational approach

We can learn the canonical transformation based on the
analytical expression of the physical Hamiltonian. For this
purpose, we minimize the variational free energy

L ¼
Z

dx ρðxÞ½ln ρðxÞ þ βHðxÞ�: ð5Þ

This objective function is upper bounded by the free
energy since Lþ lnZ ¼ KLðρkπÞ ≥ 0, where the

Kullback-Leibler (KL) divergence is a non-negative mea-
sure of the dissimilarity between the model and the target
distributions. The equality is reached only when two
distributions match each other. The objective function of
this form was recently employed in the probability density
distillation of generative models [60].
To evaluate Eq. (5) we first draw samples from the normal

distribution and then scale them according to the frequencies
in the prior distribution to obtain z ∼N ðz; 0;ΣÞ. Next, we
pass the samples through the symplectic transformation
to obtain x ¼ T −1ðzÞ, as shown in Fig. 1(a). Since the
symplectic transformation is volume preserving, the prob-
ability density of the produced samples reads ρðxÞ ¼
N ðz; 0;ΣÞ. The objective function is estimated on these
samples as L ¼ Ex∼ρðxÞ½ln ρðxÞ þ βHðxÞ�. To minimize the
objective function we compute the gradient over such a
sampling procedure with the reparametrization trick [42],
which is an unbiased and a low variance gradient estimator
for the learnable parameters [61].

2. Maximum likelihood estimation

Alternatively, one can also learn the canonical trans-
formation in a purely data-driven approach. Assuming one
already has access to independent and identically distrib-
uted samples from the target distribution πðxÞ, one can
learn the neural canonical transformation with the maxi-
mum likelihood estimation on the data. This amounts to
performing the density estimation in the phase space with a
flow-based probabilistic generative model. The goal is to
minimize the negative log-likelihood (NLL) on the dataset
D ¼ fxg

NLL ¼ −Ex∼D½ln ρðxÞ�; ð6Þ

which reduces the observed phase-space density and the
model density KLðπkρÞ based on empirical observations.
To train the network we run the transformation from the
physical to latent space as shown in Fig. 1(b) and compute
the model density ρðxÞ ¼ N ðz ¼ T ðxÞ; 0;ΣÞ.

(a)

(b)

FIG. 1. A neural canonical transformation maps between the
latent variables z and physical variables x via a symplectic neural
network. The transformation preserves the Hamiltonian equation
and connects the phase-space trajectories in the physical and the
latent spaces. There are two ways to train the neural canonical
transformation: (a) variational free energy based on the Hamil-
tonian [Eq. (5)]. (b) density of phase-space estimation based on
data [Eq. (6)].
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The density estimation Eq. (6) requires the phase-
space data, which involves both the coordinates and the
momenta information. This appears to pose difficulties for
applications to MD data which typically only contain the
trajectory in the coordinate space. Fortunately, the
momenta and coordinate distribution are factorized for
separable Hamiltonians encounters in most MD simula-
tions. That is, the momenta follow an independent
Gaussian distribution whose variances depend on the atom
masses and temperature. Therefore, one can exploit this
fact and augment the training dataset by sampling momenta
data directly from a Gaussian distribution.

C. Applications

Neural canonical transformation learns a latent repre-
sentation with independent modes and simplified dynam-
ics. In principle, the learned representation is useful for the
prediction, control, and sampling of the original system.
We list a few concrete applications below.

1. Thermodynamics and excitation spectra

Since the training approach of Sec. III B 1 satisfies the
variational principle, the loss function Eq. (6) provides an
upper bound to the physical free energy of the system.
Besides, one can also estimate entropy and free-energy
differences of the Hamiltonian with different parameters.
Similar variational free-energy calculation of statistical
mechanics problems using deep generative models have
been carried out recently in Refs. [48,49,52–54,57,62].
In particular, Ref. [53] has obtained encouraging results
for sampling equilibrium molecular configurations. The
present approach differs since it works in the phase space
which involves both momenta and coordinates, which
allows extract dynamical information in addition to stat-
istical properties.
Since the neural canonical transformation preserves the

Hamiltonian dynamics of the system, the learned frequen-
cies in the latent space Eq. (4) reflect the intrinsic timescale
of the target problem. In this way, the present approach
captures coherent excitation of the system in the latent-
space harmonic motion. One may also estimate the spectral
density based on the learned frequencies.

2. Identifying collective variables from slow modes

Since the neural canonical transformation automatically
separates dynamical modes with different frequencies in
the latent space, one can extract nonlinear slow modes of
the original physical system by selecting the latent varia-
bles with small frequencies.
The neural canonical transformation differs fundamen-

tally with these general time-series analysis approaches
[7,10–13] which do not exploit the domain-specific sym-
plectic symmetry of the Hamiltonian systems. Another
fundamental difference is that the canonical transformation

is performed in the phase space which contains both
momenta and coordinates, rather than for the time sequence
of the coordinates. Since the explicit time information was
never used in the present approach, there is no need to
choose the time lag hyperparameter as in the time-lagged
independent component analysis and related approaches.
Last, variational training of the transformation also
allows one to identify the canonical transformation directly
from the microscopic Hamiltonian even without the time-
series data.
We note that in practice, exact dynamical information is

usually lost when one cares only about the structural, or
static, information of a system. Sophisticated thermosetting
and enhanced sampling techniques are used to accelerate
the sampling, but, meanwhile, the dynamics is destroyed.
In this case, MD plays the role of a sampler, rather than a
real-time simulator, yet dynamical information can be
extracted from statistical data of Hamiltonian systems with
the neural canonical transformation approach.

IV. EXAMPLES

We demonstrate the application of the neural canonical
transformation with concrete examples. We start from
simple toy problems and then move on to more challenging
realistic problems. In all examples, the trainable parts of the
network are the coordinate transformation F [Eq. (2)] and
the latent-space frequencies [Eq. (4)]. The code implemen-
tation is publicly available at [63].

A. Ringworld

First, we consider a two-dimensional toy problem with
the Hamiltonian H¼ 1

2
ðp2

1þp2
2Þþð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21þq22

p
−2Þ2=0.32

[50]. Canonical distribution of this Hamiltonian resides
in a four-dimensional phase space. The canonical ensemble
samples from πðxÞ ¼ e−HðxÞ=Z are confined in a manifold
embedded in the phase space due to the potential term. In
the Euclidean space, the coordinates are correlated.
Taking the Hamiltonian and training it with the varia-

tional approach, we obtain a neural point transformation
from the original variables to a new set of canonical
variables. Figure 2 shows the samples projected onto the
plane of latent coordinates Qk and the polar coordinate
variables φ ¼ arctanðq2=q1Þ; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þ q22

p
. One observes

a significant correlation between the slowest variable Q1

and the polar angle φ, while the other transformed
coordinate Q2 shows a strong correlation with the radius
variable r.
This example demonstrates that, as a bottom line, the

neural point transformation can automatically identify
nonlinear transformation (such as polar coordinates) of
the original coordinates. In the learned representation,
the dynamics of each degree of freedom becomes
independent.
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B. Harmonic chain

Next, we consider a harmonic chain with the
Hamiltonian H ¼ 1

2

P
n
i¼1 ½p2

i þ ðqi − qi−1Þ2�. We set q0 ¼
qnþ1 ¼ 0 to fix both ends of the chain. The system
can be readily diagonalized by finding the normal mode
representation H ¼ 1

2

P
n
k¼1ð _Q2

k þ ω2
kQ

2
kÞ, where ωk ¼

2 sin ½πk=ð2nþ 2Þ� is the normal mode frequency and
Qk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½2=ðnþ 1Þ�p P
n
i¼1 qi sin ½ikπ=ðnþ 1Þ� is the nor-

mal coordinate.
We train a neural point transformation with the varia-

tional loss Eq. (5) at the inverse temperature β ¼ 1.
Figure 3(a) shows learned frequencies in the latent-space
harmonic Hamiltonian Eq. (4) together with the analytical
dispersion. The agreement is particularly good for the low
frequencies which are populated by the canonical distri-
bution at the given temperature. Moreover, we pick the two
slowest coordinates Qk and compute their Jacobians with
respect to the physical variables qi as shown in Fig. 3(b).
The comparison shows that the neural canonical trans-
formation nicely identifies slow collective modes of the
system based on its Hamiltonian. On the other hand, the
model is also able to learn these slow modes from data. In

this simple case, modes with small frequency correspond to
latent variables with large covariance, which could also be
captured by the principal component analysis [64].
Having demonstrated that the neural point transforma-

tion reproduces conventional normal-mode analysis and
principal component analysis for the harmonic chain, we
move on to show the major strength of the present approach
in extracting nonlinear slow modes.

C. Alanine dipeptide

Proteins show rich dynamics with multiple emergent
timescales. As one of the protein’s building blocks, the
alanine dipeptide is a standard benchmark problem. Despite
being a small organic molecule, the alanine dipeptide
shows nontrivial dynamics that deserve study. The back-
bone of alanine dipeptide contains ten heavy atoms with the
simplified molecular-input line-entry system representation
CCð¼ OÞNCðCÞCð¼ OÞNC. It is known that the two
dihedral angles Φ and Ψ which control the torsion of
the molecule, as indicated in the inset of Fig. 4(a), are the
key degrees of freedom which show slow dynamics.
Here, we train a neural canonical transformation to

identify the slow modes of the alanine dipeptide molecule
based on raw MD simulation data. For the training, we use
the MD dataset [17,65] released at [66]. The dataset
consists of 250 ns of Euclidean space trajectory of the
ten heavy atoms in the alanine dipeptide at 300 K with an
integration step of 2 fs. Since the density estimation Eq. (6)
requires the phase-space data, we extent atom coordinates
data to the phase space by sampling momenta from the
Gaussian distribution whose variances depend on the atom
masses and temperature. Note that for the phase-space
density estimation we randomly shuffle the trajectory data,
thus we do not use any of the time frame information in the
training. We use the three MD independent trajectories at
[66] for the training, validation, and testing, respectively.
Each of them contains 250000 snapshots. We use the Adam

(a) (b)

FIG. 2. The Ringworld samples of Sec. IVA projected to the
plane of learned latent coordinates and the polar coordinates.

(a) (b)

FIG. 3. (a) The learned frequencies of harmonic chain present
in Sec. IV B in the prior distribution [Eq. (4)] and the analytical
normal-mode frequency. (b) The Jacobian ∇qiQk of the two
slowest collective coordinates with respect to the original
coordinates. Solid lines are the analytical solution.

(a) (b)

FIG. 4. (a) The learned frequencies of alanine dipeptide pre-
sented in Sec. IV C from the MD trajectories. The inset shows the
molecule with slow torsion angles. (b) The mutual information
between the few slowest modes and the torsion angles.
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optimizer [67] with a minibatch size 200 and an initial
learning rate 10−3 for training. We reduce the learning rate
by a factor of 10 if there is no improvement of the loss
function on the validation set for 10 training steps.
Figure 4(a) shows the learned frequencies of the alanine

dipeptide dataset, which spans a wide scale and suggests
the emergence of slow collective modes in the system. The
frequency of the slowest modes is smaller than the fastest
mode by more than 3 orders of magnitude. Moreover, there
is a notable gap in the frequencies, which suggests a
separation of the fast and slow modes in the system.
We identify the latent coordinates with the smallest

frequencies as the slowest nonlinear collective variables. To
connect these learned collective variables to empirically
known torsion angles, we estimate the mutual information
[68] between them and the two torsion angles Φ and Ψ in
Fig. 4(b). One sees that the first two latent coordinates show
a significant correlation with Ψ and Φ, respectively. The
mutual information between latent coordinates with larger
frequencies and these two torsion angles decreases rapidly.
Therefore, we conclude that the symplectic network has
successfully identified the relevant slow modes which
capture the low energy physics. Remarkably, this is done
without having any access to the time information in the
MD trajectory. This discovery highlights the usefulness of
imposing the symplectic symmetry in the flow to turn
statistical information into the dynamical one. We note that
despite showing large mutual information, the learned two
slowest coordinates do not exactly reproduce these torsion
angles. The reason being that the learning objective
encourages one to identify independent collective variables
whose marginal distributions are independent Gaussians,

while the marginal distributions of these torsion angles are
clearly not. Instead, this objective that favors independence
allows us to gain better control over the identified latent
variables, and thus offer advantages for practical purpose as
we show next.
Since the normalizing flow model is a bijective gen-

erative model, one can directly map latent variables to
molecular configurations. Figure 5(a) shows the generated
molecular conformation by tuning the two slowest modes
in the range Qk ∈ ½−1=ωk; 1=ωk�. One clearly sees that the
two slowest variables control the global geometry of the
molecule. Figure 5(b) shows generated samples in the two-
dimensional plane of torsion angles. The learned distribu-
tion is wider than the given dataset, which is a common
feature of the density estimation using the normalizing
flows [24]. Figure 5(b) also shows that smooth paths in the
spaces of learned slow latent variables may correspond to
nontrivial paths in the torsion angles plane. The neural
canonical transformation has learned a compact embedding
molecular conformations in the learned latent space.
Having a compact latent representation of the molecular

configurations allows one to design a smooth path between
stable conformations by interpolating a few latent variables.
Figure 6 shows a path connecting two molecular confor-
mations with the spherical linear interpolation of the two
slowest variables [69]. The interpolation gives a path along
the geodesic curve of the Gaussian distributed latent
variables and thus avoids unlikely molecular conforma-
tions. As the figure shows, the interpolation yields a curved
path in the torsion angle plane which avoids the low-density
region that may occur with a naive interpolation in terms of
atom coordinates or torsion angles.

FIG. 5. (a) Latent-space interpolation in the plane of the two slowest collective coordinates (Q1, Q2) generates various molecule
conformations. (b) Probability profile of the alanine dipeptide as a function of dihedral angles from generated samples of neural
canonical transformation. The paths corresponding to the path with the same color in (a).
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Moreover, thanks to the tractability of the normalizing
flow model one have an exact likelihood on the path for the
generated molecular unlike in the case of generating
molecular conformation VAE or GAN. This quantitative
access to the likelihood allows unbiased sampling of the
configuration space with rejection sampling [70,71] or
latent-space Monte Carlo updates [48,53].

D. MNIST handwritten digits

Finally, we apply the neural canonical transformation to
the problems of machine learning. We consider the MNIST
handwritten digits dataset, which contains 50 000 gray-
scale images of 28 × 28 pixels. These images are divided
into ten-digit classes. Treating the pixel values as coor-
dinate variables, we can view the digit classes as stable
conformations of a physical system [72]. Similar to the
dipeptide studied in the Sec. IV C, one conjectures that
the transition between conformations are slow, while the
variations within the digits classes are the fast degrees of
freedom. We assume each pixel has unity mass and
augment the dataset with momenta. Then, we perform
the density estimation in the phase space to train a neural
canonical transformation.
Figure 7(a) shows the dispersion of the MNIST dataset,

which contains a small portion of slow frequencies over all
the variables. To show that these slow modes contain the
relevant information of the digits classes, we pass only
these slow modes to a multilayer perceptron classifier and
perform supervised training. The classifier contains a single
hidden layer of neurons with rectified linear units. The
learned neural canonical transformation has its parameter

fixed and works as a feature extractor. By varying the
number of kept slow modes from 5 up to 35 out of the total
784 dimensions, one sees that the classification accuracy on
the test dataset quickly increases a plateau around 97% as
shown in Fig. 7(b). Reaching high classification accuracy
with only a few of the slow collective variables shows that
they indeed capture digit class information.
We perform an additional experiment to directly show

that the learned slow modes indeed capture the salient
features of the MNIST images, i.e., the digit classes.
As shown in the top panel of Fig. 8, we take a pair of
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FIG. 8. The coordinate transformation Eq. (2) maps the MNIST
images to a latent representation with independent frequency
modes. We concatenate slow latent variables of an image together
with the fast modes of another image and then map the combined
latent vector back to the image space with the inverse coordinates
transformation. The bottom panel shows the same experiment by
concatenating latent vectors at random.

(a)

(b)

FIG. 6. (a) A path from the molecular configuration at
(−125°,150°) to the configuration at (−75°,0°) obtained by
spherical linear interpolation of the two slowest latent variables.
The background is the probability profile of the alanine dipeptide
dataset on the plane of the dihedral angles. (b) The molecular
conformation along the interpolation path.

(a) (b)

FIG. 7. (a) The learned frequencies of the MNIST dataset.
(b) Classification accuracy on the test dataset based on nslow
slowest modes.
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images from MNIST and map both to latent space. Then,
we take nslow slowest latent vector from one image and take
the remaining ones from another image and concatenate
them together to form a latent vector. After mapping the
concatenated latent vector back to the image space, we see
that even using 20 slowest modes one can already change
the digit class. In comparison, if we perform the same
experiment with randomly selected nrandom modes without
considering the frequency order, one sees that one needs to
use a much larger number of latent variables to make the
transition of digit classes.
In Appendix B we perform conceptual compression

[45,73] using the slow modes learned by the neural
canonical transformation.

V. DISCUSSIONS

Neural canonical transformation extends a long-standing
theoretical tool with symplectic normalizing flows. It
provides a systematic way to simplify Hamiltonian dynam-
ics and extract independent nonlinear slow modes of
Hamiltonian systems and natural dataset.
Besides data analysis, the neural canonical transforma-

tion may open the door to address the sampling pro-
blem in MD simulations. As a bottom line, one is ready
to employ the existing enhanced sampling approaches
[74–76] with the learned slow modes as the collective
variables. Since these collective variables are differen-
tiable and exhibit slow dynamics, it fulfills the typical
requirement of collective variables. Moreover, one can
already sample feasible molecular configurations directly
by exploiting the learned canonical transformation as a
flow-based generative model. These samples would
approximate the target distribution well if the generative
model is trained well. One can further correct the
sampling bias by using the generative model as proposals
in the Markov chain Monte Carlo [70,71]. Last, one may
also perform Monte Carlo sampling in the latent space
and then map the latent vectors to the physical samples
[48,53]. These latent-space Monte Carlo updates extend
the enhanced sampling approach based on variable trans-
formations [77] to an adaptive setting.
It is also instructive to put the present approach in the

contexts of probabilistic generative models [43–47].
Conventional generative models are concerned with the
statistical properties of data in the configuration space with
coordinates only, while neural canonical transformations
deal with phase-space density. Therefore, they allow access
to dynamical information by exploiting the symplectic
structure in the transformation. Since the phase-space density
is factorized to the momenta and coordinate parts for
separable Hamiltonians, the KL divergence can be written
as the sum of two terms for the KL divergences of the
momenta and coordinates marginal distributions, respec-
tively. The phase-space KL divergence is lower bounded by
the one in the configuration space [78]. In this sense, one can

view the momenta as auxiliary variables that regularize the
training of the neural coordinate transformations.
A pressing issue with the latent variable generative

models is how to select a handful of most relevant latent
variables after training. There have been various attempts to
design hierarchical generative models [45,79–82] to cap-
ture global information of data with a few latent variables.
The neural canonical transformation differs by selecting the
collective variables according to the learned frequencies in
the latent space. Therefore, one can assign a dynamical
interpretation to the statistically learned latent representa-
tion. On the other hand, currently, we use a generic real
NVP model to perform the coordinate transformation.
Additional symmetry constraints like the invariance under
translation, rotation, and permutation among identical
particles, are useful for future applications [30,83]. In this
case, one may devise an equivariant transformation by
leveraging a symmetry-preserving energy model and using
it to drive a gradient flow [37,57].
We remark that reaching a perfect harmonic Hamiltonian

Eq. (4) in the latent space is generally not possible because it
requires the original system to be integrable. In fact, a
perfectly trained neural canonical transformation would
reveal the invariant torus of integrable systems as shown
inRef. [32]. Sowedonot expect the periodic dynamics of the
hidden variables under the prior harmonic Hamiltonian to
replace the dynamics of the physical variables. But we do
expect that the slow modes extracted from the procedure
would bemeaningful and useful for downstream tasks.More
generally, theKolmogorov-Arnold-Moser theory [84] shows
that the phase-space trajectory of nearly integrable systems
would only be deformed from quasiperiodic motions. Thus,
we expect the neural canonical transformation would work
well for systems with coherent collective motion. Along this
line, the present approach may also be useful to study
synchronization phenomena [85], where a collective motion
emerges out of complex dynamical systems. Finally, extend-
ing the present work to more general time-dependent
canonical transformations may give an even more powerful
tool to study many-particle dynamical systems.
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APPENDIX A: SYMPLECTIC FLOWS

We list several other forms of neural symplectic trans-
formation and discuss their relation to known constructions
in the literature.

1. Linear symplectic transformation

The simplest canonical transformation is a linear trans-
formation to the input variables. We parametrize the linear
symplectic transformation using the exponential map of its
Lie algebra [86],

z ¼ xeY with Y ¼
�
A B

C −AT

�
; ðA1Þ

where B, C are real symmetric matrices and A is an
arbitrary real matrix. One can implement Eq. (A1) via
efficient vector-matrix exponential multiplication. Since
the symplectic group is connected [86], the exponential
map covers all linear symplectic transformations. More-
over, one can obtain the reverse of the transformation by
acting e−Y instead. Accurate and efficient differentiation
through the matrix exponential is discussed in Ref. [87].
In the special case of B ¼ C ¼ 0 and A is a skew-

symmetric matrix, i.e., A ¼ −AT , the linear symplectic
transformation reduces to the orthogonal transformation of
both momenta and coordinates, which corresponds to the
normal-mode transformation.

2. Continuous symplectic flow

In general, one can parametrize the canonical transforma-
tion using a scalar generating functionGðλÞ. Integrating the
ordinary differential equation (ODE)

_λ ¼ ∇λGðλÞJ ðA2Þ

from time 0 to τ, one can transform the original variables
from λðt ¼ 0Þ ¼ x to λðt ¼ τÞ ¼ z. As a consequence, the
Hamiltonian evolution is a special form of symplectic flow in
the phase space with the generating function being the
Hamiltonian [1].
Equation (A2) corresponds to the infinitesimal canonical

transformation [1], which covers a broad family of sym-
plectic transformations discussed so far. For example, if the
generating function is a linear function of the momenta, we
will arrive at the neural point transformation equations (2)
and (3) introduced in the main texts. While if the generating
function is a quadratic function of λ we obtain the linear
symplectic transformation equations (A1).
The continuous symplectic flow falls into the framework

of Monge-Ampère flow in the optimal transport theory
[57], where the transportation is induced by a gradient
flow under a scalar potential function. The symplectic
structure in Eq. (A2) simplifies the computation due to the
volume-preserving property. In practice, the continuous

transformation equation (A2) can be implemented via the
neural ODE [56]. Since the symplectic symmetry is crucial
for the canonical transformation, it is crucial to employ
symplectic integrators [3] in the neural ODE implementa-
tion. In particular, if one employs a symplectic leapfrog
discretization of Eq. (A2) for a separable generating
function, one will arrive at the transformations discussed
in [32,51].

APPENDIX B: CONCEPTUAL COMPRESSION
OF THE MNIST DATASET

The extraction of the salient features as the slow modes is
useful for compressions. For example, conceptual compres-
sion is a lossy compression scheme that aims at capturing the
global information of the input data [45,73]. The conven-
tional approaches make use of the VAEs or the neural
networkswith a hierarchical structure.However,we perform
the compression based on the learned frequencies since the
symplectic network naturally separates fast and slow
degrees of freedom of the dataset. The top of Fig. 9 shows
the setup of conceptual compression with learned neural
canonical transformation. First, we use the learned nonlinear
coordinate transformation equation (2) tomap the data to the
latent space. Then, we pass only a few slow modes to a
decoder network. The decoder restores the image from the
latent space by running the inverse transformation as the
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FIG. 9. Conceptual compression using the learned collective
variables. One performs the coordinate transformation Eq. (2) to
the input data, and restores the data based on nslow slowest modes.
The remaining fast modes are thrown away and resampled from
the prior distribution.
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encoder network. To make up the missing information, we
simply sample the high-frequency modes from the prior
distribution and feed them into the decoder. The bottom of
Fig. 9 shows the results of the conceptual compression, that
from left to right we keep 5, 10, 15, 20, 25, 30, 35 of the
slowest collective variables. The conceptual compression
experiments show that the symplectic transformation cap-
tures the global information in the slow modes in the latent
space since one can restore the image with only a small
number of the slowest variables.

[1] V. I. Arnold,Mathematical Methods of Classical Mechanics
(Springer, New York, NY, 1989).

[2] J. Liouville, Note sur la Théorie de la Variation des
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