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We present an algorithm for studying quantum systems at finite temperature using continuous matrix
product operator representation. The approach handles both short-range and long-range interactions in the
thermodynamic limit without incurring any time discretization error. Moreover, the approach provides
direct access to physical observables including the specific heat, local susceptibility, and local spectral
functions. After verifying the method using the prototypical quantum XXZ chains, we apply it to quantum
Ising models with power-law decaying interactions and on the infinite cylinder, respectively. The approach
offers predictions that are relevant to experiments in quantum simulators and the nuclear magnetic
resonance spin-lattice relaxation rate.
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Introduction.—Despite being used as a standard method
for studying ground states of low-dimensional quantum
systems [1–4], tensor network approaches to thermal states
are still under continuous development [5–22]. Ideally, for
translationally invariant systems we would like to have a
method that directly works in the thermodynamical limit,
handles long-range interactions and two-dimensional
geometry well, has no imaginary-time discretization error,
and even better, provides access to dynamical properties
such as finite temperature spectral functions.
The existing approaches have made a trade-off in meet-

ing either this or that from the wish list. The difficulties
are that, although the partition function of a quantum
system could be formally treated as a tensor network
defined in a one-dimensional-higher space-time manifold
with an imaginary-time direction, the tensor network has a
periodic boundary condition in the time direction with a
periodicity given by the inverse temperature β ¼ 1=T.
Moreover, the tensor network is highly anisotropic as it
is continuous along the imaginary-time direction. These
features made it nontrivial to transferring those highly
successful tensor network approaches developed for the
ground-state calculation.
In this work, we present an approach to study quantum

systems at finite temperature centered around the concept
of continuous matrix product operators (cMPOs). The
approach works in the thermodynamic limit and the
continuous-time limit simultaneously. Besides the obvious
advantages of eliminating the finite-size and time-
discretization errors, the approach directly applies to
systems with long-range interactions by virtue of the
MPO representation. Moreover, a distinguishing feature
of the present approach is that it offers ways to

straightforwardly measure physical observables such
as unequal-time correlation functions and dynamical
responses at finite temperature. In analogy to the density
matrix renormalization group (DMRG) [3], quasi-one-
dimensional systems with a cylindrical geometry are also
within the scope of the cMPO method, which opens a way
to study statistical and dynamical properties of two-dimen-
sional quantum systems at finite temperature.
The present approach stems from a compact MPO

representation of the evolution operator for time evolving
long-range interacting systems [23]. Despite being simple
and elegant, the original MPO representation has an
intrinsic time-discretization error, which was shown to
be not accurate enough for practical calculations [23,24].
We show that one can eliminate the time discretization error
by formally taking the continuous-time limit in the tensor
network algorithm in the same spirit as the continuous-
time quantum Monte Carlo (QMC) approaches [25,26]. A
tensor network formed by cMPOs appears naturally in the
continuous-time limit. To contract such tensor network, one
encounters the continuous matrix product state (cMPS)
[27] as the dominant eigenvector of the cMPO. Having
such cMPS along the imaginary-time direction of finite
temperature quantum systems has been anticipated in
Refs. [28,29], but its implications for practical calculations
have been largely unexplored.
cMPO formulation.—There is a general recipe to con-

struct the MPO representation of a Hamiltonian H, includ-
ing those with long-range interactions [30–33]. Building on
such representation, one can also construct an accurate
MPO representation for the evolution operator e−ϵH pro-
vided the time step ϵ is sufficiently small [23,34]. Since we
will consider the limit of ϵ → 0, we shall not be concerned
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about the time discretization error and write the
evolution operator as a translationally invariant MPO,

, where the vertical legs of the MPO
tensor represent the d-dimensional physical Hilbert space at
each site, and the horizontal legs carry D-dimensional
virtual degrees of freedom. When viewing the left and right
legs of the MPO tensor as matrix indices, the tensor at each
site takes the same form [23]

ð1Þ

where the subscripts i; j ∈ ½1; D� are virtual indices
and each matrix entry is an operator acting on the d-
dimensional physical Hilbert space. In terms of the virtual
indices, the compact notation in Eq. (1) denotes that 1
(identity operator) and Q are scalars, L (R) is a (D − 1)-
dimensional row (column) vector, and P is a (D − 1)-
dimensional square matrix.Q is related to the local terms in
the Hamiltonian, L, R contain interaction to neighboring
sites, and P is responsible for long-range interactions. The
concrete form of Q, L, R, P can be read out from the MPO
representation of the Hamiltonian, examples of which are
given in Ref. [35].
In this framework, the partition function at finite temper-

ature is written as

ð2Þ

where the β=ϵth power of the MPO (representing the
infinitesimal evolution operator e−ϵH) indeed recovers
e−βH and the trace connects the remaining physical indices
pointing upwards and downwards. The partition function
Eq. (2) has an explicit tensor network representation
formed by stacking the local tensors defined in Eq. (1).
In the thermodynamic limit L → ∞, the tensor network has
an infinite cylinder geometry as shown in Fig. 1(a).
We highlight the central object of the present approach in

Fig. 1(a), the transfer matrix T , which is an MPO with
horizontal open legs along the spatial direction. In the limit
ϵ → 0, T becomes a cMPO with “length” β in the periodic

imaginary-time direction. In the thermodynamic limit, the
dominant eigenvalue of T , which we denote by λmax and
assume to be unique [51], completely determines the
partition function, Z ¼ limL→∞ λLmax [5,6]. The left and
right eigenvectors associated with λmax are respectively
denoted by hlj and jri and satisfy

T jri ¼ λmaxjri; hljT ¼ hljλmax: ð3Þ

Under the tensor network framework, we approximate
hlj and jri by using two MPSs with finite bond dimensions
[see Fig. 1(b)]. The MPSs are taken to be uniform, i.e.,
translationally invariant along the imaginary-time direction.
For instance, the MPS for jri is defined through a local
tensor

ð4Þ

where i ∈ ½1; D� is the index of the horizontal tensor legs in
the spatial direction. The MPS has bond dimension χ along
the imaginary-time direction. Hence, is the χ-dimen-
sional identity matrix, is a χ × χ matrix, and is a
(D − 1)-dimensional column vector, each entry of which is
a χ × χ matrix. The local tensor for defining hlj has the
same structure as Eq. (4), which contains , and . In
the limit ϵ → 0, both the left and right MPSs reduce to
cMPS. Compared to the original formulation of cMPSs in
the continuous space [27], the imaginary-time direction is
continuous and periodic in the present setting.
Given the left and right cMPSs, the dominant eigen-

value of T can be estimated from the quotient λmax ¼
hljT jri=hljri. First, to compute the overlap hljri in the
denominator, one can form a (temporal) transfer matrix
along the imaginary-time direction, where the connected
leg sums over the horizontal indices of two cMPS local
tensors. To the leading order of ϵ, one has [27]

ð5Þ

where already assumed summation over the
horizontal index, and is a χ2 × χ2 matrix by combining
two legs upward and downward. Given Eq. (5), the overlap
can be evaluated in the continuous-time limit as [27]

ð6Þ

Moreover, applying a cMPO to a cMPS yields another
cMPS, as long as the first-order terms in ϵ are retained.
Thus, T jri can be viewed as a cMPS defined via a local
tensor

(a) (b)

FIG. 1. (a) The partition function as a space-time tensor
network living on an infinite cylinder. (b) The transfer matrix
T as a cMPO and its left and right dominant eigenvectors as
two cMPSs.
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ð7Þ

where the subscript refers to tensors from T [see Eq. (1)].
Then, the overlap hlj and T jri involves another (temporal)
transfer matrix defined in a
similar way as Eq. (5), with being a χ2d × χ2d matrix.
Given this, the expectation reads

ð8Þ

It is worth emphasizing that taking the ϵ → 0 limit in
Eqs. (6) and (8) has eliminated the time discretization error.
By combining Eqs. (6) and (8), the free-energy density

f ¼ − lnZ=ðβLÞ takes a simple form:

ð9Þ

In the cases where the spatial transfer matrix T is
Hermitian, one has jli ¼ jri. One can directly minimize
Eq. (9) with respect to the cMPS tensors according to the
variational free-energy principle. This calculation is equiv-
alent to optimizing a periodic uniform cMPS as the
dominant eigenvector of a Hermitian cMPO. Without loss
of generality, notice that the temporal transfer matrices
and can always be gauged to be Hermitian, so are
and [52]. The matrix exponential can be evaluated with
eigendecomposition with a computational cost of Oðχ6Þ.
It is nevertheless possible to further reduce the complexity
by using an approximation scheme to compute the trace
exponentials. In particular, at the zero-temperature limit
β → ∞, the trace exponentials are dominated by the
smallest eigenvalues of and . In this case, the
scaling reduces to Oðχ3Þ if one employs a dominant
eigensolver for and .
In more general cases, the spatial transfer matrix T is

non-Hermitian. Under such a situation, we employ the
power method to find the cMPS approximations of the
dominant eigenvectors hlj and jri. In each step of the power
projection, we apply the transfer matrix T to an initial
cMPS with bond dimension χ and obtain a cMPS built by

with an enlarged bond dimension χd. We then compress
it back to bond dimension χ by variationally maximizing
the fidelity between the target cMPS jψi and T jri

F ¼ hψ jT jri=
ffiffiffiffiffiffiffiffiffiffiffiffi
hψ jψi

p
: ð10Þ

Calculations involved in this objective function are similar
to those of the free-energy density in Eq. (9). To optimize
these quantities, we perform gradient-based variational

optimizations using the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) quasi-Newton algo-
rithm, where we employ the differentiable programming
approach [53] to compute the gradient with respect to the
cMPS tensors conveniently. The explicit derivation of the
gradient and the initialization strategies of the variational
optimization are given in Ref. [35].
After obtaining the boundary cMPS approximations for

the dominant eigenvectors of the spatial transfer matrix T ,
one can compute a number of physical observables. First,
defining allows one to calculate the
thermal average of local operators as

ð11Þ

where, curiously, acts as an “effective Hamiltonian”
and plays the role of the single-site reduced density
matrix after leaving the physical indices untraced [54].
Having access to the temporal transfer matrix also
allows computing the local two-time correlation function
conveniently [55]

ð12Þ

An example of this is the spin-spin correlation func-
tion χðτÞ≡ hSzi ðτÞSzi i. The corresponding Matsubara
frequency susceptibility χðiωÞ is computed using the
eigenvalue decomposition of the effective Hamiltonian

. Crucially, one can directly perform analytic continu-
ation to real frequencies to obtain the dynamical suscep-
tibility χ00ðωÞ≡ Imχðiω → ωþ i0þÞ given the spectral
representation. Moreover, the local spectral function
SðωÞ ¼ 2χ00ðωÞ=ð1 − e−βωÞ follows according to the fluc-
tuation-dissipation theorem [36]. The details on the com-
putation of these dynamical quantities in the cMPO
framework are given in Ref. [35].
Moreover, the energy density and the specific heat can be

directly computed by taking the explicit derivative of the
free-energy density in Eq. (9) with respect to the inverse
temperature [56],

ð13Þ

ð14Þ

where the notations and stand for the
thermal average over the effective Hamiltonians and ,
respectively. Having a direct estimator for the specific heat
is more convenient than computing numerical differentia-
tion on a fine scan of temperature. However, one should
also be cautioned that the estimators in Eqs. (13) and (14)
hold only upon the convergence of the power projection.
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The specific heat estimator can be less reliable than
numerical differentiation at low temperature since it
involves subtraction of large numbers, similar to the case
of stochastic series expansion QMC method [57]. Our code
implementation is publicly available at Ref. [58].
Results.—As the first application, we consider the

quantum spin-1=2 XXZ chain

H ¼
X

hi;ji
ðSxi Sxj þ Syi S

y
j þ ΔSzi S

z
jÞ; ð15Þ

where Δ is the anisotropy parameter. The model reduces to
the quantum XY model at Δ ¼ 0 and the Heisenberg model
at Δ ¼ 1. In general, the cMPO representation for the
quantum XXZ chain has D ¼ 4 [35]. We note that, when
Δ ≥ 0, it is possible to perform a basis rotation to bring the
cMPO into a Hermitian form which allows a direct
variational optimization of Eq. (9). We nevertheless employ
the power method for its generality. The bond dimension of
the boundary cMPS is fixed to be χ ¼ 20 in this study.
Figure 2(a) shows the specific heat of the quantum XXZ

chain at various Δ. For both XY and Heisenberg cases, the
specific heat vanishes linearly with respect to T, which is in
agreement with conformal field theory predictions [59,60].
Figure 2(b) shows that the imaginary-time correlator
reaches higher values in the large time limit with increasing
of Δ, indicating the development of long-range correlations
along the imaginary-time direction. As a consequence, the
local susceptibility Tχloc ¼ ð1=βÞ R β

0 dτχðτÞ indicates the
local moment in the low-temperature limit as shown in
Fig. 2(c). In the XY case, all of the physical quantities
computed with the cMPO method are in excellent agree-
ment with the exact results [35].
Furthermore, Fig. 2(d) shows the local spectral function

SðωÞ calculated directly in the real frequency using the

spectral decomposition of . Although dynamical prop-
erties are more sensitive to the convergence of the boundary
cMPS than thermodynamic quantities, the comparison to
the exact results in the XY limit [61] shows encouraging
agreement, especially in the low-frequency region. In
particular, the zero frequency value of the local spectral
function is related to the nuclear magnetic resonance
(NMR) spin-lattice relaxation rate measured in experiments
[62] which indicates the strength of low-energy fluctua-
tions. There have been extensive efforts in studying this
quantity both analytically and numerically [63–69]. At high
frequencies, the multipeak structure and the inconsistency
with the exact solution are attributed to the finiteness of
the “effective Hamiltonian.” The high-frequency results can
be improved by increasing the bond dimension. By far,
two predominant numerical approaches are based on
analytic continuation of imaginary time correlation func-
tions [37,38,70] and Fourier transform of the extrapolated
real-time data [71–74]. The cMPO approach offers a way to
compute finite temperature spectral functions without
getting into the tricky business of analytic continuation
of imaginary-time data or prediction of real-time series.
Moreover, the cMPO approach applies more broadly to
frustrated systems with long-range interactions, which
means it is applicable to quasi-one-dimensional systems
with a cylindrical geometry, in a similar spirit as the
applications of the DMRG in this geometry [3]. Further
investigations are needed to fully explore this direction and
make an extensive and quantitative comparison between
various approaches. We remark that, as a bottom line, one
can always only deal with the imaginary-time data [75,76]
and employ recent advances in analytic continuation to
impose prior knowledge in the spectrum [77,78].
Finally, we consider the transverse field Ising model

with long-range interactions defined by the following
Hamiltonian:

H ¼ −
X

i<j

Ji;jZiZj − Γ
X

i

Xi; ð16Þ

where X and Z are Pauli matrices. First, assuming the spins
are arranged in a one-dimensional chain and the coupling
follows a power-law decaying interaction Ji;j ¼ J=jj − ijα,
the Hamiltonian is relevant to trapped ions and Rydberg
atom quantum simulators realized experimentally [79–82].
Although the power α is tunable in a range, we focus here
on the case of inverse-square interaction, i.e., α ¼ 2, where
the model exhibits a Kosterlitz-Thouless transition as the
temperature changes [83,84]. When J ¼ 1, in the ground
state the model exhibit a quantummulticritical point at Γc ≈
2.5236 [85,86]. To handle the long-range interaction, we
follow Ref. [32] to represent the power-law decaying
interaction as a sum of exponentials [35]. Figure 3(a)
shows the local susceptibility calculated in the inverse-
square Ising chain. In the ordered phase, the local

(a) (b)

(c) (d)

FIG. 2. (a) The specific heat computed with Eq. (14); (b) local
unequal time spin correlation function at β ¼ 20; (c) the local
susceptibility; (d) the local spectral function of the XXZ chain
with various anisotropies. The solid black lines are the exact
results in the XY limit.
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susceptibility remains a finite value at zero temperature,
while it vanishes in the disordered phase. By calculating
Tχloc for different transverse fields and temperatures, we
find our results consistent with the QMC prediction on the
location of the quantum multicritical point [85,86].
Next, we turn to the model in Eq. (16) on a quasi-one-

dimensional lattice with cylindrical geometry. Consider an
infinitely long cylinder with circumference W. If we
impose the helical boundary condition, the Hamiltonian
can be regarded as a one-dimensional Ising chain with
Ji;iþj ¼ J if j ¼ 1 or W, and zero otherwise. The bond
dimension of the cMPO is D ¼ W þ 1 [35]. In the two-
dimensional limitW → ∞, the transverse field Ising model
shows a quantum critical point at Γc ¼ 3.04438ð2Þ [39,87].
Here we focus on a finite width cylinder W ¼ 4 and study
the temperature dependence of the zero-frequency local
spectral function across the quantum critical point.
Figure 3(b) shows that in the ordered phase the spectral
function increases when lowering the temperature due to
the presence of elastic modes. Meanwhile, the spectral
function is suppressed in the quantum disorder phase at the
low-temperature limit. Such drastically different behaviors
were observed previously in the NMR relaxation rate
across the quantum critical point of the quantum Ising
chain [88]. Having a numerical probe of the quantity for the
quasi-one-dimensional case opens an opportunity to access
the spectral information of frustrated magnets and even
fermions in two dimensions [89,90].
Summary and discussion.—To summarize, we have put

forward an algorithm for studying quantum systems at
finite temperature by developing cMPO techniques. This
approach works directly in the thermodynamic limit and
does not have any time-discretization errors. Moreover, this
approach works well for long-range interactions and can
compute local dynamical properties. The basics of the
present approach is the MPO representation of the evolu-
tion operator in the continuous-time limit. For future works,
the compression scheme for MPO representation of long-
range interacting Hamiltonians [91–93] may be used to
obtain more compact cMPOs for thermal state calculations.
In the cMPO framework, the effective Hamiltonians and

play a central role in the computation as well as
governing the physics. It would be worth investigating their
properties and universal behaviors more closely.
The cMPO representation can also be extended to

higher-dimensional tensor networks [35]. Given the
contraction algorithm of the partition function in the
1þ 1 dimensions presented here, one envisions a con-
traction scheme in 2þ 1 dimensions along the line of
Refs. [94–96], which would directly provide thermal
properties of infinite two-dimensional systems other than
the cylinders considered here. However, this algorithm also
features nested variational optimization and projection with
higher computational costs, which deserve further inves-
tigation [97].
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