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We provide a systematic and self-consistent method to calculate the generalized Brillouin zone (GBZ)
analytically in one-dimensional non-Hermitian systems, which helps us to understand the non-Hermitian
bulk-boundary correspondence. In general, a n-band non-Hermitian Hamiltonian is constituted by n
distinct sub-GBZs, each of which is a piecewise analytic closed loop. Based on the concept of resultant, we
can show that all the analytic properties of the GBZ can be characterized by an algebraic equation, the
solution of which in the complex plane is dubbed as auxiliary GBZ (aGBZ). We also provide a systematic
method to obtain the GBZ from aGBZ. Two physical applications are also discussed. Our method provides
an analytic approach to the spectral problem of open boundary non-Hermitian systems in the
thermodynamic limit.
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Introduction.—Bulk-boundary correspondence (BBC)
has played a fundamental role in the development of
topological band theory [1–3]. For example, the chiral
edge state can be faithfully predicted by the Chern number.
A hidden assumption of the celebrated BBC is that the
bulk properties of the open boundary condition (OBC)
Hamiltonian can be well approximated by the Bloch
Hamiltonian with periodic boundary condition (PBC)
[4]. However, this hidden assumption is challenged in
some non-Hermitian systems recently [5–49]. To be more
precise, when the OBC Hamiltonian has non-Hermitian
skin effect [5–26], the spectrum between OBC and PBC
can be totally distinct [5–13]. It has been revealed that
much important information of the OBC Hamiltonian can
be encoded from the generalized Brillouin zone (GBZ)
[5,6,10,11], which is a generalization of Brillouin zone
(BZ) under the OBC in both Hermitian and non-Hermitian
systems. Although the OBC breaks the translational sym-
metry and the generalization of the BZ seems odd, the basic
idea of GBZ is to find a suitable generalized Bloch
Hamiltonian (GBZ Hamiltonian) such that the boundary
scattering can be regarded as a perturbation. Thus the
calculation of GBZ becomes important and has drawn
extensive attentions recently [5–20,28–34,50–53].
Unfortunately, up to now, there is no universal analytical
method to calculate the GBZ, and the numerical method is
not only time consuming but also unreliable due to the
existence numerical errors that are extremely sensitive to
the lattice size and calculation precision [54,57–59]. In this
Letter, we solve this challenging problem analytically

based on the concept of auxiliary GBZ (aGBZ). We show
that the GBZ of a n-band Hamiltonian has n distinct
sub-GBZs, corresponding to the n distinct bands. Each sub-
GBZ is a piecewise analytic closed loop, and can be
described by a common algebraic equation, namely, the
aGBZ equation, which can be calculated based on the
concept of resultant of polynomials [54,60–62]. We also
provide a systematic method to pick up the GBZ from
aGBZ. As applications of our method, we discuss the
perturbation-failure effect and the BBC in the case where
each band has its respective, distinct sub-GBZ.
BBC and GBZ.—We start from the following one-

dimensional (1D) Bloch Hamiltonian:

HðkÞ ¼ H0ðkÞ þ iλH1ðkÞ; λ ∈ R; ð1Þ

where H0=1ðkÞ ¼ H†
0=1ðkÞ. When λ ¼ 0, HðkÞ becomes

Hermitian. As a result, the following discussion is also
applicable for the Hermitian case. In general, Eq. (1) with
OBC has two different types of nontrivial boundary states,
the conventional one that has a Hermitian counterpart, and

FIG. 1. The non-Hermitian bulk-boundary correspondence has
twofold meaning.
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the non-Hermitian skin modes without a Hermitian
counterpart. Therefore, non-Hermitian Hamiltonians have
two different types of BBC as shown in Fig. 1. One relates
the conventional boundary state to the wave function
topology of the GBZ Hamiltonian HðβGBZÞ [5]. Another
relates the non-Hermitian skin modes to the (energy)
spectra topology of the Bloch Hamiltonian HðβBZÞ
[11,12]. When the spectra topology is trivial, skin modes
do not exist, and GBZ coincides with BZ. As a result, the
conventional boundary state can be faithfully predicted by
the wave function topology of the Bloch Hamiltonian.
Actually, the Hermitian Hamiltonian belongs to this case.
However, in general, GBZ and BZ are not identical. In this
case, if we want to study the boundary states protected by
the wave function topology, the information of GBZ is
necessary.
GBZ and aGBZ.—In order to characterize the

non-Hermitian skin modes, we first extend the crystal
momentum from real numbers to the entire complex plane.
SinceHðkÞ ¼ Hðkþ 2πnÞ, a natural extension of Eq. (1) is

fHðkÞ; k ∈ Rg → fHðβ ¼ eikÞ; k ∈ Cg: ð2Þ

The eigenvalues of HðβÞ are determined by the following
characteristic equation:

fðβ; EÞ ¼ det½E −HðβÞ� ¼ Pðβ; EÞ
βp

¼ 0; ð3Þ

where p is the order of the pole of fðβ; EÞ. For example, in
the Hatano-Nelson model HðβÞ ¼ μþ t1β þ t−1=β [63], it
is obvious that p ¼ 1 and Pðβ;EÞ¼−t1β2þðE−μÞβ− t−1.
Geometrically, the characteristic equation, Eq. (3), defines a
2D (Riemann) surface in the 4D space ðβ; EÞ ∈ C2.
According to fðβ;EÞ¼Q

n
μ¼1½E−EμðβÞ�¼0, each energy

band (or root) E ¼ EμðβÞ corresponds to a branch of
the multivalued function. When the boundary condition
is fixed to PBC or OBC, the corresponding Bloch
band (fEμðβBZ;μÞ;μ¼1;…;ng) or GBZ band (fEμðβGBZ;μÞ;
μ ¼ 1;…; ng) become a set of closed loops on the Riemann
surface. As shown in Figs. 2(a) and 3(a), the GBZ is the
projection of the GBZ band on the complex β plane.
The aGBZ is defined by the projection of the following

two equations on the complex β plane,

fðβ; EÞ ¼ fðβeiθ; EÞ ¼ 0; θ ∈ R: ð4Þ

The mathematical meaning of aGBZ is that for a given
point β0 on it with fðβ0; E0Þ ¼ 0, there must exist a
conjugate point β̃0¼β0eiθ0 on it satisfying fðβ̃0; E0Þ ¼ 0
[64]. Therefore, one can define the root ordering of β0 ∈
βaGBZ via the following procedure: (i) solve fðβ; E0Þ ¼ 0;
(ii) order the roots by the absolute value; (iii) identify the
ordering of two roots that have the same absolute value as
jβ0j. For example, if jβ0j ¼ jβmðE0Þj ¼ jβmþ1ðE0Þj, then,

ðm;mþ 1Þ is the root ordering of β0. This root ordering
will be used to pick GBZ from the aGBZ. Since there
exist five variables ðReβ; Imβ;ReE; ImE; θÞ and four con-
straint equations Ref ¼ Imf ¼ Refθ ¼ Imfθ ¼ 0, where
fθ ≔ fðβeiθ; EÞ, the solution of Eq. (4) is a 1D curve in the
5D space. When the additional degrees, θ and E, are
eliminated, it can be shown that the constraint equation of
the aGBZ is an algebraic equation of Reβ and Imβ,

FaGBZðReβ; ImβÞ ¼
X
i;j

cijðReβÞiðImβÞj ¼ 0: ð5Þ

In the Supplemental Material [54], we show how to prove
Eq. (5) and calculate the coefficients cij by using the
concept of resultant [54,60–62]. The solid lines in Fig. 2(b)
with different colors show an example of aGBZ of the
following model HðβÞ ¼ −1=6 − 1=ð2β3Þ þ 8=ð5β2Þ þ
10=ð3βÞ þ 4β þ 2β2 þ β3. Obviously, the aGBZ is con-
stituted by a set of analytic arcs joined by the self-
intersection points.
Now we show how to obtain the GBZ from aGBZ.

Notice that any analytic arc on the aGBZ can be labeled by
a common root ordering, as shown in Fig. 2(b) with
different colors [65]. For the single-band models, the
GBZ is constituted by all the arcs labeled by ðp; pþ 1Þ
[11,12], e.g., (3,4) in our example. As shown in Fig. 2(c)
and the Supplemental Material [54], our analytical result is
consistent with the numerical results with N ¼ 3000

(a) (b)

(c)

FIG. 2. Non-Hermitian bands, aGBZ, and GBZ of the single
band model discussed in the main text. (a) The Bloch band and
GBZ band can be regarded as different loops on the 2D surface
fðβ; EÞ ¼ 0. (b) The BZ, aGBZ, and GBZ, where different colors
represent different root ordering of the analytic arcs, and the red
points represent the self-conjugate points satisfying βp ¼ βpþ1.
The GBZ is constituted by the ðp; pþ 1Þ arcs (red one). (c) The
numerical results with N ¼ 3000 (lattice size) and P ¼ 1800
(digit precision).
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(lattice size) and P ¼ 1800 (digit precision). However,
according to the numerical result, we do not know whether
there exist self-intersection points on the GBZ [66]. We
note that under the current N and P, the calculation time is
11 days. If we continue to improve the lattice size and
numerical accuracy, the calculation time will become
unacceptable. We further note that if the calculation
precision is not so high (P ¼ 1800), the numerical result
for N ¼ 3000 may become incorrect [54]. This is the
central difficulty of the numerical calculation: the numeri-
cal diagonalization error of non-Hermitian Hamiltonians is
highly sensitive to the matrix size and sometimes may lead
to incorrect simulations [54,57–59]. Our analytical method
overcomes this difficulty and can be further used to verify
the accuracy of numerical calculations. On the GBZ, there
exists a set of self-conjugate points satisfying β̃p ¼ βpþ1, as
shown in Fig. 2(b) with red points. A statement about the
self-conjugate points is that any analytic arc containing
them must form the GBZ. In summary, the aGBZ is a
minimal analytic element containing all the information of
GBZ and the GBZ is in general a subset of aGBZ.
Generalizing the discussion to the multiband system, we

will show that the sub-GBZs for each band can be distinct.
Consider the following two-band example,

HðβÞ ¼
�
t0 þ t−1=β þ t1β c

c w0 þ w−1=β þ w1β

�
; ð6Þ

with t0¼ 4; t1¼ t−1¼ 1;w0¼−2;w1¼ 3;w−1 ¼ 1;c¼−1.
The eigenvalues of the Hamiltonian are

E�ðβÞ ¼ h0ðβÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ h2zðβÞ

q
; ð7Þ

where h0=zðβÞ ¼ ½h1ðβÞ � h2ðβÞ�=2, h1ðβÞ ¼ t0 þ t−1=
β þ t1β, h2ðβÞ ¼ w0 þ w−1=β þ w1β. As shown in
Fig. 3(a), the red and blue surfaces show the real parts
of EþðβÞ and E−ðβÞ, respectively. When the OBC is
chosen, E�ðβGBZ;�Þ (red and blue solid lines) define two
closed loop on the branches E�ðβÞ, respectively. As shown
in Fig. 3(a), their projections on the complex plane are the
multiband GBZ, which is constituted by two distinct
sub-GBZs, βGBZ;þ and βGBZ;−.
If the multiband Hamiltonian is not block diagonal and

has no additional symmetry, the GBZ is also constituted by
all the arcs labeled by ðp; pþ 1Þ [5,10,11,49], e.g., (2,3) in
our example with c ≠ 0. However, if the Hamiltonian is
block diagonal, e.g., c ¼ 0 in Eq. (6), then, the GBZ is the
union of the ones belonging to each nonblock diagonal
part, namely, βGBZ ¼ βGBZ;1 ∪ βGBZ;2 for c ¼ 0 in Eq. (6)
[67]. We now extract the band information from aGBZ.
From the aGBZ (dashed and solid lines) shown in Fig. 3(b),
for any point β0 on the analytic arc, Eq. (7) maps β0 to
Eþðβ0Þ and E−ðβ0Þ. By solving f½β; E�ðβ0Þ� ¼ 0 and
ordering the roots by the absolute values, one can check
which one satisfies the aGBZ condition, that is, there exist
two roots having the same absolute values as jβ0j.
Therefore, all the analytic arcs can be further labeled by
the band index. For example, the blue and red lines in
Fig. 3(b) belong to E� band, respectively. In our example,
only the arcs with labeling ð�; p; pþ 1Þ constitute the
GBZ. Using Eq. (7) to map βGBZ�, to E�ðβGBZ;�Þ, one can
obtain the GBZ spectra shown in Fig. 3(c) with blue and red
lines, which matches the numerical results (black dots)
[68]. The self-conjugate points (red and blue points) in
Figs. 3(b) and 3(c) correspond to the end points of the
energy spectra. We finally note that each band, EμðβÞ, can
only map its own sub-GBZ, βGBZ;μ. This fact has a
geometrical interpretation: each band dispersion is only
defined on each branch of Eq. (3).
Application I: Perturbation failure.—We now show

some applications of the aGBZ theory. The first one is
the perturbation-failure (or critical skin) effect in non-
Hermitian band theory [69,70]. As shown in Figs. 4(a)
and 4(b), when we choose t0 ¼ 1; t1 ¼ 1; t−1 ¼ 2;
w0 ¼ −1; w1 ¼ 3; w−1 ¼ 1 in Eq. (6), the OBC spectrum
(dots) of c ¼ 0 and c ¼ 1=100 exhibits a nonperturbative
behavior [71]. With the increasing of lattice size N, the
nonperturbative effect becomes stronger. The aGBZ theory
not only provides an analytical method to understand this
phenomenon, but also can strictly prove the discontinuity
of the energy spectrum evolution at c ¼ 0 under
the thermodynamic limit [72]. As shown in Figs. 4(c)
and 4(d), when c ¼ 0 and c ¼ 0þ (right-hand limit),
the aGBZ of Eq. (6) are the same, namely,
βaGBZðc ¼ 0Þ ¼ βaGBZðc ¼ 0þÞ. However, when c changes
from zero to nonzero, the GBZ condition is changed. To be

(c)

(b)
(a)

FIG. 3. Non-Hermitian bands, aGBZ, and GBZ of two band
model shown in Eq. (6). Different colors in (a) represent different
roots in Eq. (7). (b) The aGBZ and GBZ. Each analytic arc on
the aGBZ cannot only be labeled by the ordering, but also by the
band index. The GBZ is constituted by the ð�; 2; 3Þ arcs. (c) The
numerical eigenvalues (black points) and GBZ spectra (red and
blue lines). The red and blue points in (b) and (c) represent the
self-conjugate points (βp ¼ βpþ1) of E−=Eþ bands, respectively.
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more precise, when c ¼ 0, Eq. (6) is diagonal and the
characteristic equation fðβ; EÞ ¼ ½E − h1ðβÞ�½E − h2ðβÞ� is
reducible. The asymptotic solutions are determined by the
two separated irreducible polynomials E − h1ðβÞ and
E − h2ðβÞ, which result two independent sub-GBZs,
βGBZ;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
t−1=t1

p
eik and βGBZ;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w−1=w1

p
eik, as

shown in Fig. 4(c). However, when c → 0þ, these two
bands will couple together and the GBZ is determined
by the irreducible polynomial fðβ; EÞ ¼ ½E − h1ðβÞ�
½E − h2ðβÞ� − c2. As a result, only the ð�; 2; 3Þ arcs on
the aGBZ constitute the GBZ, as shown in Fig. 4(d).
Comparing (c) and (d), it is obvious βGBZðc¼0Þ≠
βGBZðc¼0þÞ, which implies EGBZðc¼0Þ≠EGBZðc¼0þÞ
as shown by the solid lines in Figs. 4(a) and 4(b),
respectively.
Application II: wave function winding number.—The

second application of the aGBZ theory is the BBC in the
case where each band has its respective, distinct sub-GBZ.
Consider the following four-band model preserving sub-
lattice symmetry [73],

HðβÞ ¼
�

0 RþðβÞ
R−ðβÞ 0

�
; ð8Þ

where R�ðβÞ ¼ λþ ðt� þ t1β�1Þσ� þ t2β�1σ∓ and t1 ¼ 2;
t2 ¼ 2i; t� ¼ 5� 2. Since the Hamiltonian has sublattice
symmetry, the eigenvalues come in pairs, e.g., ðE;−EÞ.
As a result, the sub-GBZs of EμðβÞ and −EμðβÞ must
be degenerate [74]. Figure 5(a) shows the differences
between the OBC-PBC spectrum (jEj) as λ evolves. In

order to characterize the emergence of topological zero
modes in (a), we need to define the (wave function)
winding number of the GBZ Hamiltonian HðβGBZÞ.
However, due to the existence of multiple sub-GBZs shown
in Fig. 5(b), the definition based on the Q matrix [5,10]
cannot be extended directly [75]. We note that once the
root of det½HðβÞ� ¼ 0 passes through the GBZ, it may
correspond to a topological phase transition. Therefore, it
can be regarded as a topological charge. According to
det½HðβÞ� ¼ det½RþðβÞ� det½R−ðβÞ� ¼ E2

1ðβÞE2
2ðβÞ ¼ 0,

the zeros can be labeled by the R index�, which determine
the sign of the charge, and band index μ ¼ 1, 2, which is
related to the sub-GBZs. When the zeros belonging to the
first band (E1ðβÞ ¼ 0) cross the sub-GBZ of second band
(βGBZ;2), as shown in Fig. 5(b2) where the colors represent
the band index, there is no gap closing and phase transition.
This inspires us to write down the following conjectured
formula [54]:

w ¼ 1

2
ðwþ − w−Þ; w� ¼ −P� þ

Xm
μ¼1

Z�;μ; ð9Þ

where Z�;μ are the number of zeros not only satisfying
det½R�ðβÞ� ¼ EμðβÞ ¼ 0 but also being inside the sub-GBZ
βGBZ;μ, and P� are the orders of the pole of det½R�ðβÞ�. As
shown in Fig. 5(b), we plot the GBZ and the topological
charges for different values of λ, where the black dots
represent the charge of pole, namely, Pþ ¼ 0 and P− ¼ 2;
the blue dots with charge � represent the zeros belonging
to the blue sub-GBZ band and satisfying det½R�ðβÞ� ¼ 0.
Since there are no zeros belonging to the red sub-GBZ band

(a) (b1) (b2)

(b3) (b4)

FIG. 5. Wave function winding number and nondegenerate sub-
GBZs of Eq. (8). (a) The PBC/OBC spectrum jEj as a function of
λ. (b) The evolution of the GBZ, topological charge, and winding
number. Red and blue lines represent two distinct sub-GBZs. The
total winding number equals one-half of the charge summation of
the black dot and the blue dots inside the blue sub-GBZ.

N=60
N=100
N=300(a) (b)

(c) (d)

(+34)

BZ

(+23)
(-34)
(-23)
(-12)

N=60

BZ
GBZ1
GBZ2

FIG. 4. Perturbation-failure (or critical skin) effect. The non-
perturbative behavior of the OBC spectrum between c ¼ 0 [dots
in (a)] and c ¼ 1=100 [dots in (b)] of Eq. (6) can be understood
by the discontinuity of GBZ (red and blue opaque solid lines) in
(c) and (d), namely, βGBZðc ¼ 0Þ ≠ βGBZðc ¼ 0þÞ. The solid
lines in (a) and (b) represent the analytic GBZ spectrum
EGBZðc ¼ 0Þ and EGBZðc ¼ 0þÞ, respectively.
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under the parameters shown in (b), the total winding
number equals one-half of the charge summation of the
black dot and the blue dots inside the blue sub-GBZ. This
result is consistent with Fig. 5(a).
Discussions and conclusions.—In summary, we have

provided an analytical method to calculate the GBZ, which
acts as the role of the exact solution of non-Hermitian OBC
Hamiltonians in the thermodynamic limit. Compared with
the previous numerical methods, our work reduces the
problem to the task of calculating the resultant and solving
algebraic equations, the process of which is faster and
error-free.
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