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ABSTRACT

Attosecond motion of strongly driven electrons encodes information on intense laser–solid interactions, leading to material- and
laser-dependent photoemission and high-harmonic generation (HHG). Here, we investigate sub-cycle control over the electron dynamics in
two-dimensional (2D) materials via adjusting the relative phase of two-color pulses. Electrons in 2D solids are sensitive to the exact shape of
the optical field, showing properties similar to those of isolated atoms. Accompanied by spectra modulations, the resultant harmonic yields
are enhanced and the cutoff energy increases to a ratio as large as 24% when an optimized phase is applied. Different from the atomic-like
HHG, however, the cutoff energy is linearly dependent on the maximum strength of the light electric field, in line with that shown in conven-
tional bulk solids. Thus, two-dimensional materials provide a unique platform where both bulk and atomic electron dynamics can be investi-
gated. Our work suggests a simple way to generate optimized harmonic emission with existing experimental laser technology and offers a
powerful tool for analyzing attosecond quantum dynamics during laser–solid interactions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5135599

Sub-cycle manipulation of electronic motion via intense laser
pulses lies at the heart of attosecond science, allowing studies of ultra-
fast processes with unprecedented precision.1–7 The resultant high-
harmonic generation (HHG) can serve as a probe and provides
insights into real-time electron dynamics in atoms, molecules, and
solids.6,8–12 Compared to the gas phases, laser–solid interactions are
more complicated due to the diverse and complex electronic structures
of solids. Thanks to the higher electronic density, solids not only
provide another route toward compact and bright HHG sources13

but also enable potential access to multi-petahertz electronics and
all-optical processors.14–16

Among various condensed-matter systems, two-dimensional
(2D) materials, such as graphene and monolayer transition-metal
dichalcogenides, exhibit unique symmetries and electronic proper-
ties.17–23 They provide a versatile platform to investigate the underly-
ing electron processes, emerging as limiting cases of atomic-like and
bulk-like dynamics. For instance, in monolayer hexagonal boron
nitride, electrons exhibit similar real-space trajectories to those of the
isolated atoms when the laser is perpendicular to the 2D plane,
whereas normal bulk HHG response was found when electrons are
driven in the plane of the monolayer.24,25 Given all the interesting

equilibrium electronic properties and exotic optoelectronic applica-
tions envisioned, deep understanding and proper control of electron
motions in 2D materials deserve much attention.

Here, we investigate, using the fully ab initio approach based
on real-time time dependent density functional theory (rt-
TDDFT), the sub-cycle electron dynamics in monolayer MoS2
(1L-MoS2) that is controlled via varying the relative phase of
the two-color laser components, which have been widely used in
gases,26–29 plasma,30,31 and bulk crystals.32,33 We find a strong
phase dependence of electron trajectories in momentum space,
ascribed to the temporal variation of the incident field. The opti-
mized phase is critical for the modulation of HHG spectrum mor-
phology and the enhancement of harmonic yields. The cutoff
energy is linearly dependent on the maximum strength of the laser
pulse, which is consistent with HHG in bulk materials but in strik-
ing contrast to the quadratic dependence in atomic cases. Despite
the discrepancies, the time-frequency analysis of HHG spectra
shows that, similar to the atomic HHG, electron dynamics in 2D
materials is sensitive to the interference between two pulses.
Therefore, 2D materials provide a unique platform where both
bulk-like and atomic-like responses can be achieved.
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In our simulations, the laser electric field is described by a super-
position of two monochromatic components linearly polarized along
the zigzag direction of 1L-MoS2, as shown in Fig. 1(a). The synthesized
laser field can be expressed as

E tð Þ ¼ E0f tð Þ cos xtð Þ þ b cos 2xt þ Duð Þ
� �

: (1)

The pulse envelope f ðtÞ is defined as a Gaussian function,

f tð Þ ¼ exp � t � t0ð Þ2

2r2

� �
: (2)

Herein, the width r is 12 fs and the photon energy of the fundamental
field is set as �hx ¼ 0:32 eV. The strength of the fundamental field is
fixed and reaches the maximum E0 ¼ 0:056V=Å (i.e., laser intensity
I ¼ 0:09TWcm�2) at time t0 ¼ 60 fs, while the ratio b ¼ E2/E1 is a
varying parameter and Du defines the relative phase between the two
pulses. For more calculation details, see the supplementary material,
which involves Refs. 34–37.

Figure 1(c) shows HHG spectra generated in the three optical
fields, which are displayed in Fig. 1(b): (i) the fundamental pulse only;
the two-color pulses with the field-strength ratio b fixed to 1 but with
a relative phase, (ii)Du ¼ p, or (iii) Du ¼ 0:5p. It is clear that the
participation of the frequency-doubled pulses leads to a significant
extension of the cutoff photon energy, together with an enhancement
of harmonic yields. Meanwhile, the shape of the spectra is sensitive to
the relative phase between the two components. For Du ¼ 0:5p, fairly
discrete harmonic peaks can be observed with a single energy cutoff
around 16 eV, while for Du ¼ p, we can find a more continuous spec-
trum and two clear plateaus with a cutoff energy close to 14 and 22 eV,
respectively. We focus on the second cutoff, whose energy is denoted

as ec. It is noteworthy to mention that because of the small gaps among
conduction bands, the harmonic spectra do not show a sharp falling
as that in gas phases, and therefore, the definition of cutoff energy is
difficult. Here, we define that the cutoff is reached when Rm ¼ Im�2

Im
� 10; where Im�2 and Im are the intensity of the (m-2)th and mth
order harmonic emission, respectively.

Figure 2(a) shows the evolution of HHG spectra with the increase
in laser intensity (I) under single-color pulses. The yield of the 11th-
harmonic as a function of I is displayed in Fig. 2(b), which scales as
I3:3, in good agreement with the previous experimental observation.7

It shows the nonpertubative characteristic of the optoelectronic
responses studied here since, in the perturbative regime, the mth
harmonic yield is expected to scale as Im.

Figure 2(c) summarizes the harmonic spectra as a function of Du
from 0 to p when b ¼ 1 (see Fig. S1 for the case with b ¼ 0:5). A peri-
odic and rather symmetric variation of ec as a function of Du is
observed, and the maximum and minimum ec values are found when
Du ¼ 0; p and Du ¼ 0:5p; accompanied by the synchronous
enhancement or diminishment of harmonic yields. In this case,

the modulation amplitude of ec, defined as M ¼ max ecð Þ�min ecð Þ
max ðecÞ , is

about 24%.
Further studies reveal that the cutoff energy is closely related to

the maximum module of electric field Ej jmax. In Fig. 2(d), the evolu-
tions of ec and Ej jmax with Du are displayed. It is obvious that two
curves are in good agreement with each other, indicating that the sen-
sitivity of cutoff energy in relative phase Du results from the variation
of Ej jmax. Taking into consideration that linear scaling on the vertical
axes is used for two curves, it can be estimated that ec / Ej jmax, which
is further confirmed by varying the intensity of the second pulse, i.e.,
the value of b (Fig. S2). The inset shows the condition where b
increases from 0.25 to 1 in a step of 0.25 and Du is set as p. The linear

FIG. 1. (a) Schematic illustration of 1L-MoS2 illuminated by two-color pulses. The x
and y axes are along the zigzag and armchair directions, respectively. In a typical
experiment, the normal incidence two-color waveform is applied onto the monolayer
and the emitted harmonics are detected in transmission. (b) Plot of the electric
fields of the two-color pulses (red and blue) and fundamental only pulse (black),
and the curves are shifted for clarity. (c) Corresponding HHG spectra. Vertical
arrows mark the position of cutoff energies.

FIG. 2. (a) Dependence of HHG spectra on the fundamental laser intensity I. (b)
The yield as a function of laser intensity of the 11th harmonic. (c) Calculated high-
harmonic radiation as a function of relative phase between the two-color pulses.
The black dashed line represents the estimated position of cutoff energy. (d)
Evolution of cutoff energy (black dots) and Ej jmax(red dots) as a function of Du.
The inset shows the dependence of cutoff energy on Ej jmax when the relative
phase is fixed as Du ¼ p.
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scaling of ec with Ej jmax from 1L-MoS2 is consistent with the experi-
mental observations on the HHG spectra produced in bulk solid mate-
rials such as ZnO and SiO2,

6,38 but it is in striking contrast to the
quadratic dependence for the cases of gas-phase atoms.39

We note that the deviations in the vicinity of 0 and p might origi-
nate from the overestimation (or underestimation) of ec due to the dif-
ficulty in obtaining their accurate values in the second plateau, where
the adjacent orders have similar harmonic yields. Besides that, this dis-
crepancy might be ascribed to some other mechanisms. For example,
the electronic trajectories in the momentum, the electronic trajectories
in the momentum space will influence the profile of the harmonic
spectrum, and the slope of the linear relationship between ec and
Ej jmax might be changed accordingly. However, to fully resolve this
open question, further investigations and analysis are needed.

The dynamics of harmonic generation is understood via per-
forming time-frequency analysis.40 As an example, we discuss the
results of the relative phase Du ¼ 0:5p and Du ¼ p, which are shown
in Fig. 3, and there are some salient features. First, the lower-order har-
monics are emitted at several instants during one optical cycle, while
the highest harmonic radiations occur when the electric field reaches
its extreme value. From the energy distribution, one can tell that it is
Ej jmax that contributes to the higher cutoff energy of the spectrum.
This suggests that the HHG cutoff can be controlled via the phase
modulation, consistent with our observations discussed above.

Second, the participation of frequency-doubled pulses provides
the possibility of sub-optical-cycle waveform control. As a result, either
a smooth or a strongly modulated HHG spectrum is observed. For
example, when Du ¼ 0:5p, there are two adjacent main peaks with
nearly the same intensity [labeled as A and B in Fig. 3(a)], leading to

the generation of two extreme ultraviolet (EUV) bursts within half-
cycle periodicity. Similar to the atomic phases,27 the interference
between the two bursts will produce fairly discrete harmonic peaks.
However, when Du ¼ p, the role of the frequency-doubled pulse is to
enhance the amplitude difference between the central peak (A0) and
the remaining peaks (e.g., B0) [Fig. 3(b)]. The single dominant EUV
burst produces a more continuous spectrum.

These findings suggest that, in analogy to the generation of
isolated attosecond EUV pulses via HHG in gases, a HHG spectrum,
which has not only broad spectral width, but also a flat profile with
least spectral modulation, can also be generated from 2D materials,
permitting us to generate ultrashort pulses with a clean profile.27,41 In
this condition, by simply making an inverse Fourier transformation of
the second plateau, the continuous spectrum can support a nearly iso-
lated ultrashort pulse with a width of 2.28 fs at the energy in the EUV
range (�20 eV) [Fig. 3(d)]. Comparable isolated EUV pulses, with a
duration of 470 as, have been obtained in bulk SiO2 by filtering the
HHG spectra in the energy range of 18 eV–28 eV.14 Note that the
duration of the pulses, although being only half-cycle, is one order of
magnitude longer than that generated from atomic gases (�100
as).42 For generating ultrashort pulses with sub-100 as durations,
EUV supercontinua with ultrabroad spectral widths (�60 eV) are
required,43 which might be accessed by further increasing the field
amplitude. However, limited by the damage threshold, it is hard to
achieve this target in solid materials at this stage. We note that even
if the pulses generated are not sub-100-as in duration, they are still
expected to find many interesting applications in time-resolved spec-
troscopy on solids on extreme time scales. The coherent EUV radia-
tions that generated in solids are expected to advance laser photonics
and electronics to a multi-petahertz frequency realm with great
potential for scientific and technological inquiry, for example, tracing
and attosecond control of strong-field electron dynamics.15

In order to obtain further insights into the underlying mecha-
nisms of the phase modulation effect, we investigate the time-resolved
electron distribution in the reciprocal space. In our previous works, we
have demonstrated that the intraband dynamics play the dominant
role in harmonic generation from 1L-MoS2.

44 In this scenario, the
validity of acceleration theorem is confirmed and the wave vector of
the Bloch electron is thus linearly dependent on the vector potential of
the laser pulse,45,46

kA tð Þ ¼ � e
c�h

A tð Þ þ k t0ð Þ; (3)

where t0 is the birth time of the electron wavepacket and

A tð Þ ¼ �c
ðt
0
E t0ð Þdt0 : (4)

Time evolutions of the module of vector potential AðtÞ
�� �� and the

number of excited electrons Dn e�ð Þ for Du ¼ 0:5p and Du ¼ p are
shown in Figs. 4(a) and 4(b). It is clear that the oscillations of excited
electrons are different from each other and both dependent on the
respective AðtÞ

�� ��. For Du ¼ 0:5p, there is one prominent peak in the
middle (A0) and two much lower peaks (one of them is labeled as B0)
on both sides. In contrast, three peaks with similar strength appear
when Du ¼ p and two of them are labeled as A and B.

In Figs. 4(c)–4(f), we show the details of the excited electron pop-
ulation at the moment of A and B for Du ¼ p, as well as A0 and B0 for

FIG. 3. Time-frequency analysis of the HHG spectra, two relative phase conditions
are shown as examples: (a) Du ¼ 0:5p and (b) Du ¼ p. The black line in each
panel represents the corresponding electric field waveform. (c) Part of the HHG
spectrum that is near the second plateau when Du ¼ p. (d) The temporal profiles
of the generated ultrashort pulse, which are obtained by performing inverse Fourier
transformation of the shaded area in (c).
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Du ¼ 0:5p. One can find that at A and A0, most of the electrons are
excited to K and K0 valleys of the Brillouin zone (BZ) of 1L-MoS2,
indicating that electrons can be promoted to the same region of
momentum space. However, when Dn e�ð Þ reaches another peak, the
distribution is reversed for Du ¼ 0:5p (i.e., B0) to the region along C-
M, which is distinctly different from the condition for Du ¼ p (i.e.,
B). Therefore, the electron wave-packet may travel along the same tra-
jectories in momentum space twice when Du ¼ p, but only once for
Du ¼ 0:5p. This would generate much scattering at the boundary of
BZ and thus higher yield of high-energy HHG in the former case.

We suggest that the above phenomena may explain qualitatively
the appearance of the second plateau structure in the HHG spectrum.
Until now, the two or multi-plateau structures have only been observed
in experiment from rare-gas solids.13 In many theoretical investiga-
tions, the multi-plateaus from the crystal have been predicted and are
interpreted as a result of direct interband transitions involving high-
lying bands.47,48 Most recently, Li et al. demonstrated that in ZnO, the
electrons located far from the top of the valence band (VB) can be
accelerated to the top of the VB and contribute to the harmonics in the
second plateau.49 Our results suggest that the reciprocal-space trajecto-
ries of excited electrons play a dominant role in the emergence of the
second plateau in the HHG spectrum, because comparable numbers of
electrons are promoted to high-lying bands in both cases (Fig. S3), but
electrons travel along different trajectories in the reciprocal space
driven by phase modulations in the light electric field.

In conclusion, by using real time TDDFT, we have investigated
sub-cycle control of electron motions in 1L-MoS2 via applying two-
color pulses. Our results show that the carrier wave-packet dynamics
and the consequent harmonic emission are sensitive to the waveform
of laser fields, which can be controlled by tuning the relative phase. As
a result, the HHG cutoff energy can be extended, and the harmonic
yields and spectrum profiles change accordingly. The obtained optimal
spectrum (Du ¼ p), accompanied by the second plateau structure, is a
direct evidence of the potential to generate an isolated ultrashort pulse
with a clean temporal profile from 2D materials. These findings have
identified the similarities and discrepancies of electronic responses
among 2D materials, isolated atoms, and bulk solids. Our results also

open up opportunities for studying and ultimately controlling the
ultrafast carrier dynamics and strong-field nonlinear behaviors in this
type of material.

See the supplementary material for more discussions.
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