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The fermion doubling theorem plays a pivotal role in Hermitian topological materials. It states, for
example, that Weyl points must come in pairs in three-dimensional semimetals. Here, we present an
extension of the doubling theorem to non-Hermitian lattice Hamiltonians. We focus on two-dimensional
non-Hermitian systems without any symmetry constraints, which can host two different types of
topological point nodes, namely, (i) Fermi points and (ii) exceptional points. We show that these two
types of protected point nodes obey doubling theorems, which require that the point nodes come in pairs.
To prove the doubling theorem for exceptional points, we introduce a generalized winding number
invariant, which we call the “discriminant number.” Importantly, this invariant is applicable to any two-
dimensional non-Hermitian Hamiltonian with exceptional points of arbitrary order and, moreover, can also
be used to characterize nondefective degeneracy points. Furthermore, we show that a surface of a three-
dimensional system can violate the non-Hermitian doubling theorems, which implies unusual bulk physics.
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Introduction.—Fermion doubling theorems [1–3] are an
important concept in the topological band theory of
condensed matter physics [4–7]. They state that topological
point nodes in the energy spectrum of lattice Hamiltonians
must come in pairs. Thereby they prevent the occurrence of
quantum anomalies in lattices. This is because, for a single
point node, the low-energy physics is described by a field
theory with a quantum anomaly, while for two point nodes
the anomalies cancel. Well-known examples of doubled
point nodes include the two Dirac points of graphene [8]
and the two Weyl points of magnetic Weyl semimetals
[6,9]. While the doubling theorems must be fulfilled in
the bulk of any lattice Hamiltonian, they may be violated
on a lattice surface. For example, the topological insulator
with time-reversal symmetry exhibits a single Dirac point
with parity anomaly on its surface [10]. These anomalous
surface states lead to unusual physical responses and
give a powerful diagnostic of the nontrivial bulk top-
ology [11,12].
Recently, topological band theory has been extended to

non-Hermitian Hamiltonians [13–64], which can be real-
ized in, e.g., photonic cavity arrays [65–68], and provide
effective descriptions of open quantum systems [15–20,
38,69,70], where energy is not conserved due to, e.g.,
dissipation or particle gain and loss. In contrast to the
Hermitian case, two-dimensional (2D) non-Hermitian

Hamiltonians can exhibit three different types of point
nodes, namely (i) Fermi points (FPs), (ii) exceptional points
(EPs), and (iii) nondefective degeneracy points (NDPs).
Both at an EP and a NDP two (or more) energy bands
become degenerate at a degeneracy point (DP). However, at
an EP the corresponding eigenstates coalesce [71] (become
identical), while at a NDP the eigenstates remain distinct.
For this reason, non-Hermitian Hamiltonians at EPs are
nondiagonalizable and can only be reduced to Jordan block
forms [71]. In the absence of symmetry, both FPs and EPs
can be topologically stable in 2D, meaning that these point
nodes cannot be removed by perturbations [30,34,45,50].
The physics of EPs has recently attracted attention

[33,72–97], in particular, in the context of photonic plat-
forms, where they have many interesting applications, for
example, as optical omnipolarizers [98] or as sensors with
enhanced sensitivity [77,87]. While the occurrence and
stability of FPs and EPs have been studied in various
settings, the existence of doubling theorems for these
topological point nodes remains unknown. In this Letter,
we derive doubling theorems for FPs and EPs in 2D
periodic lattice Hamiltonians without any symmetry con-
straints. For that purpose, we consider a non-Hermitian
Hamiltonian HðkÞ possessing well-separated complex
energy bands [30,34], except for some possible DPs, which
are either EPs or NDPs. The proof of the doubling theorems
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relies on the fact that topological points carry nonzero
topological charges, whose sum must vanish in the entire
Brillouin zone (BZ) [1–3] due to its periodicity, i.e.,

X
ki∈BZ

CðkiÞ ¼ 0; ð1Þ

where CðkiÞ is the topological charge of a topological point
located at ki in the BZ. Particularly, for 2D non-Hermitian
systems, topological points can be FPs or EPs. The charges
CðkiÞ are defined in terms of an integral of some topological
charge density, along a closed contour that counterclockwise
encircles the FP or EP. Equation (1) then follows by
continuously deforming the integration contours to the
boundary of the BZ. We find that for FPs the appropriate
charge density is the logarithmic derivative of det½μ −HðkÞ�,
while for EPs it is the logarithmic derivative of the
discriminant of HðkÞ with respect to the energy E. We
demonstrate by several examples that EPs do not need to be
branch point singularities, contrary to previous reports [19].
Finally, we show that the doubling theorems can be violated
at surfaces in 3D systems, which implies unusual properties
of the bulk bands. In particular, inversion-symmetric or
reflection-symmetric systems can host single FPs or EPs on
their surfaces, which, however, must be accompanied by
Fermi lines or exceptional lines in the bulk.
Doubling theorem for FPs.—We start with the doubling

theorem for FPs of generic 2D non-Hermitian Hamiltonians
HðkÞ with complex energy bands EiðkÞ. The FPs of HðkÞ
are defined as those points kjF in the BZ, where the complex
chemical potential μ intersects with one of the energy bands
EiðkÞ, i.e., μ − EiðkjFÞ ¼ 0 for some i. By choosing a
proper basis, each entry of HðkÞ is single valued in the
entire BZ. The location of the FPs can then be obtained
from the characteristic polynomial of HðkÞ

fμðkÞ≡ det½μ −HðkÞ� ¼
Y
i

½μ − EiðkÞ�: ð2Þ

That is, the FPs are located at those kjF where fμðkjFÞ ¼ 0.
Since fμðkÞ is a complex function, this gives the two

conditions [RefμðkjFÞ ¼ 0 and ImfμðkjFÞ ¼ 0], whose sol-
utions yield two line loops in the 2D BZ, see Fig. 1(a1). The
crossings of these two loops give the positions of the FPs.
Pictorially, we can see that the two loops must cross each
other an even number of times, thereby suggesting a
doubling theorem for FPs [99]. Moreover, we observe
from Fig. 1(a2) that small perturbations only shift the paths
of the loops, but do not remove the FPs.
These observations can be made more precise using the

mathematical formalism of topological invariants. For this
purpose we define the global winding number invariant [44]

WðkjFÞ ¼
i
2π

I
ΓðkjFÞ

dk ·∇k ln fμðkÞ; ð3Þ

where the integration path ΓðkjFÞ is a loop encircling kjF
counterclockwise, as shown in Fig. 1(b1). Since fμðkÞ is
single valued in the entire BZ, the winding numberWðkjFÞ is
quantized to an integer, which endows the FP at kjF with a
topological charge. If the winding number is nonzero, the
integration path ΓðkjFÞ in Eq. (3) cannot be smoothly shrunk
to a single point, due to the presence of a singularity at the
FP. This guarantees the topological stability of the FP and
protects it against gap opening, even in the presence of
perturbations. To derive the doubling theorem for FPs, we
sum over the winding numbers of all FPs in the BZ

X
kjF∈BZ

WðkjFÞ ¼
i
2π

I
∂BZ

dk ·∇k ln fμðkÞ ¼ 0: ð4Þ

The above summust vanish, because the integration paths of
Eq. (3) can be continuously deformed to the BZ boundary
∂BZ, as the FPs are the only singularities in the integrand
[see Fig. 1(b)]. Hence, each FP with a positive topological
charge must be accompanied by a FP with negative
topological charge. This proves the doubling theorem (1)
for FPs in 2D non-Hermitian systems.
An example of doubled FPs.—We use an example to

demonstrate the topological properties of the FPs by
studying a two-band Hamiltonian, given by

(a2)(a1) (b1) (b2) (b3) (c)

FIG. 1. (a) In the 2D BZ, Fermi points (black points) are located at the crossings of the red line [RefμðkÞ ¼ 0] and the blue line
[ImfμðkÞ ¼ 0]. The gray arrows display the orientation of the vector field ½RefμðkÞ; ImfμðkÞ�. (a2) Shows that a small perturbation does
not destroy the Fermi points. (b) The integration paths ΓðkjFÞ (b1) of Eq. (3) [or Eq. (7)] can be continuously deformed to the boundary of
the BZ (b3), without passing through any singular point (b2). The blue (red) dots represent Fermi points, or degeneracy points, with
positive (negative) topological charge. (c) The absolute value of the complex energy bands jEðkÞj (red and blue surfaces) and vector field
of the characteristic polynomial ½RefμðkÞ; ImfμðkÞ� (gray arrows) for the two-band model (5). The black and green points are Fermi
points and exceptional points, respectively. The black arc represents the branch cut that connects the two exceptional points.
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HðkÞ ¼ h0ðkÞσ0 þ hðkÞ · σ; ð5Þ

where h0ðkÞ ¼ 1
2
sin ky; hxðkÞ ¼ sin kx − i; hyðkÞ ¼ sin ky,

and hzðkÞ ¼ cos kx þ cos ky − 2. With chemical potential

μ ¼ ffiffiffi
3

p
=4, this example has two FPs located at

k−F ¼ ð0;−0.479πÞ and kþF ¼ ð0; π=3Þ with winding num-
bers Wðk�F Þ ¼∓ 1, such that the doubling theorem is
satisfied [Fig. 1(c)]. The energy spectrum of HðkÞ is given
by E�ðkÞ¼ðsy=2Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5−4ðcxþcyÞþcxþyþcx−y−2isx

p
,

where cx=y ¼ cos kx=y, sx=y ¼ sin kx=y, and cx�y ¼
cosðkx � kyÞ. This spectrum is multivalued and exhibits
a branch cut that is terminated by two EPs, located at
ð0;�π=3Þ with energies E − μ ¼ 0 and E − μ ¼ −

ffiffiffi
3

p
=2,

respectively. The fact that one of the EPs coincides with
one of the FPs is purely accidental. In general, EPs
and FPs of generic non-Hermitian Hamiltonians are at
different positions.
Discriminant and DPs.—Next, we turn to DPs of generic

non-Hermitian Hamiltonians and explain how they can be
found in an efficient manner using the discriminant of the
characteristic polynomial fEðkÞ. Here, fEðkÞ is defined as
in Eq. (2), but the chemical potential μ is replaced by the
energy E. A DP occurs at kD when EiðkDÞ ¼ EjðkDÞ for
some i ≠ j. Hence, the polynomial fEðkÞ must have a
double (or multiple) root at kD. Moreover, the discriminant
of fEðkÞ, which is defined as

DiscE½H�ðkÞ ¼
Y
i<j

½EiðkÞ − EjðkÞ�2; ð6Þ

must vanish at kD; i.e., there is a DP at kD, if and only if
DiscE½H�ðkDÞ ¼ 0. Apparently, the DPs are computed
more efficiently from the zeros of the discriminant, rather
than by explicitly calculating all roots of fEðkÞ. This is
because the discriminant can be computed directly from the
determinant of the Sylvester matrix of fEðkÞ and ∂EfEðkÞ,
see Supplemental Material [100]. Hence, determining the
zeros of DiscE½H�ðkÞ is an efficient way to find all DPs in
the entire BZ at any energy [101].
The discriminant has the additional advantage of being

single valued, since the coefficients of fEðkÞ are single
valued [102]. This property is key to define a quantized
invariant in terms of DiscE½H�ðkÞ and to prove the doubling
theorem of DPs. Before doing so, let us first give an
illustrative argument for why DPs must satisfy a doubling
theorem. We note that zeros of the discriminant must
satisfy the two constraints Re½DiscE½H�ðkÞ� ¼ 0 and
Im½DiscE½H�ðkÞ� ¼ 0. The solutions to these two equations
are two line loops in the 2D BZ, whose crossings give the
positions of the DPs. Since two loops in a periodic BZ
generally cross each other an even number of times, DPs
must come in pairs and satisfy a doubling theorem [103].
Finally, we remark that, in the absence of extra sym-

metries, DPs have, in general, only twofold degeneracy.

That is, any DP with higher degeneracy can be split into
multiple twofold degenerate DPs by an infinitesimally
small perturbation [100]. For this reason we focus only
on twofold degenerate DPs.
Doubling theorem for DPs.—The invariant that charac-

terizes the topology of DPs, which can be EPs or NDPs, is
given in terms of a contour integral over the discriminant

νðklDÞ ¼
i
2π

I
ΓðklDÞ

dk · ∇k ln DiscE½H�ðkÞ; ð7Þ

where ΓðklDÞ is a loop counterclockwise encircling the DP
at klD. Since DiscE½H�ðkÞ is single valued, this invariant is a
quantized winding number, which we call the discriminant
number. The mathematical structure is almost identical to
the winding number (3) characterizing FPs. The only
difference is that det½μ −HðkÞ� in the integrand of
Eq. (3) is replaced by DiscE½H�ðkÞ. A nonzero quantized
value of ν guarantees the stability of DPs against gap
opening. Using Eq. (7) we can identify, in a computation-
ally efficient manner, any stable DP between any pair of
bands [100]. To obtain the doubling theorem for DPs,
we sum over the discriminant numbers of all DPs in
the BZ

X
klD∈BZ

νðklDÞ ¼
i
2π

I
∂BZ

dk ·∇k ln DiscE½H�ðkÞ ¼ 0: ð8Þ

Since the DPs are the only singularities in the integrand of
Eq. (7), the integration paths in this sum can be contin-
uously deformed to the BZ boundary ∂BZ, see Fig. 1(b).
Hence, the above sum must vanish and, therefore, the
discriminant number of the DPs must cancel pairwise. This
proves the doubling theorem (1) for DPs.
We note that the topology of DPs formed by two bands

has previously been characterized using the vorticity
invariant [34,50]

νijðklDÞ ¼ −
1

2π

I
ΓðklDÞ

∇k arg ½EiðkÞ − EjðkÞ� · dk; ð9Þ

where i and j label the two bands and argðzÞ ¼
−i lnðz=jzjÞ. We find, after some algebra [100], that the
discriminant number is equal to the vorticity invariant
summed over all pairs of distinct bands, i.e., νðklDÞ ¼P

i≠j νijðklDÞ.
Examples of doubled DPs.—We use two examples to

illustrate the doubling theorem for DPs and to show that
only EPs are generically stable, while NDPs can be
deformed to EPs by arbitrarily small perturbations.
The first example contains two NDPs and is given by the

two-band Hamiltonian

HðkÞ ¼
�

0 FðkÞ
GðkÞ 0

�
; ð10Þ
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where FðkÞ¼ sin2kx− 1
2
sin2kyþ2i sin kx sin kyþcos ky−1

and GðkÞ ¼ sin kx − i sin ky þ cos ky − 1. The energy

spectrum is E�ðkÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðkÞGðkÞp

and the characteristic
polynomial reads fEðkÞ ¼ E2 − FðkÞGðkÞ. From this we
obtain the discriminant DiscE½H�ðkÞ ¼ 4FðkÞGðkÞ, which
has zeros at (0,0) and ðπ; 0Þ corresponding to two NDPs
[104]. Using Eq. (7), we find that these two NDPs have
ν ¼ �1, thereby satisfying the doubling theorem. These two
NDPs are end points of a branch cut, demonstrating that
branch cuts do not need to be terminated by EPs as shown in
Figs. 2(a) and 2(b). However, this is an unstable situation,
since the infinitesimally small perturbation δσz turns the
NDPs into EPs.
The second example contains one NDP and one EP and

is described by the following Hamiltonian:

HðkÞ ¼
�
AðkÞ BðkÞ
0 −AðkÞ

�
; ð11Þ

where AðkÞ¼1−coskx−coskyþisinkx and BðkÞ¼1−sinky.
The spectrum is E�ðkÞ ¼ �AðkÞ and the characteristic
polynomial reads fEðkÞ ¼ E2 − A2ðkÞ, from which we
obtain the discriminant DiscE½H�ðkÞ ¼ 4A2ðkÞ. Solving
for the zeros of the discriminant, we find two DPs located
at ð0;�π=2Þ. The DP at ð0;−π=2Þ is an EP with discrimi-
nant number ν ¼ −2, while the DP at ð0;þπ=2Þ is a NDP
with ν ¼ þ2, such that the doubling theorem is satisfied.
We observe that the EP does not terminate a branch cut as
shown in Figs. 2(c) and 2(d), since the spectrum E�ðkÞ is
single valued in the entire BZ. But this is a fine-tuned
situation, which is destabilized by the infinitesimally small
deformation ησx. This perturbation splits the NDP and the
EP each into two EPs with ν ¼ �1, which become end
points of branch cuts.
In general, a twofold degenerate EP with ν ¼ �1 is

always a branch cut termination of the energy spectrum (see
the proof in the Supplemental Material [100] and cf. [19]).
From the insights gained by the above examples, we prove
in the Supplemental Material [100] that in two dimensions
NDPs are unstable; i.e., they can be deformed into EPs by
generic perturbations. Furthermore, EPs with jνj > 1 are

split into several EPs with jνj ¼ 1 by small perturbations
and, importantly, only EPs with ν ¼ �1 are stable.
Doubling theorem for EPs.—Taking together the above

results, we conclude that in two dimensions the only stable
DPs are EPs with ν ¼ �1. Allowing for generic perturba-
tions, these EPs must come in pairs with opposite dis-
criminant number ν.
Anomalous FPs and EPs at surfaces.—We close this

Letter by discussing anomalous FPs and EPs (or DPs) at
surfaces, which violate the doubling theorems. Surfaces of
3D systems can be viewed, in a sense, as one half of 2D
bulk systems. As a consequence, surfaces can host, in
principle, an odd number of stable FPs or EPs, thereby
breaking the doubling theorems. In the presence of these
anomalous surfaces, the bulk exhibits unusual topological
properties, which depend on the crystalline symmetries.
In this regard, we separately discuss the anomalous physics
with and without the symmetries.
(i) First, we consider a symmetry that relates the top and

bottom surfaces of a given 3D system. For concreteness, let
us consider two surfaces that are related by reflection or
inversion, which act on the two surface Hamiltonians as

P�Htopðkx; kyÞP−1
� ¼ Hbotð�kx;�kyÞ; ð12Þ

where P� is a unitary operator implementing reflection (þ)
or inversion (−). Focusing on surface EPs, we now let
symmetry (12) act on the discriminant number ν, Eq. (7).
From this we find that ν summed over all EPs at the top
surface is equal to ν summed over all EPs at the bottom
surface, i.e.,

X
klD∈BZtop

νðklDÞ ¼
X

klD∈BZbot

νðklDÞ: ð13Þ

Hence, as opposed to 3D topological insulators, the
topological charges of the EPs on the top and bottom
surfaces do not cancel. Therefore, there must exist addi-
tional EPs with nonzero ν in the 3D bulk that compensate
the nonvanishing sum of the discriminant numbers on the
two surfaces. In fact, since nonzero ν is defined in terms of
a line integral, which cannot be deformed to vanish, there
must exist entire lines of EPs in the 3D bulk [105].
Therefore, if there are surface EPs violating the doubling
theorem, the 3D bulk must contain at least one exceptional
line topologically protected by the nonzero discriminant
number. Hence, the entire system contains two exotic non-
Hermitian physics phenomena—anomalous surfaces and
exceptional lines in the bulk [45–50].
By a similar derivation, we can prove the same property

also for surface FPs. That is, if there are surface FPs
violating the doubling theorem in an inversion or reflec-
tion-symmetric system, the bulk must be gapless (no point
gap at the FP energy level) and must have at least one Fermi
line. In the Supplemental Material [100] we present an

FIG. 2. The complex energy spectra for the DP examples. (a),
(b) Shows that the Hamiltonian (10) possesses two NDPs, which
are the ends of the branch cut (solid lines). (c),(d) Shows that in
the Hamiltonian (11) an EP and a NDP do not connect to any
branch cut, although these points are located at the crossing of the
energy bands (dashed lines).

PHYSICAL REVIEW LETTERS 126, 086401 (2021)

086401-4



example of a 3D non-Hermitian lattice model, which
exhibits these anomalous surface EPs and FPs together
with bulk Fermi lines and exceptional lines.
(ii) Second, we consider a 3D Hamiltonian without FPs

and EPs in the bulk, which breaks both reflection and
inversion symmetry. We find that the surface of such a
system can still violate the non-Hermitian doubling theo-
rem [106]. In the Supplemental Material [100], we provide
an example of a 3D Hamiltonian with a bulk point gap and
surfaces that violate the FP doubling theorem. Since the top
and bottom surfaces have opposite topological charges, the
FP doubling theorem is only violated for an individual
surface but is satisfied for the entire 3D system. (This is
similar to Hermitian topological gapped systems, for
example, surfaces of 3D topological insulators, which
exhibit single Dirac points, both at the top and the bottom
surfaces, with opposite topological charges [10].) Gapped
bulk systems with such anomalous surfaces exhibit a
nontrivial non-Hermitian topology, which is described
by the 3D winding number [22,55,57,106]. Thus, the
breaking of the non-Hermitian doubling theorem at the
surface allows one to identify the nontrivial topology in
the bulk.
Conclusion.—In summary, we have derived doubling

theorems for FPs and EPs in generic 2D non-Hermitian
lattice Hamiltonians. To derive the doubling theorem for
exceptional points, we have introduced a new topological
invariant, which we call the discriminant number. This
discriminant number endows EPs with a quantized topo-
logical charge. The doubling theorem ensures that a single
EP of first order must be accompanied by another first-
order EP with opposite topological charge as all of the
energy bands are taken into account. We have shown that
2D non-Hermitian Hamiltonians with fine-tuned param-
eters can also exhibit higher-order EPs or nondefective
degeneracy points. These are, however, unstable and can
be removed by arbitrarily small perturbations. Further-
more, we have clarified the relation between EPs and
branch cuts, namely, only twofold degenerate EPs of first
order must necessarily be branch cut terminations. Finally,
we studied anomalous surfaces of 3D bulk systems that
violate the non-Hermitian doubling theorems. In the
presence of inversion or reflection symmetry, this viola-
tion leads to the emergence of topologically protected
Fermi or exceptional lines in the bulk. In the absence of
these symmetries, the bulk is gapped and must exhibit
nontrivial topology.
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Note added.—Recently, we became aware of a related
preprint [107], which makes use of the discriminant to
classify non-Hermitian Hamiltonians. We also noticed a
relevant study [106], which first proposed a non-Hermitian
model possessing a point gap and surfaces violating the FP
doubling theorem.
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and B. Kanté, Science 358, 636 (2017).

[68] T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai,
Phys. Rev. B 99, 121101(R) (2019).

[69] Y. Michishita and R. Peters, Phys. Rev. Lett. 124, 196401
(2020).

[70] S. Lieu, M. McGinley, and N. R. Cooper, Phys. Rev. Lett.
124, 040401 (2020).

[71] K. Kanki, S. Garmon, S. Tanaka, and T. Petrosky, J. Math.
Phys. (N.Y.) 58, 092101 (2017).

[72] W. D. Heiss, J. Phys. A 45, 444016 (2012).
[73] W. D. Heiss, J. Phys. A 37, 2455 (2004).
[74] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D.

Heiss, H. Rehfeld, and A. Richter, Phys. Rev. Lett. 86, 787
(2001).

[75] S. Klaiman, U. Günther, and N. Moiseyev, Phys. Rev. Lett.
101, 080402 (2008).

[76] M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci,
and S. Rotter, Phys. Rev. Lett. 108, 173901 (2012).

[77] J. Wiersig, Phys. Rev. Lett. 112, 203901 (2014).
[78] A. Tanaka, S. W. Kim, and T. Cheon, Phys. Rev. E 89,

042904 (2014).
[79] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl,

A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moi-
seyev, and S. Rotter, Nature (London) 537, 76 (2016).

[80] H. Hodaei, Opt. Lett. 41, 3049 (2016).
[81] M. Kang, J. Chen, and Y. D. Chong, Phys. Rev. A 94,

033834 (2016).
[82] K.-H. Kim, M.-S. Hwang, H.-R. Kim, J.-H. Choi, Y.-S.

No, and H.-G. Park, Nat. Commun. 7, 13893 (2016).
[83] T. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D.

Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling,
Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G.
Dall, and E. A. Ostrovskaya, Nature (London) 526, 554
(2015).

[84] K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan,
Phys. Rev. X 6, 021007 (2016).

[85] C. Shi, M. Dubois, Y. Chen, L. Cheng, H. Ramezani, Y.
Wang, and X. Zhang, Nat. Commun. 7, 11110 (2016).

[86] J. Xu, Y.-X. Du, W. Huang, and D.-W. Zhang, Opt.
Express 25, 15786 (2017).

[87] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R.
El-Ganainy, D. N. Christodoulides, and M. Khajavikhan,
Nature (London) 548, 187 (2017).

PHYSICAL REVIEW LETTERS 126, 086401 (2021)

086401-6

https://doi.org/10.1103/PhysRevLett.77.570
https://doi.org/10.1103/PhysRevLett.77.570
https://doi.org/10.1103/PhysRevLett.102.065703
https://doi.org/10.1103/PhysRevLett.102.065703
https://doi.org/10.1103/PhysRevLett.105.013903
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1103/PhysRevLett.120.146601
https://doi.org/10.1103/PhysRevLett.120.146601
https://arXiv.org/abs/1708.05841
https://doi.org/10.1103/PhysRevB.99.201107
https://doi.org/10.1103/PhysRevB.99.201107
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.121.026403
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.123.170401
https://doi.org/10.1103/PhysRevLett.123.170401
https://doi.org/10.1103/PhysRevLett.123.246801
https://doi.org/10.1103/PhysRevLett.123.246801
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.125.226402
https://doi.org/10.1103/PhysRevLett.125.226402
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1103/PhysRevLett.118.045701
https://doi.org/10.1103/PhysRevLett.118.045701
https://doi.org/10.1103/PhysRevB.97.075128
https://doi.org/10.1103/PhysRevB.97.075128
https://doi.org/10.1103/PhysRevA.98.042114
https://doi.org/10.1103/PhysRevA.98.042114
https://doi.org/10.1103/PhysRevB.99.081102
https://doi.org/10.1103/PhysRevLett.124.186402
https://doi.org/10.1103/PhysRevLett.124.186402
https://doi.org/10.1103/PhysRevLett.123.066405
https://doi.org/10.1103/PhysRevLett.123.066405
https://doi.org/10.1103/PhysRevLett.122.076801
https://doi.org/10.1103/PhysRevLett.122.195501
https://doi.org/10.1103/PhysRevLett.123.073601
https://doi.org/10.1103/PhysRevLett.123.073601
https://doi.org/10.1103/PhysRevLett.123.016805
https://doi.org/10.1103/PhysRevLett.123.016805
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevB.99.235112
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevB.99.125103
https://doi.org/10.1103/PhysRevB.99.125103
https://doi.org/10.1103/PhysRevLett.123.206404
https://doi.org/10.1103/PhysRevLett.123.206404
https://doi.org/10.1103/PhysRevLett.123.090603
https://doi.org/10.1103/PhysRevLett.123.090603
https://doi.org/10.1103/PhysRevLett.122.237601
https://doi.org/10.1103/PhysRevLett.123.190403
https://doi.org/10.1103/PhysRevLett.123.190403
https://doi.org/10.1103/PhysRevB.98.085116
https://doi.org/10.1103/PhysRevB.98.085116
https://doi.org/10.1103/PhysRevLett.125.186802
https://doi.org/10.1126/science.aar4003
https://doi.org/10.1126/science.aar4005
https://doi.org/10.1126/science.aar4005
https://doi.org/10.1126/science.aao4551
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevLett.124.196401
https://doi.org/10.1103/PhysRevLett.124.196401
https://doi.org/10.1103/PhysRevLett.124.040401
https://doi.org/10.1103/PhysRevLett.124.040401
https://doi.org/10.1063/1.5002689
https://doi.org/10.1063/1.5002689
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1088/0305-4470/37/6/034
https://doi.org/10.1103/PhysRevLett.86.787
https://doi.org/10.1103/PhysRevLett.86.787
https://doi.org/10.1103/PhysRevLett.101.080402
https://doi.org/10.1103/PhysRevLett.101.080402
https://doi.org/10.1103/PhysRevLett.108.173901
https://doi.org/10.1103/PhysRevLett.112.203901
https://doi.org/10.1103/PhysRevE.89.042904
https://doi.org/10.1103/PhysRevE.89.042904
https://doi.org/10.1038/nature18605
https://doi.org/10.1364/OL.41.003049
https://doi.org/10.1103/PhysRevA.94.033834
https://doi.org/10.1103/PhysRevA.94.033834
https://doi.org/10.1038/ncomms13893
https://doi.org/10.1038/nature15522
https://doi.org/10.1038/nature15522
https://doi.org/10.1103/PhysRevX.6.021007
https://doi.org/10.1038/ncomms11110
https://doi.org/10.1364/OE.25.015786
https://doi.org/10.1364/OE.25.015786
https://doi.org/10.1038/nature23280


[88] A. Pick, B. Zhen, O. D. Miller, C. W. Hsu, F. Hernandez,
A.W. Rodriguez, M. Soljačić, and S. G. Johnson, Opt.
Express 25, 12325 (2017).

[89] H. Jing, S. K. Ozdemir, H. Lü, and F. Nori, Sci. Rep. 7,
3386 (2017).

[90] H. Lü, S. K. Özdemir, L.-M. Kuang, F. Nori, and H. Jing,
Phys. Rev. Applied 8, 044020 (2017).

[91] A. Cerjan, M. Xiao, L. Yuan, and S. Fan, Phys. Rev. B 97,
075128 (2018).

[92] M. Lyubarov and A. Poddubny, Opt. Lett. 43, 5917 (2018).
[93] C.-H. Yi, J. Kullig, and J. Wiersig, Phys. Rev. Lett. 120,

093902 (2018).
[94] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L.

Fu, J. D. Joannopoulos, M. Soljačić, and B. Zhen, Science
359, 1009 (2018).

[95] T. Yoshida, R. Peters, and N. Kawakami, Phys. Rev. B 98,
035141 (2018).

[96] S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, and C. T.
Chan, Nat. Commun. 10, 832 (2019).

[97] W. R. Sweeney, C. W. Hsu, S. Rotter, and A. D. Stone,
Phys. Rev. Lett. 122, 093901 (2019).

[98] A. U. Hassan, B. Zhen, M. Soljačić, M. Khajavikhan, and
D. N. Christodoulides, Phys. Rev. Lett. 118, 093002 (2017).

[99] We note that in some particular examples, e.g.,
fμðkÞ ¼ ðcos kx − 1Þ þ iðcos ky − 1Þ, there is only one
crossing point formed by a horizontal loop and a vertical
loop in the BZ. However, as will be discussed in
the following contents, the topological charge of this
crossing point is zero, which also preserves the doubling
theorem.

[100] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.126.086401 for the

mathematical introduction of the discriminant, the insta-
bility of NDPs and high-ordered EPs, the relation between
the discriminant number and the vorticity invariant, the
connection between a first-ordered EP and a branch cut
termination, and examples for the violation of the doubling
theorems in the surfaces of the 3D non Hermitians systems.

[101] We note that this procedure can also be applied to find DPs
of Hermitian Hamiltonians.

[102] This is because, in a proper basis, all the matrix elements of
HðkÞ are periodic functions of k, which is equivalent to the
single-valued condition. Therefore, the corresponding
characteristic polynomial fEðkÞ ¼ det½E −HðkÞ�, whose
coefficients are algebraic functions of these matrix ele-
ments, must also be single valued.

[103] Similar to the FPs, it is possible to have single crossing
between Re½DiscE½H�ðkÞ� ¼ 0 and Im½DiscE½H�ðk�Þ ¼ 0.
However, the topological charge (which will be defined
in the following contents) at the crossing point must
also be zero, which is unstable to external weak
perturbations.

[104] One can easily check that both FðkÞ ¼ GðkÞ ¼ 0 at (0,0)
and ðπ; 0Þ.

[105] Here, we implicitly assume that there is no skin effect, in
which case the bulk spectrum would drastically depend on
the boundary conditions. Note that in the presence of
certain symmetry (e.g., reflection in spinless systems [64]),
the skin effect is always absent.

[106] M. M. Denner, A. Skurativska, F. Schindler, M. H.
Fischer, R. Thomale, T. Bzdušek, and T. Neupert, arXiv:
2008.01090.

[107] C. C. Wojcik, X.-Q. Sun, T. Bzdušek, and S. Fan, Phys.
Rev. B 101, 205417 (2020).

PHYSICAL REVIEW LETTERS 126, 086401 (2021)

086401-7

https://doi.org/10.1364/OE.25.012325
https://doi.org/10.1364/OE.25.012325
https://doi.org/10.1038/s41598-017-03546-7
https://doi.org/10.1038/s41598-017-03546-7
https://doi.org/10.1103/PhysRevApplied.8.044020
https://doi.org/10.1103/PhysRevB.97.075128
https://doi.org/10.1103/PhysRevB.97.075128
https://doi.org/10.1364/OL.43.005917
https://doi.org/10.1103/PhysRevLett.120.093902
https://doi.org/10.1103/PhysRevLett.120.093902
https://doi.org/10.1126/science.aap9859
https://doi.org/10.1126/science.aap9859
https://doi.org/10.1103/PhysRevB.98.035141
https://doi.org/10.1103/PhysRevB.98.035141
https://doi.org/10.1038/s41467-019-08826-6
https://doi.org/10.1103/PhysRevLett.122.093901
https://doi.org/10.1103/PhysRevLett.118.093002
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.086401
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.086401
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.086401
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.086401
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.086401
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.086401
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.086401
https://arXiv.org/abs/2008.01090
https://arXiv.org/abs/2008.01090
https://doi.org/10.1103/PhysRevB.101.205417
https://doi.org/10.1103/PhysRevB.101.205417

