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In quantum systems, a subspace spanned by degenerate eigenvectors of the Hamiltonian may have
higher symmetries than those of the Hamiltonian itself. When this enhanced-symmetry group can be
generated from local operators, we call it a quasisymmetry group. When the group is a Lie group, an
external field coupled to certain generators of the quasisymmetry group lifts the degeneracy, and results in
exactly periodic dynamics within the degenerate subspace, namely, the many-body-scar dynamics (given
that Hamiltonian is nonintegrable). We provide two related schemes for constructing one-dimensional spin
models having on-demand quasisymmetry groups, with exact periodic evolution of a prechosen product or
matrix-product state under external fields.
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Introduction.—Symmetry plays a central role in physics.
Given a quantum system described by Hamiltonian oper-
ator Ĥ, a symmetry g, restricted to be unitary in this work, is
represented by a unitary operator D̂ðgÞ, such that

½Ĥ; D̂ðgÞ� ¼ 0: ð1Þ

If multiple g’s form a group G, Eq. (1) leads to the
fundamental theorem that each eigensubspace ΨE ≡
fψ jĤψ ¼ Eψg is invariant under D̂ðgÞ for g ∈ G, or one
can casually say that ΨE at least has symmetry group G. In
other words, generally, ΨE has higher symmetry than G.
As an example, consider two 1=2 spins coupled by a

Heisenberg interaction, Ĥ ¼ Ŝ1 · Ŝ2. The full symmetry
group of the triplet eigensubspace is U(3), of which
the Hamiltonian symmetry group SO(3) is a subgroup.
However, not all symmetries in U(3) are physically
interesting, because many of them involve creating (anni-
hilating) entanglement between the spins, and as such are
difficult to realize in experiments. Therefore, hereafter we
restrict to more physically relevant cases: an operator D̂ðg̃Þ
that preserves an eigensubspace of Ĥ is considered as a
“symmetry,” if and only if D̂ðg̃Þ is a direct product of
unitary operators on individual spins; that is,

D̂ðg̃Þ ¼ d̂1ðg̃Þ ⊗ d̂2ðg̃Þ ⊗ … ⊗ d̂Nðg̃Þ; ð2Þ

known as the onsite-unitary condition. This requires the
representation of G to be a tensor-product representation,
that is, neither spatial nor time-reversal symmetry is
considered, unless otherwise specified. In the above
two-spin example, a unitary operation sending j↑↑i to

ðj↑↓i þ j↓↑iÞ= ffiffiffi
2

p
leaves the triplet eigensubspace invari-

ant, but cannot decompose as in Eq. (2). In fact, it can be
checked that all the symmetries of the triplet eigensubspace
meeting the onsite-unitary condition Eq. (2) are just the
overall rotations SO(3). The triplet eigensubspace has
hence the same symmetry group as Ĥ itself.
The above discussion motivates us to define a new type

of symmetry operation, which we tentatively term quasi-
symmetry, as a unitary operator D̂ðg̃Þ satisfying Eq. (2), so
that a given eigensubspace of Ĥ having energy E is
invariant under D̂ðg̃Þ. It is obvious that g̃’s as such form
a new group, denoted by G̃E. We call G̃E the quasi-
symmetry group of Ĥ with respect to the eigensubspace
ΨE. If D̂ðg̃Þ commutes with Ĥ, then g̃ is a quasisymmetry
for any eigensubspace of Ĥ, so the symmetry group is
always a subgroup of any quasisymmetry group for a given
Hamiltonian: G ⊂ G̃E.
Before showing an explicit example of quasisymmetry in

quantum models, we point out that its classical counterpart,
known as non-symmetry-caused degeneracy, is well known
in models for frustrated magnetism. Consider a classical
J1 − J2 model on a square lattice, where Heisenberg J1
couplings connect nearest spins, and J2 next-nearest-
neighbor spins of length s. This Hamiltonian is invariant
under any overall SO(3) rotation, but is not invariant under
relative rotations between the two sublattices. Nevertheless,
consider a state where all spins in each sublattice are
antiferromagnetically aligned, then it is easy to check that
the energy, being −2J2s2 per spin, is independent of the
relative angle between the two sublattices. Therefore, a
relative rotation between the sublattices, not being a
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symmetry of H, does lead to classical degeneracy. Can
we obtain a quasisymmetry model by quantizing the
above J1 − J2-model? The answer is negative: when
quantum fluctuation is turned on, the above classical
degeneracy is lifted due to the famous order-by-disorder
mechanism [1].

We do not know a deterministic way for diagnosing all
possible quasi-symmetries in a given Hamiltonian, quan-
tum or classical. Yet fortunately, recent progress in the
study on quantum-many-body scars [2–9] provides with
many examples of quasisymmetry in quantum models [10].
In certain nonintegrable quantum many-body systems,
there exist some close trajectories in the Hilbert space,
along which a special short-range-entangled state evolves
periodically or quasiperiodically, independent of the size of
the system [12–18]. The evolution of certain many-body
states along these closed trajectories, as opposed to the
chaotic trajectories for generic states, is called the quantum-
many-body scar dynamics, or simply scar dynamics. All
the states along one such trajectory span a Hilbert subspace
invariant under the Hamiltonian evolution, and the eigen-
states of Ĥ within this subspace form a tower of states,
namely, the scar tower [19–21]. The scar dynamics is
related to the violation of the eigenstate-thermalization
hypothesis [22–26] in certain eigenstates from the scar
tower. In previously studied exact cases [27–33], a scar
Hamiltonian consists of two parts,

Ĥscar ¼ Ĥ þ Ĥ1; ð3Þ

where Ĥ has a degenerate eigensubspace ΨE and Ĥ1

(i) preserves the subspace ΨE but (ii) lifts the degeneracy
by breaking energy spectrum into a “tower” with equal
spacing δE. It then becomes obvious that a random initial
state in ΨE oscillates with a period 2πδE−1. If a scar
Hamiltonian in Eq. (3) satisfies (i) Ĥ1 is a sum of local
operators and (ii) there is at least one product state
ψ0 ∈ ΨE, then the quantum Hamiltonian Ĥ has at least
G̃ ¼ Uð1Þ quasisymmetry D̂½g̃ðθÞ�≡ expðiĤ1θÞ with
respect to ΨE. In other words, under the above conditions,
quantum-many-body-scar dynamics is a sufficient condi-
tion for the existence of quasisymmetry.
Does quasisymmetry also imply scar dynamics?

Suppose there is a quasisymmetry group G̃E ≠ G for some
Ĥ with respect to ΨE. If G̃E is a compact Lie group, then
thanks to the onsite-unitary condition Eq. (2), we have that
any generator

X̂ ¼ x̂1 ⊕ x̂2 ⊕ … ⊕ x̂N ð4Þ

is a sum of local operators x̂i’s, each of which is a
Hermitian operator acting on the ith spin. Choose Ĥ1 ¼
cX̂ for the scar Hamiltonian in Eq. (3), where c is a real
constant. For any state ψðt ¼ 0Þ ∈ ΨE as initial state, we
have

ĤψðtÞ ¼ Ĥ exp½−iðĤ þ Ĥ1Þt�ψðt ¼ 0Þ ¼ EψðtÞ; ð5Þ

meaning that ΨE is preserved by the scar Hamiltonian
Ĥscar. Further, if X generates a U(1) subgroup of G̃, then the
spectrum of X̂ has equal spacing Δ, and the evolution of
any ψ ∈ ΨE has exact period 2πðcΔÞ−1. Therefore, qua-
sisymmetry Lie group in Ĥ indeed implies scar dynamics,
given that G̃E ≠ G. When G̃E is a discrete group, there is
not an obvious choice for a scar Hamiltonian. In that case,
there is a discrete version of scar dynamics, to be discussed
in the Supplemental Material [34].
In this work, we focus on constructing spin Hamiltonians

Ĥ that have a quasisymmetry group G̃ of choice. In the
main text, we assume that the quasisymmetry group is a
compact Lie group. Our construction scheme uses three
elements as input: a spin-s spin chain defining the Hilbert
space, s ¼ 1=2; 1; 3=2;…, a compact Lie group G̃ of
choice, and an “anchor state,” denoted by ψ0, which is
either a product or a matrix-product state [37]. For
simplicity, we in this work only use two anchor states as
examples: an all-up ferromagnetic state and an Affleck-
Kennedy-Lieb-Tasaki-like [38] matrix-product state. The
constructed Hamiltonian Ĥ is expressed in terms of pro-
jectors acting on small clusters, the same as in Ref. [39], but
the method for defining the small-cluster projectors are
based on two inputs: the anchor state and the quasisym-
metry group [40].
Product states as anchor states.—We first describe the

construction of spin-s Hamiltonians with a chosen G̃ using
the all-up state ψ0 ¼ js…si as the anchor state. To start
with, we consider a cluster of m spins, or simply, an m
cluster. The product state ψ0 restricted to an m cluster is
denoted by ψ ½m�

0 . The unitary operators on a single spin
form the unitary group Uð2sþ 1Þ, and we assume that
G̃ ⊂ Uð2sþ 1Þ. Define Ψ½m�

G̃
as the following subspace in

the m-cluster space

Ψ½m�
G̃

≡ spanfd̂⊗mðg̃Þψ ½m�
0 jg̃ ∈ G̃g; ð6Þ

and define P̂ as the projector onto Ψ½m�
G̃
. Then we consider

the following m-cluster Hamiltonian

Ĥ½m� ¼ ð1 − P̂Þĥð1 − P̂Þ; ð7Þ

where ĥ is an arbitrary Hermitian matrix acting on the m

cluster. It is easy to see thatΨ½m�
G̃

is the zero energy subspace

of Ĥ½m� for a randomly chosen ĥ.
Now, consider an infinite chain. For each m cluster of

consecutive spins we define a term as in Eq. (7), and obtain
the full Hamiltonian

Ĥ ¼
X

j¼1;…;N

ð1 − P̂½j;jþm−1�Þĥ½j;jþm−1�ð1 − P̂½j;jþm−1�Þ; ð8Þ
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where P̂½j;jþm−1� is the m-cluster projector in Eq. (7) over

the j; jþ 1;…; jþm − 1 spins, and ĥ½j;jþm−1� is a random
Hermitian operator on the same cluster. The summation
in Eq. (8) is from j ¼ 1 to j ¼ N −mþ 1 if the chain
is open, and to j ¼ N if closed. Periodic cycling is
understood for a closed chain: when jþ l > N, replace
jþ l with jþ l − N. Two observations can be made: (i) the
all-up state ψ0 is a zero-energy eigenstate of Ĥ, because
ð1 − P̂½j;jþm−1�Þψ0 ¼ 0 for each j, and (ii) states of the
following form

D̂ðg̃Þψ0 ≡ d̂⊗Nðg̃Þψ0 ð9Þ

are also zero-energy eigenstates of Ĥ for the same reason.
All D̂ðg̃Þψ0’s in Eq. (9) and their linear combinations form
a subspace ΨG̃ ≡ spanfD̂ðg̃Þψ0jg̃ ∈ G̃g. It is clear that
ΨG̃ ⊂ Ψ0, the zero energy subspace of Ĥ. The Hamiltonian
Ĥ hence has quasisymmetry group G̃ with respect to ΨG̃.
To better illustrate the scheme, we look at one example

where s ¼ 1, m ¼ 2, and G̃ ¼ SOð3Þ ⊂ Uð3Þ. For the
2-cluster, namely, the jth spin and the (jþ 1)th spin, the

total spin S ¼ 0, 1, 2, and the all-up state ψ ½2�
0 ¼ j þ þi

belongs to S ¼ 2-subspace. Therefore acting d̂ðg̃Þ ⊗ d̂ðg̃Þ,
where g̃ ∈ SOð3Þ on ψ ½2�

0 yields the entire S ¼ 2-subspace,

which is Ψ½2�
G̃
. The 2-cluster projector onto Ψ½2�

G̃
is

P̂½j;jþ1� ¼ ðŜj þ Ŝjþ1Þ2½ðŜj þ Ŝjþ1Þ2 − 2�=24: ð10Þ

Substituting P̂½j;jþ1� and a random choice for ĥ½j;jþ1� into
Eq. (8), we have the full Hamiltonian. An exact diagonal-
ization of this Hamiltonian (with periodic boundary) is
carried out for 2 ≤ N ≤ 10. We plot the level statistics in
Ref. [34], which fits the Wigner-Dyson curve, indicating
nonintegrability of the Hamiltonian [42]. The diagonaliza-
tion also shows that there are exactly 2N þ 1 independent
states in Ψ0, which are nothing but the states in the largest
total spin sector (total spin being N), and that ΨG̃ ¼ Ψ0.
We can also choose G̃ ¼ SUð2Þ ⊂ Uð3Þ, and the same

ψ0 as the anchor state. In Ref. [34], we show that the
resultant ΨG̃ (which again equals Ψ0) is exactly spanned
by, up to an onsite-unitary transform, the type-I scar
tower of the spin-1-XY model in Ref. [27], although the
Hamiltonian, due to the randomness in ĥ½j;jþ1�, can be
drastically different from that of the XY model. (There are
two scar towers discovered in Ref. [27], and we denote
them, after their sequential appearances in the original
paper, as type-I and type-II. Also see Ref. [29] for more on
the type-II case.)
This simple example of the SO(3) quasisymmetry group

illustrates some general features of quasisymmetry groups.
First, G̃ is a subgroup of Uð2sþ 1Þ, so that by choosing
a large s one can specify any compact Lie group, such as

SO(n), U(n), Sp(n), and exceptional Lie groups, as the
quasisymmetry group. We note here that the actual form
of the “sandwiched” part of the Hamiltonian in Eq. (8), ĥi,
is almost completely irrelevant, as long as it does not
have so many symmetries that the Hamiltonian becomes
integrable. Last, we want to emphasize that, despite the
randomness in ĥ½j;jþm−1�, it is not guaranteed thatΨG̃ ¼ Ψ0.
This indicates that the zero-energy subspace of Ĥ, despite
being designed to be so, is not generated by acting D̂ðG̃Þ on
ψ0. This equality between the two can only be established,
or disproved, in numerics up to some N, as we do
in Ref. [34].
Matrix-product states as anchor states.—A product state

has zero entanglement, and if chosen as the anchor state,
or, equivalently, the initial state, during the time evolution
the state remains a product state, because quasisymmetry
operations are strictly local. It is natural that we extend
the discussion to the case where the anchor state has
finite entanglement; i.e., is a matrix-product state. The
corresponding construction of the scar Hamiltonian
follows a slightly more complicated scheme, compared
with the product-state case. Again considering a group
G̃ ⊂ Uð2sþ 1Þ, we first obtain two linear or projective
representations of V of equal dimension χ, dLðG̃Þ, dRðG̃Þ,
such that dL ⊗ dR contains a representation of dimension
2sþ 1, denoted by dðG̃Þ. In other words, there exists
a trio of representations dL, dR, d of dimensions χ, χ,
and 2sþ 1, such that the Clebsch-Gordon coefficients
hdL; α; dR; βjd; ki ≠ 0, where α; β ¼ 1;…; χ and
k ¼ 1;…; 2sþ 1. When these conditions are met, define
matrices (Fig. 1 shows how quasisymmetries act on these
matrices)

Ak
αβ ≡ hdL; α; dR; βjd; ki: ð11Þ

These matrices define our anchor state(s), which is

ψ0 ¼ TrðAs1…AsN Þjs1;…; sNi;
ψαβ ¼ ðAs1…AsN Þαβjs1;…; sNi; ð12Þ

for a closed and an open chain, respectively.
Consider an m cluster, on which the matrices Eq. (11)

define χ2 open-matrix-product states

FIG. 1. Action of onsite operator d̂ðg̃Þ on the Clebsch-Gordon
coefficients tensor A; the representation dðG̃Þ on the physical
indices is transferred to two (projective) representations dL;RðG̃Þ
on the bond indices.
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ψ ½m�
αβ ¼ ðAs1…AsmÞαβjs1;…; smi; ð13Þ

where α; β ¼ 1;…; χ. Acting d̂⊗mðg̃Þ for any g̃ ∈ G̃ on
these χ2 states yields another set of χ2 open-matrix-product
states:

hs1…smjd̂⊗mðg̃Þψ ½m�
αβ i

≡ ds1s01ðg̃Þ…dsms0mðg̃Þ½As0
1…As0m �αβ

¼ ½dLðg̃ÞAs1dTRðg̃Þ…dLðg̃ÞAsmdTRðg̃Þ�αβ: ð14Þ
Find the subspace

Ψ½m�
G̃

≡ spanfd̂⊗mðg̃Þψ ½m�
αβ jg̃ ∈ G̃; α; β ¼ 1;…; χg; ð15Þ

and define P̂ as the projector onto Ψ½m�
G̃
.

For a closed chain of N ≥ m sites, define the
Hamiltonian as in Eq. (8). It is easy to verify that the
anchor state ψ0 is a zero eigenstate of Ĥ because it is a zero
eigenstate of each term; and also the state D̂ðg̃Þψ0 ≡
d̂⊗Nðg̃Þψ0 is a zero eigenstate for the same reason for
g̃ ∈ G̃. The space ΨG̃ spanned by all these states is thus a
zero-energy subspace of Ĥ, i.e., ΨG̃ ⊂ Ψ0. Therefore, we
have constructed Ĥ that has quasisymmetry group G̃ with
respect to ΨG̃. The case of open chains can be similarly
worked out (not shown here).

We again use an example to illustrate the above con-
struction scheme. Choose G̃ ¼ Uð1Þ ⊂ Uð3Þ as our qua-
sigroup, and we choose dLðG̃Þ ¼ dRðG̃Þ ¼ 1

2
⊕ − 1

2
, which

are the two-dimensional reducible projective representa-
tions of U(1). The specific realization of U(1) can be
arbitrary, but in this example we choose it to be the overall
spin rotation about the z axis. dðG̃Þ is chosen to be
the three-dimensional reducible vector representation
dðG̃Þ ¼ ðx; y; zÞ ¼ þ1 ⊕ 0 ⊕ −1. So the matrices are
given by the Clebsch-Gordon coefficients

A� ¼
ffiffiffi
1

6

r
ðσ0 � σzÞ; A0 ¼

ffiffiffi
1

3

r
σx; ð16Þ

satisfying

expðiŜzθÞijAj ¼ eiσzθ=2Aiðeiσzθ=2ÞT: ð17Þ

Now we consider anm ¼ 3-cluster. The four open 3-cluster
states, ψαβ, are none but the Affleck-Kennedy-Lieb-Tasaki
open 3-chain ground states, up to a unitary transform
expðiSyπÞ on all odd sites.
After acting all elements of the U(1) quasisymmetry

group on the four open 3-cluster states, we have a subspace

Ψ½3�
G̃

spanned by 12 states, classified into groups labeled by

two quantum numbers n� ≡ Ŝ1z � Ŝ2z þ S3z:

ðnþ; n−Þ ¼ ð0; 0Þ∶ j þ 0−i − j − 0þiffiffiffi
2

p ;
j þ 0−i þ j − 0þi þ j000iffiffiffi

3
p ;

ð�1;�1Þ∶ j � 00i þ j00�iffiffiffi
2

p ;

ð�1;∓ 1Þ∶ j0� 0i;
ð�2; 0Þ∶ j � �0i; j0��i;

ð�3;�1Þ∶ j � ��i: ð18Þ

Define P̂ as the 3-cluster projector onto Ψ½3�
G̃
. Replacing

P̂½j;jþ2� with P̂ in Eq. (8), we have the full Hamiltonian Ĥ
with quasisymmetry U(1), with respect to the zero energy
subspace ΨG̃. Using numerical calculation up to N ¼ 10

sites [34], we find that level-spacing statistics of Ĥ shows
Wigner Dyson behavior. We have also checked, up to
N ¼ 14, that the degeneracy of the zero subspace of Ĥ is
N þ 1 for periodic chains and 4N for open chains, and
that Ψ0 ¼ ΨG̃. This means that the entire zero-energy
subspace of Ĥ can be obtained from acting the quasisym-
metry group elements on the anchor state(s). It is interesting
to notice that, after an onsite-unitary transform, the result-
ant zero-energy subspace becomes the space spanned by
the type-II-spin-1-XY scar [27,29]. We comment that since
the quasisymmetry group is only U(1), instead of SU(2) or

higher Lie groups, there is not an obvious choice for a local
Q̂ such that ½Q̂; Ĥ� ¼ const � Q̂ on the subspace. We also
remark that the Hamiltonian following our construction is
“unfrustrated,” in the sense that Ψ0 lies within the zero-
energy subspace of each term in Ĥ, in contrast to the
original XY model. It is certainly possible to construct
models having larger quasisymmetry groups, such as SO
(3), using the same MPS as in Eq. (16), an explicit example
of which is shown in Ref. [34].
We comment that using matrix-product states as anchor

states is particularly useful when we relate this study to the
study of symmetry-protected topological states [43–45]
(SPT). In the Supplemental Material [34], we show how
one can construct a scar tower and Hamiltonian such that all

states of the form D̂ðg̃Þψ0 is an SPT protected by a unitary
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or antiunitary group. Here we simply point out that in the
example above, both ψ0 and D̂ðg̃Þψ0 are SPT protected by
time-reversal symmetry, demonstrated in Ref. [34].
Discussion.—Aiming for a simple narrative, we have so

far assumed that the anchor states have translation sym-
metry, and the quasi-group symmetry operator D̂ðg̃Þ acts
uniformly on each spin, as in Eq. (9). Both conditions
can be relaxed: (i) the anchor state may be rotated by
onsite-unitary operators d̂1ðg̃1Þ ⊗ d̂2ðg̃2Þ ⊗ … ⊗ d̂Nðg̃NÞ
for g̃i ∈ G̃; (ii) the action of D̂ðG̃Þ can be generalized to

D̂ðg̃Þ ¼ d̂1ðg̃Þ ⊗ d̂2ðg̃Þ ⊗ … ⊗ d̂Nðg̃Þ; ð19Þ

where d̂i¼1;…;N are N different representations of G̃. With
these generalizations, the method for defining them-cluster
projectors becomes slightly modified, shown in Ref. [34].
The anchor state, product, or matrix product, is a key

input for our construction scheme. It ensures that within the
zero-energy subspace of constructed Hamiltonian, there is
at least one state that is a (matrix) product state. The anchor
state can also be used as the initial state in the associated
scar dynamics, and due to the onsite-unitary condition, all
the states along the entire trajectory are (matrix) product
states as the anchor state. In previous studies, the state used
as the origin, from which the scar tower is obtained using
ladder operators, is an exact eigenstate of the scar
Hamiltonian, rather than an initial state for scar dynamics.
We impose the quasisymmetry group G̃ without requir-

ing a ladder operator Q̂. However, if G̃ is a non-Abelian Lie
group, a ladder operator can always be found, because in
that case SOð3Þ ⊂ G̃, and SO(3) has ladder operator
Q̂ ¼ L̂x − iL̂y. For G̃ ¼ Uð1Þ, we have used one above
example to show that even in the absence of Q, the zero-
energy subspace of Ĥ forms a scar tower identical to the
type-II-spin-1-XY scar tower. On the other hand, if
G̃ ⊃ SOð3Þ, there are, in general, multiple ladder operators.
For example, when G̃ ¼ SUð3Þ ⊃ SUð2Þ, there are three
different ladder operators, corresponding to the three
natural embeddings of SU(2) in SU(3). See Ref. [34] for
an explicit model, and a general discussion on the relation
between the non-Abelian quasisymmetry group and ladder
operators.
To summarize, we show that many-body-scar towers

have hidden group structures that we call quasisymmetry
groups, and propose schemes for constructing local
Hamiltonians that host any chosen Lie group as its
quasisymmetry group. As application of the new concept,
we show that (i) several known scar models can be unified,
(ii) a scar model having three sets of ladder operators can be
found (see Ref. [34]), and (iii) a discrete version of many-
body scar is established by choosing a discrete quasi-
symmetry group (see Ref. [34]).
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