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We study theoretically the nonlinear optical response of Tomonaga-Luttinger spin liquid in the context of
terahertz (THz) two-dimensional coherent spectroscopy (2DCS). Using the gapless phase of the XXZ-type

spin chain as an example, we show that its third-order nonlinear magnetic susceptibilities χð3Þþ−−þ and χð3Þ−þþ−
exhibit photon echo, where � refers to the left- or right-hand circular polarization with respect to the Sz

axis. The photon echo arises from a “lensing” phenomenon in which the wave packets of fractional
excitations move apart and then come back toward each other, amounting to a refocusing of the excitations’
world lines. Renormalization-group-irrelevant corrections to the fixed-point Hamiltonian result in
dispersion and/or damping of the wave packets, which can be sensitively detected by lensing and
consequently the photon echo. Our results thus unveil the strength of THz 2DCS in probing the dynamical
properties of the collective excitations in a prototypical gapless many-body system.
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I. INTRODUCTION

Progress in condensed matter physics is intimately
connected to the development of new spectroscopic tech-
niques. Among the many emerging spectroscopies, two-
dimensional coherent spectroscopy (2DCS) stands out as a
promising tool for investigating strongly correlated sys-
tems. The 2DCS uses multiple coherent electromagnetic
waves to probe the nonlinear optical properties of a sample,
thereby producing a two-dimensional spectrum that visu-
alizes the sample’s nonlinear response as a function of the
frequencies of probing electromagnetic waves [1,2].
Comparing to the more familiar one-dimensional spec-

troscopy that probes linear optical properties, the 2DCS
reveals not only the optical excitations in a sample but also
their relationship. In the infrared and higher-frequency
range, its ability to diagnose the interplay between optical
excitations has been widely leveraged by chemists to
unravel the structure of complex molecules and map out
the kinetic pathways of chemical reactions [1–3]. The
advent of terahertz (THz) 2DCS now puts this technique in

the right energy window to study many-body phenomena.
The THz 2DCS has offered new experimental insights into
quantum wells [4], antiferromagnets [5], and electronic
glasses [6]. On the theory front, it has recently been
suggested that the THz 2DCS can resolve the spectral
continua formed by optical excitations in several clean and
disordered many-body systems and characterize their
dynamical properties, which would be challenging to
accomplish with linear spectroscopy, if at all [7–11].
A main strength of the 2DCS lies in the photon-echo [12]

signal from the third-order nonlinear optical response χð3Þ.
The photon echo is an optical analog of the spin echo in
nuclear magnetic resonance (NMR) [13]. Schematically,
one may observe the photon echo by exciting the system
with three successive short optical pulses and detecting the
resulted χð3Þ response [Fig. 1(a)]. Let τ be the time delay
between the second and first pulses, tw (the waiting time) be
the delay between the third and second, and t be the delay
between the time of detection and the last pulse. The
photon-echo signal appears as a surge of the nonlinear
response at t ≈ τ in close analogy with the NMR spin echo
[Fig. 1(b)].
Similar to its NMR cousin, the photon-echo signal can

diagnose dissipation in a few-body system by effecting
a time-reversal operation; the system’s evolution during the
time delay t reverses the evolution occurring during the
time delay τ [1,2]. Had the dynamics been unitary,
the quantum-mechanical phase accumulated in τ would
be completely removed when t ¼ τ, resulting in a perfect
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rephasing. This perfect rephasing process would produce a
photon-echo signal at t ¼ τ regardless of the value of τ.
Deviation from the perfect rephasing is thus a direct
measure of dissipation in the few-body system.
Specifically, the decay of echo signal with increasing τ
is a manifestation of the decoherence time (T2 time),
whereas the decay of the signal as a function of tw probes
the population time (T1 time).
This unique ability of diagnosing dissipation makes one

naturally wonder if the photon echo could also find its
success in strongly correlated many-body systems.
Although the latest theoretical inquiries have suggested
interesting applications of photon echo in gapped systems
[7,8,10] and disordered systems [9], less attention is paid to
clean gapless many-body systems. Adapting this technique
to a gapless many-body setting poses new theoretical
challenges. The standard framework for analyzing the
photon echo uses the language of energy levels [1,2],
which is best suited for few-body systems with discrete
energy spectra. While it is possible to analyze the zero-
temperature optical response of a gapped system by
truncating the Fock space to a subspace containing a finite
number of excitations [14] and thereby making use of the
established framework, such a truncation is not permitted in
general for gapless systems. Important questions such as
the existence of photon echo in gapless strongly correlated
systems, its underlying mechanism, and its features require
theoretical investigation.
In this work, we address these questions by studying the

nonlinear optical response of a prototypical gapless

strongly correlated system, namely, the Tomonaga-
Luttinger spin liquid (henceforth, “Luttinger spin liquid”
for short) [15,16]. For concreteness, we consider the
Luttinger spin liquid hosted by the XXZ spin chain, which
possesses a global U(1) spin rotational symmetry with
respect to the spin z axis. We consider exclusively the
nonlinear magnetic response ⊥z and decompose the
electromagnetic wave polarization in the left-handed (þ)
and right-handed (−) basis.
Using the bosonization Hamiltonian at the renormaliza-

tion-group (RG) fixed point, we find that, among the six
symmetry-allowed third-order magnetic susceptibilities,

χð3Þþ−−þ and its complex conjugate χð3Þ−þþ− show photon
echo, which appears as a peak on the t axis at t ≈ τ. The
echo signal possesses a universal asymptotic form, which
we obtain analytically and verify numerically. Crucially,
the photon echo is “perfect” in the sense that the signal is a
function of t − τ rather than t and τ both, resembling the
perfectly rephasing photon echo in a few-body system. This
implies that the signal measured at a given value of t − τ is
independent of τ. Moreover, the echo signal depends
weakly on the waiting time tw, and saturates when tw → ∞.
This perfect photon echo, although it resembles the one

due to the perfect rephasing process in few-body systems,
comes as a pleasant surprise: The rephasing process is
understood as a result of the optical transitions between
discrete energy levels. Here, the rephasing picture does not
directly apply as the present system has a continuous
energy spectrum. Instead, we trace its origin back to a
unique “lensing” phenomenon of fractional excitations in
Luttinger spin liquids [Fig. 6(c)]: The first THz pulse
creates two wave packets of fractional excitations with
opposite chirality [17]. The second pulse converts the left-
moving wave packet into a right-moving one, whereas the
third pulse converts the right-moving wave packet into a
left-moving one. These two wave packets then meet each
other later at t ¼ τ, thereby producing an echo. For the
fixed-point Hamiltonian, the phonon modes are exact
eigenstates of the Hamiltonian, and their dispersion relation
is linear. Consequently, the wave packets of fractional
excitations can propagate through the system indefinitely
without decay or dispersion. This naturally explains the
perfect photon echo; namely, the echo signal does not
decay as either τ or tw increases.
Our lensing picture immediately suggests that the photon

echo is a sensitive diagnostic to the RG-irrelevant perturba-
tions to the fixed-point Hamiltonian. These RG-irrelevant
corrections give only minor corrections to the most physical
quantities at low temperature, and consequently, they are
often elusive to experimental probes. In the 2DCS, these
corrections manifest themselves in the decay of the photon
echo thanks to lensing.
In the XXZ spin chain, the RG-irrelevant corrections

include the umklapp terms and higher-order gradient terms
[15,16]. The umklapp terms give rise to the dissipation of
phonon modes and therefore the decay of the wave packets

FIG. 1. (a) The Faraday configuration considered in this work.
A magnetic field B is applied in the z axis. Three short
electromagnetic pulses with circular polarizations pass through
the S ¼ 1=2 spin chain. The propagation direction is parallel with
the spin z axis. The first pulse is right-handed, whereas the second
and the third are left-handed. We denote the time delay between
the first and the second pulse by τ, the second and the third by tw,
and the third pulse and the time of detection by t. (b) The photon
echo appears as the surge of nonlinear optical response at
the time t ≈ τ.
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at finite temperature. As a result, the lensing becomes
unattainable when the pulse delay τ or tw exceeds the
lifetime of the wave packets. This effect is manifest as the
decay of the echo signal as a function of τ or tw, which is
analogous to the dissipation-induced decay of the photon
echo in the few-body systems mentioned above.
The higher-order gradient terms, on the other hand, may

result in the decay of the photon echo through a different
mechanism. By adding these terms, one may introduce a
small curvature to the dispersion relation of the phonon
modes while keeping them as the exact eigenstates. The
curvature results in the dispersion of the wave packets. We
expect the lensing to be ineffective beyond a timescale τdisp,
at which point the width of the wave packet is comparable
with the correlation length.
This dispersion-induced decay of the photon echo is

distinct from the dissipation-induced decay and finds no
immediate analog in few-body systems. We study this
decay mechanism on a toy model, namely, the harmonic
chain, which is a lattice discretization of the fixed-point
Hamiltonian. The photon echo, when measured at t ¼ τ,
decays as a stretched exponential ∼ exp½−Cðτ=τdispÞ1=2�,
where C is a numerical constant. Meanwhile, the echo
signal shows weak dependence on the waiting time tw and
saturates when tw → ∞. We attribute the lack of tw
dependence to the absence of thermalization in the toy
model: The decay of the photon echo as a function of tw
reflects the population time. Since the population of the
phonon modes cannot relax, its population time is effec-
tively infinity.
To summarize, our analysis shows that the χð3Þ photon

echo from the Luttinger spin liquid is a sensitive diagnostic
of the RG-irrelevant perturbations to the fixed-point
Hamiltonian, which are difficult to detect with linear optical
spectroscopy. It also uncovers a dispersion-induced pho-
ton-echo decay mechanism unique to many-body systems.
Conceptually, the lensing of fractional excitations is a
convenient picture for understanding the photon echo
in the Luttinger spin liquid. The lensing picture extends
the phase-interference picture, commonly invoked for the
photon echo in few-body systems [1,2], from the time
domain to the spacetime domain.
The rest of this work is organized as follows: In Sec. II,

we describe the problem setup. We present the bosonization
analysis in Sec.. III and the lensing picture in Sec. IV. We
investigate the dispersion-induced photon-echo decay in
Sec. V. In Sec. VI, we point out a few interesting open
problems.

II. SETUP

We consider the S ¼ 1=2 XXZ spin chain:

H ¼
X
j

J⊥
2
ðSþj S−jþ1 þ H:c:Þ þ JzS

z
jS

z
jþ1 − BSzj: ð1Þ

j labels the lattice sites. S�j ; S
z are the S ¼ 1=2 spin

operators. J⊥ is the exchange constant in the spin x-y

plane. We shall consider both “ferromagnetic” (J⊥ < 0)
and “antiferromagnetic” (J⊥ > 0) chains. Jz is the
exchange constant in the spin z axis. We include the
Zeeman term due to an external field Bkz (Fig. 1).
Throughout this work, we use the natural units with
ℏ ¼ kB ¼ μ ¼ 1, where μ is the magnetic moment carried
by the spin. We may extend Eq. (1) by including additional
terms so long as they preserve the symmetries. Our analysis
is applicable to the Luttinger spin-liquid phase of Eq. (1)
and its extensions.
The 2DCS measures a sample’s nonlinear optical

response [1,2]. The electromagnetic wave interacts with
an insulating spin system such as Eq. (1) primarily by the
Zeeman coupling. Therefore, the nonlinear optical response
of Eq. (1) is chiefly due to its leading-order nonlinear
magnetic susceptibility. Note the photon echo that arises
from this nonlinear magnetic response closely resembles
the NMR spin echo in that both are induced by a sequence
of magnetic field pulses, and the former echo may be
justifiably called spin echo as well [5]. However, different
from the canonical NMR spin echo setup [13], 2DCS does
not require precise control of the field pulse area. Here, we
adhere to the term “photon echo” to emphasize this
difference from the NMR spin echo.
The Hamiltonian Eq. (1) possesses a U(1) spin rotational

symmetry with respect to the z axis. Since the total
magnetization in z commutes with H and does not evolve
in the Heisenberg picture, it is natural to consider the
magnetic response in the x-y plane. Experimentally, this
configuration corresponds to the Faraday geometry where
the propagation direction of the electromagnetic wave is
parallel or antiparallel to the external field [Fig. 1(a)] [18].
The U(1) symmetry of the Hamiltonian Eq. (1) forbids

second-order in-plane nonlinear magnetic susceptibilities.
The same symmetry allows six third-order in-plane non-
linear magnetic susceptibilities, out of which three are
independent: χð3Þþ−þ−, χ

ð3Þ
þ−−þ, and χ

ð3Þ
þþ−−, whereþð−Þ refers

to the left- (right-) handed circular polarization of the
electromagnetic wave. The other three susceptibilities,
namely, χð3Þ−þ−þ, χð3Þ−þþ−, and χð3Þ−−þþ, are related to the
former three by complex conjugation and thus offer no
new information. Throughout this work, we focus on
χð3Þþ−−þ, which exhibits the photon echo and defer the
discussion on the other two susceptibilities to Sec. IV.
The THz 2DCS typically measures the nonlinear

response in the time domain [4]. Following the discussion
in Sec. I, we consider a three-pulse setup (Fig. 1): Three
circularly polarized electromagnetic pulses arrive at the
sample successively at time 0, τ, τ þ tw, where τ; tw > 0 are
the delay between successive pulses. The signal from the
sample detected at a later time t > 0 after the last pulse
contains contributions from both linear and nonlinear
responses. Rerunning the experiment with individual
pulses, one may subtract off the linear response and thereby
isolate the nonlinear response.
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The nonlinear signal is a convolution of the pulse profile
and the third-order magnetic susceptibility:

χð3Þþ−−þðt; tw; τÞ

¼
ZZZ

∞

−∞
dx1dx2dx3χ̃

ð3Þ
þ−−þðt; x1; tþ tw; x2; tþ tw þ τ; x3Þ:

ð2Þ

Here, χð3Þþ−−þ is the optical susceptibility that depends only

on time, while χ̃ð3Þþ−−þ is the spacetime-dependent suscep-
tibility. Note the time parametrization of the latter quantity
follows the standard convention for nonlinear susceptibility
[19], whereas the former does not. We use the symbol with
and without the tilde to emphasize these differences.

We visualize χð3Þþ−−þðt; tw; τÞ by holding tw constant and
scanning τ and t. We obtain the two-dimensional spectra
χð3Þðωt; tw;ωτÞ by performing a two-dimensional one-sided
Fourier transform of χð3Þðt; tw; τÞ over the domain t > 0 and
τ > 0. Note alternative protocols for visualizing the non-
linear response exist [4,6]. Ours is closely related to that of
Refs. [5,7].

III. BOSONIZATION

In this section, we compute the nonlinear response of
Eq. (1) by using bosonization. We show that the nonlinear

susceptibility χð3Þþ−−þ exhibits photon echo and characterize
its features.

A. Bosonization essentials

The bosonization of the S ¼ 1=2 XXZ chain is standard
[15,16]. We briefly review the results to establish notations.
Upon bosonization, the Hamiltonian at the RG fixed point
reads

H ¼ u
2π

Z �
1

K
ð∇ϕÞ2 þ Kð∇θÞ2

�
dx: ð3Þ

Here, u is the speed of sound. K is the Luttinger parameter.
They may be computed from the microscopic model
parameters J⊥; Jz; B by using the Bethe ansatz [20,21].
ϕ and θ are boson fields with the compactification con-
ditions:

ϕ ∼ ϕþ π; θ ∼ θ þ 2π: ð4Þ
They obey the nonlocal commutation relation

½ϕðxÞ; θðyÞ� ¼ −iπΘðx − yÞ; ð5Þ

where Θð·Þ is the Heaviside step function. Note there is
freedom in choosing the commutation relation between ϕ
and θ. We discuss the difference between the different
commutation relation prescriptions and the associated
subtleties in the Appendix A.

Up to a cutoff-dependent prefactor, the spin operators
assume the following form:

S−j ≈
�
exp½iθðxÞ�; ðJ⊥ < 0Þ;
exp½iθðxÞ� cos½2ϕðxÞ − 2πmx�; ðJ⊥ > 0Þ; ð6Þ

where m is the magnetization density, and x is the spatial
coordinate of site j. The external field B is subsumed into
the expression of spin operator through m.
Note we omit in Eq. (6) the spatially staggered [∝ ð−Þj]

component, which does not contribute to the optical
response, as the wavelength of the THz probe is typically
much larger than the lattice spacing. Although the ferro-
magnetic chain (J⊥ < 0) and the antiferromagnetic chain
(J⊥ > 0) are exactly mapped to each other by a π rotation
of spins about the z axis at every other site, i.e.,
S�j → ð−1ÞjS�j , such a mapping also exchanges the uni-
form and staggered components of the spin operator. Since
we consider only the uniform component, it is necessary to
distinguish the two cases for our purpose as shown
in Eq. (6).

B. Four-point response function

The experimentally measured signal is related to the
spacetime-dependent nonlinear magnetic susceptibility

χ̃ð3Þþ−−þ [Eq. (2)]. Its Kubo formula [22] reads

χ̃ð3Þþ−−þð1;2;3Þ ¼ i3Θðt1ÞΘðt2 − t1ÞΘðt3− t2Þ
× h½½½Sþð0Þ;S−ð−1Þ�;S−ð−2Þ�;Sþð−3Þ�i:

ð7Þ
0,1,2,3 are shorthand notations for spacetime coordinates

(0,0), ðt1; x1Þ, ðt2; x2Þ, and ðt3; x3Þ, respectively. χ̃ð3Þþ−−þ
measures the system’s response at the spacetime origin due
to successive perturbations at ð−t3;−x3Þ, ð−t2;−x2Þ,
and ð−t1;−x1Þ.
From Eq. (6), we see that the spin operators are linear

combinations of vertex operators. It will be convenient to
seek a general expression for the four-point response
function with the following form:

GRð1; 2; 3Þ ¼ i3Θðt1ÞΘðt2 − t1ÞΘðt3 − t2Þ
× h½½½V0ð0Þ; V1ð−1Þ�; V2ð−2Þ�; V3ð−3Þ�i;

ð8Þ

where

Vj ¼ eiðmjθþ2njϕÞ ð9Þ
are the vertex operators. We focus on the local vertex
operators; i.e., those preserve the boson compactification
conditions (4). This requirement imposes the condition on
the coefficients
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mj; nj ∈ Z: ð10Þ

We also impose the charge neutrality condition
P

j mj ¼P
j nj ¼ 0 to ensure GR does not vanish in the thermo-

dynamic limit.
Equation (8) can be calculated by using the established

technique [16]. Here we sketch only the key steps. Using
the Baker-Campbell-Hausdorff formula, we find the com-
mutator ½eiA; eiB� ¼ −2 sinhð½A; B�=2ÞeiðAþBÞ, where A, B
are arbitrary linear combinations of ϕ and θ. This formula
permits a straightforward evaluation of the nested commu-
tators in Eq. (8). We then compute the thermal average by
using hexpðiAÞi ¼ expð−hA2i=2Þ, where A is an arbitrary
linear combination of θ and ϕ. We obtain

GRð1;2;3Þ ¼−8Θðt1ÞΘðt2− t1ÞΘðt3− t2Þ
×sinðα10Þsinðα20þα21Þsinðα30þα31þα32Þ
×C10C20C21C30C31C32: ð11Þ

The above is the main result of this subsection. Here, αij
and Cij are defined for the vertex operator Vi and Vj. αij
comes from the commutator of vertex operators:

αij ¼
π

2
½liljSgnðxþijÞ þ rirjSgnðx−ijÞ þ lirj − rilj�: ð12aÞ

We use light-cone coordinates x� ≡ ut� x. x�ij≡
x�i − x�j . Sgnð·Þ is the sign function. lj and rj are real
parameters related to mj, nj through

lj ¼
mj

2
ffiffiffiffi
K

p þ
ffiffiffiffi
K

p
nj; rj ¼

mj

2
ffiffiffiffi
K

p −
ffiffiffiffi
K

p
nj: ð12bÞ

Meanwhile,

Cij ¼
���� sinhðπTx

þ
ij=uÞ

πTϵ=u

����lilj
���� sinhðπTx−ij=uÞπTϵ=u

����rirj ; ð12cÞ

where ϵ is the short-distance cutoff. T is the temperature.
Causality is an important property shared by all exper-

imentally accessible response functions. For a relativistic
system described by the fixed-point Hamiltonian Eq. (3),
the response vanishes if the perturbations are outside the
past light cone of the detection event. It is then natural to
ask if Eq. (11) is causal and under what conditions. In
Appendix B, we show that Eq. (11) is causal provided that
the vertex operators are local; i.e., Eq. (10) holds for all Vj.
It is straightforward to check that the vertex operators that
appear in the expression of S�ðxÞ [Eq. (6)] indeed fulfill

this condition. Thus, χ̃ð3Þþ−−þ is causal as expected.

C. Ferromagnetic chain

In this subsection, we consider the ferromagnetic
(J⊥ < 0) chain. Plugging Eq. (6) into the Kubo formula
[Eq. (7)] yields

χ̃ð3Þþ−−þð1; 2; 3Þ ¼ðJ⊥<0Þi3Θðt1ÞΘðt2 − t1ÞΘðt3 − t2Þ
× h½½½e−iθð0Þ; eiθð−1Þ�; eiθð−2Þ�; e−iθð−3Þ�i: ð13Þ
The above has the form of Eq. (8). We may read off its
explicit expression from Eq. (11) by setting l ¼ r ¼
1=

ffiffiffiffiffiffiffi
4K

p
for expðiθÞ and l ¼ r ¼ −1=

ffiffiffiffiffiffiffi
4K

p
for expð−iθÞ.

An immediate consequence of Eq. (11) is that χð3Þþ−−þ is
strictly real and independent of the magnetization den-
sity m.

The next step is to find χð3Þþ−−þ by integrating χ̃ð3Þþ−−þ over
spatial coordinates [Eq. (2)]. Given the complex structure
of the integrand, the integral is unlikely to admit a simple

closed form. We instead seek the asymptotic form of χð3Þþ−−þ
valid when t; tw; τ are large.
To this end, we use the following approximation for the

function Cij [Eq. (12c)]:

Cijðxij; tijÞ ≈ exp

�
πT
u

ðliljjxþijj þ rirjjx−ijjÞ
�
: ð14Þ

We omit a cutoff-dependent prefactor. Equation (14) cap-
tures the exponential falling-off or growth of Cij away from
the light cone but neglects the algebraic singularity near the
light cone xij ¼ �utij. The latter singularity is short-
distance physics and should not affect the asymptotic
behavior. The validity of Eq. (14) is further verified
a posteriori by numerical integration.
With the approximation Eq. (14), the integral Eq. (2) is

now elementary. After lengthy calculations, we find the
integration produces two groups of terms: The first group
of terms simply decreases as t or τ increases, which we
discard as they are uninteresting for our purpose. The
second group of terms shows signature of photon echo; as
we fix τ and scan t, they exhibit a maximum near t ≈ τ.
Retaining these terms, we find

χð3Þþ−−þ ∼ðJ⊥<0Þ
(
ðτ − tÞe−πTðτ−tÞ

2K ðt ≪ τÞ;
−ðt − τÞ3e−πTðt−τÞ

2K ðt ≫ τÞ:
ð15Þ

The above is the key result of this subsection.
Equation (15) suggests that the photon echo is perfect;

i.e., it is a function of t − τ. The timescale of the photon-
echo signal is set by 2K=ðπTÞ. Moreover, it is independent
of the waiting time tw in the asymptotic regime. As we
discuss in Sec. I, the photon echo in a few-body system is
understood as the result of the rephasing process, which in
turn builds on transitions between discrete energy levels.
Since the energy spectrum of the Luttinger spin liquid is
continuous, the rephasing picture does not apply. The
physics behind the photon echo in the present system is
discussed in detail in Sec. IV.
We test the validity of Eq. (15) by performing the

integration Eq. (2) numerically. We use a short-distance
cutoff πϵT=u ¼ 1, which smoothens the algebraic

PHOTON ECHO FROM LENSING OF FRACTIONAL … PHYS. REV. X 11, 031035 (2021)

031035-5



singularities and discontinuities that would otherwise
appear in the integrand in the limit ϵ → 0þ. With finite
ϵ, the integrand decreases rapidly outside the light cone of
(0,0). We thus limit the domain of integration to the light
cone plus a small interval of size R beyond the light cone.
We set πTR=u ¼ 2 with the relative error Oð10−3Þ.
Figure 2 shows χð3Þþ−−þ for representative Luttinger

parameters K ¼ 0.7, K ¼ 1, and K ¼ 1.5. πTtw ¼ 1 and
πTτ ¼ 20, 40. For all cases, the nonlinear response shows a
surge near t ≈ τ, exhibiting the clear signature of photon
echo. Note the maximum is not exactly located at t ¼ τ but
fairly close to it. The data for different values of τ overlay
within numerical error when plotted as a function of t − τ.
This data collapse demonstrates that the photon echo is
independent of τ for large τ.
Numerical integration also indicates that the value of

χð3Þþ−−þ measured at t ¼ τ does not depend on tw within
numerical error in the asymptotic regime πTτ ≫ 1, which
is in agreement with Eq. (15).

We further examine the asymptotic behavior of χð3Þþ−−þ by
multiplying it with exp½πTjt − τj=ð2KÞ�. Equation (15)
suggests the product would be ∝ τ − t when t < τ, and ∝
−ðt − τÞ3 when t > τ. The insets of Fig. 2 show that its
behavior is in excellent agreement with Eq. (15).
Having analyzed the photon-echo signal for fixed value

of τ, we now scan τ and present the nonlinear response as a
function of both τ and t. Figure 3(a) shows χð3Þþ−−þ for K ¼
1 and πTtw ¼ 1. The photon echo appears as a bright
feature at the diagonal of the ðt; τÞ plane. This feature
persists along the diagonal direction, highlighting the fact
that the photon echo is perfect.
Performing the FFT of the time-domain data yields the

two-dimensional spectrum [Figs. 3(b) and 3(c)]. In the
frequency domain, the photon echo manifests itself as a pair
of highly anisotropic peaks in the second and fourth
quadrants, symmetrically distributed with respect to the
origin. The peak width along the diagonal direction of the
second and fourth quadrants scales with T. The peak width
along the antidiagonal direction is resolution limited; the
photon-echo signal in the time domain [Fig. 3(a)] is
independent of tþ τ at late time, and hence, its Fourier
transform is approximately δðωt þ ωτÞ.
To recapitulate, the χð3Þþ−−þ of the ferromagnetic chain is

real and independent of the magnetization density. It
exhibits perfect photon echo, which depends on t − τ rather
than t and τ both.

D. Antiferromagnetic chain

We turn to the antiferromagnetic (J⊥ > 0) case in this
subsection. We write the spin operator as

S−ðxÞ ¼ e−2πimxei(θðxÞþ2ϕðxÞ) þ e2πimxei(θðxÞ−2ϕðxÞ)

¼ e−2πimxaðxÞ þ e2πimxbðxÞ; ðJ⊥ > 0Þ; ð16Þ

FIG. 2. (a) Nonlinear magnetic susceptibility χð3Þþ−−þ of a
ferromagnetic chain as a function of πTðt − τÞ at πTτ ¼ 20
(blue) and πTτ ¼ 40 (cyan). The waiting time πTtw ¼ 1. Lut-
tinger parameter K ¼ 0.7. Data for different τ are scaled by the
same factor such that the maximum of πTτ ¼ 20 data is 1. Upper
right inset: the t > τ part of the data multiplied by expðγjt − τjÞ
with γ ¼ πT=ð2KÞ plotted against ½πTðt − τÞ�3. Lower left inset:
the t < τ part of the data multiplied by expðγjt − τjÞ plotted
against πTðt − τÞ. (b) The same as (a) but forK ¼ 1. (c) The same
as (a) but for K ¼ 1.5.

FIG. 3. (a) Nonlinear magnetic susceptibility χð3Þþ−−þ of a
ferromagnetic chain as function of πTt and πTτ. The waiting
time πTtw ¼ 1. The Luttinger parameter K ¼ 1. The data are real
numbers and are rescaled such that the maximum is 1. (b),(c) The
real and imaginary parts of the two-dimensional spectrum
obtained by Fourier transforming the data of (a). Only the first
and fourth quadrants are shown. The data in the other two
quadrants are obtained by complex conjugation; i.e., the real part
(b) is invariant under the transformation ωτ → −ωτ;ωt → −ωt,
whereas the imaginary part (c) changes sign.
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where we define vertex operators a and b for later convenience. Inserting the above into Eq. (7) yields

χ̃ð3Þþ−−þð1; 2; 3Þ ¼ðJ⊥>0Þe2πimðx1þx2−x3ÞGR
a†aaa†ð1; 2; 3Þ þ e−2πimðx1þx2−x3ÞGR

b†bbb†ð1; 2; 3Þ
þ e2πimðx1−x2þx3ÞGR

a†abb†ð1; 2; 3Þ þ e−2πimðx1−x2þx3ÞGR
b†baa†ð1; 2; 3Þ

þ e2πimðx1−x2−x3ÞGR
b†aba†ð1; 2; 3Þ þ e−2πimðx1−x2−x3ÞGR

a†bab†ð1; 2; 3Þ: ð17Þ
We define a set of response functions with the form of Eq. (8). For instance, GR

a†aaa† is defined as

GR
a†aaa†ð1; 2; 3Þ ¼ i3θðt1Þθðt2 − t1Þθðt3 − t2Þh½½½a†ð0Þ; að−1Þ�; að−2Þ�; a†ð−3Þ�i: ð18Þ

The other response functions are defined in the same
vein. The expression for these response functions can
be read off from Eq. (11) by plugging in appropriate
values of l1;2;3 and r1;2;3: l ¼ ffiffiffiffi

K
p þ 1=ð2 ffiffiffiffi

K
p Þ and r ¼

−
ffiffiffiffi
K

p þ 1=ð2 ffiffiffiffi
K

p Þ for vertex operator a; for vertex oper-
ator b, the value of l and r are switched. We drop the
response functions that violate the charge neutrality con-
dition (e.g., GR

a†aab†), as they vanish in the thermody-
namic limit.

The calculation of χð3Þþ−−þ parallels the ferromagnetic

case (Sec. III C). Note, however, χð3Þþ−−þ is now complex
and depends on the magnetic field through the magneti-
zation density m. We find only Ga†aaa† and Gb†bbb†

contribute to photon echo. Using the approximation
[Eq. (14)], we obtain after lengthy calculation:

χð3Þþ−−þ ∼ðJ⊥>0Þe−2πimuðt−τÞ ×
�
e−πðΔ−2ÞTðτ−tÞ ðt ≪ τÞ;
ðt− τÞe−πðΔ−2ÞTðt−τÞ ðt ≫ τÞ:

ð19Þ

Here, we define a parameterΔ ¼ 2K þ 1=ð2KÞ. The above
is the key result of this subsection.

Equation (19) shows that the χð3Þþ−−þ of the antiferro-
magnetic chain exhibits perfect photon echo similar to the
ferromagnetic chain. Different from the ferromagnetic
chain, the signal now shows oscillations with the frequency
set by the magnetization densitym, which, in turn, depends
on the magnetic field B. The timescale of the signal is
1=½ðΔ − 2ÞπT�. In particular, in the Heisenberg limit where
K → 1=2 (Δ → 2), the timescale diverges; this divergence
reflects the Larmor precession of the total magnetization,
which we elaborate on in Appendix C.
We assess the validity of Eq. (19) by numerical inte-

gration. Figure 4 shows χð3Þþ−−þ for representative Luttinger
parameters K ¼ 0.7, K ¼ 1, and K ¼ 1.5. πTtw ¼ 1. The
echo is clearly visible from the data. The data for different
values of τ overlay when plotted as a function of t − τ,
demonstrating that the echo is perfect. Numerical integra-

tion suggests χð3Þþ−−þ is independent of tw within numerical
error when t and τ are large.

To test the asymptotic behavior of χð3Þþ−−þ, we multiply its
complex modulus with exp½πðΔ − 2Þjt − τj�. Equation (19)
suggests the product shows linear behavior for t > τ and
approaches a constant for t < τ. The insets of Fig. 4 show
good agreement with Eq. (19). For K ¼ 0.7 and πTτ ¼ 50,

FIG. 4. (a) Nonlinear magnetic susceptibility χð3Þþ−−þ of an
antiferromagnetic chain as a function of πTðt − τÞ for πTτ ¼
50 (blue) and πTτ ¼ 80 (cyan). The waiting time πTtw ¼ 1.
Luttinger parameter K ¼ 0.7. The data for different τ are rescaled
by the same factor such that the maximum of the complex
modulus of the πTτ ¼ 50 data is 1. Upper right inset shows the
complex modulus of the t > τ part of the data multiplied by
expðγjt − τjÞ with γ ¼ πðΔ − 2ÞT. Lower left inset shows the
complex modulus of the t < τ part of the data multiplied by
expðγjt − τjÞ. (b) The same as (a) but for K ¼ 1. (c) The same as
(a) but for K ¼ 1.5.
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the data deviate slightly from the constant behavior; we
think this occurs because τ is not sufficiently large to
suppress the nonasymptotic contributions.
We then present the dependence of the photon-echo

signal on both τ and t. Figures 5(a) and 5(b) show the real

and imaginary parts of χð3Þþ−−þ as a function of t and τ for the
Luttinger parameter K ¼ 1. The magnetization density
2mu=T ¼ 1.15. The waiting time πTtw ¼ 1. The photon
echo appears as the bright feature persists along the
diagonal direction (t ¼ τ). Performing Fourier transform
over t and τ produces the two-dimensional spectrum
[Figs. 5(c) and 5(d)]. The photon echo appears in the
frequency domain as a highly anisotropic peak in the fourth
quadrant. The peak is approximately located at ωt ¼ 2πmu
and ωτ ¼ −2πmu as suggested by Eq. (19). Its width along
the diagonal of the fourth quadrant scales with T, whereas
its width along the antidiagonal direction is resolution
limited.

To recapitulate, the χð3Þþ−−þ of the antiferromagnetic chain
shows clear signature of perfect photon echo. The echo
signal is oscillatory with the frequency set by magnetiza-
tion density.

IV. SPINON LENSING PICTURE

In the previous section, we show that the nonlinear

magnetic susceptibility χð3Þþ−−þ of the Luttinger spin liquid
exhibits photon echo that resembles the perfectly rephasing

echo in a few-body system such as a single spin. In this
section, we provide an intuitive picture that clarifies its
origin in the many-body system under consideration,
namely, Luttinger spin liquids. We illustrate our picture
on the ferromagnetic spin chain and then generalize it to the
antiferromagnetic chain and discuss its various features and
implications.
To set the stage, we review the effect of the bosonized

spin-raising operator expð−iθÞ. Let us consider the time
evolution after the operator exp½−iθð0; 0Þ� at t ¼ x ¼ 0 on
the initial state jΨð0Þi at t ¼ 0, which is assumed to be an
energy eigenstate. At time t, the state is given by

jΨðtÞi ¼ e−iHte−iθð0;0ÞjΨð0Þi
¼ e−iHte−iθð0;0ÞeþiHte−iHtjΨð0Þi
∼ e−iθð−t;0ÞjΨð0Þi; ð20Þ

where we use the assumptions that jΨð0Þi is an energy
eigenstate and drop the overall phase factor. We can
decompose the field θ to chiral components as

θðt; xÞ ¼ θLðxþÞ þ θRðx−Þ; ð21Þ

where

θL ¼ 1

2

�
θ þ ϕ

K

�
; θR ¼ 1

2

�
θ −

ϕ

K

�
: ð22Þ

The equation of motion implies that each chiral component
depends only on the corresponding light-cone coordinate,
as in Eq. (21). Using this equation of motion, we can
translate the time dependence into the position dependence,
so that

jΨðtÞi ∼ e−iθLð−utÞe−iθRðutÞjΨð0Þi; ð23Þ

where θL;Rð∓utÞ is now understood as a static operator at
locations∓ut, up to the overall phase factor which includes
the one coming from the commutation relation between θR
and θL.
Now, recall the equal-time commutation relation:

ϕðxÞe−iθL;RðyÞ ¼ e−iθL;RðyÞ
�
ϕðxÞ − π

2
Θðx − yÞ

�
: ð24Þ

Namely, exp½−iθL;RðyÞ� creates a kink of step π=2 in ϕ field
at the location y. Since this step corresponds to the
magnetization density ð1=2Þδðx − yÞ, this kink can be
interpreted as a spinon [17]. Equation (23) then implies
that the application of the operator expð−iθÞ at t ¼ 0
is equivalent to the creation of a right-moving spinon at
x ¼ þut and a left-moving spinon at x ¼ −ut at time t,
when the other operations are applied after the time t. The
chiral vertex operators expð−iθL;RÞ can be viewed as

FIG. 5. (a),(b) The real and imaginary parts of the nonlinear
magnetic susceptibility χð3Þþ−−þ of an antiferromagnetic chain as a
function of πTt and πTτ. The Luttinger parameter K ¼ 1.
Magnetization density 2mu=T ¼ 1.15. The waiting time
πTtw ¼ 1. The data are scaled such that the maximum of the
absolute value of the data is 1. (c),(d) The real and imaginary parts
of the two-dimensional spectrum.
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spinon-creation operators of the corresponding chirality.
This reasoning justifies the following simple visual picture:
Applying exp½−iθð0; 0Þ� creates a pair of the right-moving
and left-moving spinons at t ¼ x ¼ 0. Then these spinons
propagate with the constant velocity �u.
Real-time correlation functions of the vertex operators

can be qualitatively understood in terms of this visual
picture. As the simplest example, consider the two-point
correlation function [Fig. 6(a)]

hS−ð0ÞSþð−1Þi ∼ heiθð0;0Þe−iθð−t1;−x1Þi
∼ heiθLð0ÞeiθRð0Þe−iθLð−x1−ut1Þe−iθRð−x1þut1Þi

∼
���� sinhðπTxþ1 ÞπTϵ

����−
1
4K
���� sinhðπTx−1 ÞπTϵ

����−
1
4K

: ð25Þ

Here, we set t1 > 0 and omit an overall phase factor. This
correlation function corresponds to the creation of a pair of

spinons at ð−t1;−x1Þ and the annihilation of a pair
of spinons (or equivalently, the creation of a pair of
antispinons) at the origin. From the equation of motion
(the second line), this correlation function can be inter-
preted as an expectation value of spinon-creation operators
at the split locations −x1 � ut1 and two spinon-annihilation
operators at 0. For a generic choice of t1, x1, these three
locations are different. As a result, the expectation value,
although it does not vanish completely, is exponentially
suppressed with respect to the correlation length u=T at
finite temperature T.
If we wish to maximize the correlation function, we

should try to “catch” the spinons created at ð−t1;−x1Þ at the
later time and annihilate them. If we can manage to
annihilate all the spinons created earlier, the correlation
function would be reduced to the equal-time correlation
function of the identity operator, which does not decay as
a function of time t at all. Unfortunately, it is impossible to
annihilate both spinons created at ð−t1;−x1Þ by the single
operator exp½iθð0; 0Þ�, since spinons split and are located
on different positions at later times.
We note it is possible to annihilate one of them, for

example, the left-moving spinon, by choosing the location
of the second operator on the left side of the light cone
(x1 ¼ −ut1, or xþ1 ¼ 0). Setting xþ1 ¼ 0 in Eq. (25) max-
imizes the first factor, which is formally divergent in the
scaling limit (the cutoff ϵ → 0þ) but bounded to be a finite
constant due to the finite ϵ in a realistic system. However,
xþ1 ¼ 0 implies x−1 ¼ 2ut1, leading to the exponential
suppression of the other factor in Eq. (25). Thus, the
two-point correlation function is exponentially suppressed
for large t1, for any choice of the relative spatial location x1.
The situation is quite different for four-point correlation

functions and corresponding response functions. It is
convenient to rewrite the response function Eq. (13) as a
sum over various four-point correlation functions by
expanding the nested commutators:

χ̃ð3Þþ−−þð1; 2; 3Þ ∼ R1 þ R2 þ R3 þ R4

− R0
1 − R0

2 − R0
3 − R0

4; ð26aÞ

where

R1 ¼ he−iθð0Þeiθð−1Þeiθð−2Þe−iθð−3Þi; ð26bÞ

R2 ¼ he−iθð−3Þeiθð−1Þe−iθð0Þeiθð−2Þi; ð26cÞ

R3 ¼ he−iθð−3Þeiθð−2Þe−iθð0Þeiθð−1Þi; ð26dÞ

R4 ¼ heiθð−2Þeiθð−1Þe−iθð0Þe−iθð−3Þi: ð26eÞ

R0
i is related to Ri by reversing the order of operators in the

product. Following Refs. [1,2], each contribution can be
identified as a Liouville pathway.

FIG. 6. (a) The two-point correlation function [Eq. (25)] can be
understood in terms of a spinon-creation or -annihilation process.
The spin-raising operator at ð−t1;−x1Þ creates a pair of spinons
with left and right chirality, which then propagate with velocities
�u (blue solid lines). The spin-lowering operator tries to
annihilate the spinon pair at (0,0). (b) The four-point correlation
function Eq. (26b) corresponds to the spinon creation at
ð−t3;−x3Þ and (0,0) (blue solid lines), and antispinon creation
at ð−t2;−x2Þ and ð−t3;−x3Þ (blue dashed lines). (c) In the lensing
configuration [Eq. (27)], the left-moving spinon created at
ð−t3;−x3Þ is captured by the spin-lowering operator at
ð−t2;−x2Þ and converted to a right-moving antispinon. Likewise,
the right-moving spinon is captured by the spin-lowering operator
at ð−t1;−x1Þ and converted to a left-moving antispinon. The
antispinons then meet at (0,0) and are annihilated by the spin-

raising operator. (d) Behavior of χ̃ð3Þþ−−þ in the shaded region in
(c), which shows its magnitude reaches the maximum near the
“focal point” (0,0). Here, πTt ¼ πTτ ¼ 10, and πTtw ¼ 10.
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We find that each four-point correlation function can be
made free from exponential suppression for an appropriate
choice of locations of the operators at a given set of times.
As exchanging the order of operators in Ri results only in a
phase factor, it is sufficient for our purpose to consider the
correlation function R1 [Fig. 6(b)]. The spinon pairs are
created at ð−t3;−x3Þ and (0,0) and annihilated at ð−t2;−x2Þ
and ð−t1;−x1Þ. Unlike the case with the two-point corre-
lation function [Eq. (25)], here, we can catch and annihilate
all the spinons created earlier by choosing [Fig. 6(c)]

x1 ¼ uτ; x2 ¼ −uðτ þ twÞ; x3 ¼ −utw: ð27Þ

For this configuration, the operator at ð−t2;−x2Þ annihi-
lates the left-moving spinon created at ð−t3;−x3Þ and
creates a right-moving antispinon. The operator at
ð−t1;−x1Þ annihilates the right-moving spinon created at
ð−t3;−x3Þ and creates a left-moving antispinon. The two
antispinons moving to the opposite directions finally meet
at the origin at time 0, and are annihilated by the operator
expðiθÞ. As a consequence, the magnitude of the four-point
correlation function reaches its maximum and does not
decay even in the long-time limit as long as the spatial
coordinates are chosen according to Eq. (27). We call this
phenomenon, which is absent in the two-point correlation
function, the spinon lensing; that is, it is possible to focus
the two (anti)spinons to the same point at time 0 by placing
the operators judiciously at earlier times. We also note
that the spatial mirror reflection of Eq. (27) is equally valid
for lensing.
The above reasoning can be made precise by applying

the equation motion to reduce the four-point correlation
function to an equal-time correlation function at time 0 of
multiple operators—spinon-creation operators at locations
−x3 � ut3 and two at 0, and antispinon-creation operators
at locations −x2 � ut2 and −x1 � ut1 [Fig. 6(b)]. Under the
condition Eq. (27), the locations of the spinon-creation
operators match those of the spinon-annihilation operators,
and consequently, the correlation function R1 reaches the
maximum.
The same phenomena occur in the other four-point

correlation functions. Summing them up, the nonlinear

response χ̃ð3Þþ−−þ as a function of the spacetime coordinates
ðt1; x1Þ, ðt2; x2Þ, and ðt3; x3Þ reaches a maximum at the
lensing configuration Eq. (27). Figure 6(d) shows the

behavior of χð3Þþ−−þ as a function of the detection position
in a representative lensing configuration. Here we choose
πTt ¼ πTτ ¼ 10 and πTtw ¼ 10. It shows that the
response is maximum at the “focal point” (0,0). As we
use a finite short-distance cutoff ϵ to regularize the
algebraic singularity at the light cone, we slightly shift
x1 and x2 away from the light cone by a small distance ϵ to
suppress the effect of the regularizer.

Now, the optical nonlinear response χð3Þþ−−þ is related to

χ̃ð3Þþ−−þ by spatial integration. When the time delays t ¼ τ,
the spatial integration is dominated by the neighborhood of
the lensing configuration Eq. (27) and its mirror reflection,
and, as a result, remains nonvanishing even in the long-time
limit t ¼ τ → ∞; tw → ∞. This analysis explains the origin

of the prefect photon echo observed in the χð3Þþ−−þ of the
ferromagnetic chain.

Turning to the antiferromagnetic chain, χ̃ð3Þþ−−þ is now a
linear combination of various four-point response functions
[Eq. (17)]. Among these, GR

a†aaa† and GR
b†bbb† support the

lensing phenonenon similar to Fig. 6 with the only differ-
ence being the type of fractional excitations created or
annihilated by the spin operators. In the antiferromagnetic
chain, Sþ creates a pair of spinons plus a pair of Laughlin
quasiparticle and quasihole [17]. Note the created spinon
and the Laughlin quasiparticle (and similarly, the created
antispinon and the Laughlin quasihole) are superimposed
on each other, and therefore, the world lines shown in Fig. 6
should be interpreted as the world line of the composite
object. Our numerical calculations show that, indeed, only
these two response functions produce photon echo,
whereas the others response functions do not.
In Sec. II, we point out that the nonlinear susceptibilities

χð3Þþ−þ− and χð3Þþþ−− do not exhibit photon echo. This can now
be easily understood in terms of lensing. For these two
susceptibilities, it is impossible to arrange the spin oper-
ators in such a way that all the created fractional excitations
get annihilated at a later time. Our calculations indeed
confirm this.
Our discussion so far is based on the ideal Luttinger

spin liquid at the RG fixed point. In general, there are
RG-irrelevant perturbations to the fixed-point Hamiltonian
Eq. (3), but they give only subleading corrections to most of
the physical quantities at low temperatures. This property
also makes these RG-irrelevant corrections difficult to
detect in experiments. Nevertheless, in the 2DCS in
Luttinger spin liquid, the RG-irrelevant perturbations can
produce pronounced effects because the lensing of frac-
tional excitations relies on two features of the fixed-point
Hamiltonian: First, the phonon modes are the exact
eigenstates of the Hamiltonian. Second, the phonon
dispersion relation is exactly linear. These features ensure
that a wave packet of fractional excitation can propagate
indefinitely through the system without dissipation or
dispersion. RG-irrelevant corrections to the fixed-point
Hamiltonian would prevent the indefinite propagation of
the wave packet, and, therefore, could be sensitively
detected by the suppression of lensing.
In the XXZ spin chain, the RG-irrelevant perturbations

include the umklapp terms such as cosð4ϕÞ [15,16], which
result in the damping of phonon modes at finite temper-
ature. Consequently, the wave packets of fractional exci-
tations acquire finite lifetime. The lensing phenomenon
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shown in Fig. 6 is suppressed when τ or tw exceeds the
lifetime of these excitations. This suppression, in turn, will
be manifest as the decay of the photon-echo signal as
τ or tw increases, in close analogy with the dissipation-
induced photon-echo decay in few-body systems [1,2].
Straightforward dimensional analysis suggests the decay
rate vanishes as T1þη as T → 0 where η is the dimension of
the umklapp term.
On the other hand, there also exists a different family of

RG-irrelevant perturbations, such as ð∇2ϕÞ2, which pro-
duces a small curvature in the phonon dispersion relation
while keeping them as the exact eigenstates of the
Hamiltonian. As a result, the wave packet disperses as it
propagates, but there is no true dissipation. The lensing
picture suggests that the dispersion of the wave packet
would also result in the decay of the photon echo. For
instance, the wave packet of the left-moving spinon created
by Sþð−3Þ would be quite dispersed when τ is large. It
could not completely annihilate with the left-moving
antispinon created by S−ð−2Þ as the latter antispinon’s
wave packet is still sharp. This effect would spoil lensing.
Thus, the lensing picture suggests a dispersion-induced
decay mechanism for the photon echo in the Luttinger spin
liquid. In the next section, we examine this mechanism in
more detail.

V. DISPERSION-INDUCED DECAY

The spinon lensing picture suggests that the dispersion of
the wave packets could also lead to the decay of photon
echo. In this section, we put this idea to the test by a
numerical experiment. We consider the harmonic chain,
which is a discretization of the fixed-point Hamiltonian:

H ¼ u
2πa

X
n

ðϕnþ1
2
− ϕn−1

2
Þ2

K
þ Kðθnþ1 − θnÞ2: ð28Þ

Here, a is the lattice constant. θn resides on the lattice
site labeled by n, whereas ϕnþ1=2 resides on the midpoint
of the lattice link connecting the site n and nþ 1. Their
commutation relation is given by ½ϕnþ1=2; θn0 � ¼
−iπΘðn − n0 þ 1=2Þ. It is sufficient for our purpose to
consider the ferromagnetic chain where S�n ¼ expð∓iθnÞ.
We set the Luttinger parameter K ¼ 1.
The phonon modes are exact eigenstates of Eq. (28)

owing to its quadratic form. The phonon dispersion relation
is now nonlinear: ωq ¼ 2u=aj sinðqa=2Þj. Therefore,
Eq. (28) represents an idealized model system to study
the dispersion-induced decay without the complications of
dissipation effects. By contrast, in a microscopic spin
model, both effects are present and difficult to disentangle.

Figure 7(a) shows χð3Þþ−−þ as a function of t and τ at
temperature T ¼ 1.2u=a. The waiting time tw ¼ 4a=u.
Note the data are strictly real as the case in continuum
(Fig. 3). We find a clear signature of photon echo running

along the diagonal of the ðt; τÞ plane. However, the echo
signal decays slowly along the diagonal direction owing to
the dispersion effect. In the frequency domain, this decay
manifests itself as a slight broadening of the photon-echo
peaks along the antidiagonal direction of the frequency
plane [Figs. 7(b) and 7(c)].
We now investigate the temperature dependence of the

dispersion-induced decay. Expanding the phonondispersion
near q ¼ 0, we obtain ωq ¼ uðjqj − a2jqj3=24þ � � �Þ.
Therefore, the width of the wave packet grows as
ða2utÞ1=3 as it propagates. At temperature T, this width
growth defines a dispersion timescale τdisp:

ða2uτdispÞ1=3 ∼ ξ ∼
u
T
;⇒ τdisp ∼

u2

a2T3
: ð29Þ

Here, ξ is the spin correlation length. Beyond this timescale,
thewave packet is essentially indistinguishable from thermal
fluctuations. Thus,we hypothesize that the decay of the echo
signal is controlled by τdisp.
Our data support this hypothesis. Figure 7(c) shows the

semilog plot of χð3Þþ−−þ at t ¼ τ as a function of ðτ=τdispÞ1=2.

FIG. 7. (a) The nonlinear magnetic susceptibility χð3Þþ−−þ as a
function of t and τ computed from the harmonic chain model
Eq. (28). The waiting time tw ¼ 4a=u. The temperature
T ¼ 1.2u=a. The data are scaled such that the maximum is 1.
(b),(c) The real and imaginary parts of the two-dimensional
spectrum obtained by Fourier transforming the data in panel (a).
Only the first and the fourth quadrants are shown. The other two

quadrants are obtained by complex conjugation. (d) χð3Þþ−−þ
measured at t ¼ τ as a function of ða2Tt=u2Þ1=2 for various

temperatures. tw ¼ 4a=u. (e) χð3Þþ−−þ measured at t ¼ τ as a
function of waiting time tw for two representative values of τ.
The temperature T ¼ 0.8u=a.
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The data for different T approximately collapse to a straight
line. This suggests the echo signal decays as a stretched
exponential exp½−Cðτ=τdispÞν�, where the exponent ν ¼
1=2 and C is a numeric constant. The decay rate
1=τdisp ∼ T3, consistent with the dimension η ¼ 2 of the
higher derivative term ð∇2ϕÞ2. The origin of the stretching
exponent ν ¼ 1=2 is unclear at the moment but likely
associated with the asymptotic behavior of Airy functions.
Having investigated the decay of the echo as a function of

τ, we turn to its tw dependence. Figure 7(e) shows χð3Þþ−−þ at
t ¼ τ as a function of tw for two representative values of τ.
The echo signal initially decreases as tw increases, reflecting
the effect of dispersion, but eventually saturates to a finite
value This is also consistent with the lensing picture. A
straightforward calculation shows that the spacetime-de-
pendent susceptibility χ̃þ−−þ saturates to finite value as
tw → ∞ at the lensing configuration Eq. (27). In a few-body
system, the decay of photon echo as a function of tw reflects
the thermal relaxation of the optical population. Here, as the
phonon modes are exact eigenstates of the Hamiltonian
Eq. (28), the phonon population cannot relax. We therefore
heuristically attribute the saturation to the absence of
thermal relaxation in Eq. (28).
To recapitulate, by a numerical experiment, we show that

the photon-echo signal decays as a function of τ in the
presence of wave-packet dispersion. The decay is con-
trolled by a dispersion timescale τdisp. Meanwhile, the echo
signal saturates as tw → ∞, which we attribute to the lack
of thermalization in the model system.

VI. DISCUSSION

In this work, we show that the nonlinear magnetic

susceptibility χð3Þþ−−þ and its complex conjugate χð3Þ−þþ− of
the Luttinger spin liquid exhibit photon echo that resembles
the perfectly rephasing photon echo in a few-body problem.
However, the rephasing picture does not directly apply to
the present system in that its energy spectrum is continuous.
Instead, the echo signal arises from the lensing of the
fractional excitations, and its decay as a function of the
pulse delays is a sensitive diagnostic for the dissipation and/
or dispersion.
The photon echo can be directly measured by THz 2DCS

on spin-chain materials that host Luttinger spin liquids. For
example, Cs2CoCl4 is thought to be a realization of the
easy-plane antiferromagnetic (J⊥ > Jz > 0) S ¼ 1=2 XXZ
chain [23]. Although our analysis is carried out in the
circular polarization basis, one could simplify the exper-
imental setup by measuring the χð3Þ response with linear

polarization (e.g., χð3Þxxxx) since the linear polarization basis
and the circular polarization basis are related by a linear
transformation.
We find the lensing of fractional excitations to be a

convenient picture for understanding the photon echo in the

Luttinger spin liquid. A crucial feature of the lensing is the
refocusing of the wave packets’ world lines, reminiscent of
the refocusing of quantum-phase accumulation in the NMR
spin echo or photon echo in few-body systems. However,
the lensing is unique to many-body systems in that it entails
the propagation of wave packets. It could be viewed as a
conceptual extension of the more familiar interference
picture [1,2] commonly used in the study of photon echo
in few-body systems from the time domain to the spacetime
domain.
An earlier work on the photon echo of the quantum Ising

chain uses the time-domain interference picture [7], which
is made possible by a mathematical mapping that relates the
nonlinear response of a many-body system to that of an
ensemble of independent few-body systems. Although it
might be possible to adapt this methodology for the
Luttinger spin liquid, we think it will be much less
illuminating given the complex structure of the optical
matrix elements.
An interesting consequence of the lensing picture is that

the dispersion of the wave packet alone could lead to the
decay of photon-echo signal. This decay mechanism finds
no immediate analog in few-body systems. In the presence
of dispersion but no dissipation, the echo signal decays as τ
increases and eventually disappears when τ far exceeds the
dispersion timescale. However, the echo signal does not
disappear when the waiting time tw → ∞. This points
toward different uses of the pulse delays τ and tw; the
former pulse delay variable could be used as a dial to
monitor both dispersion and dissipation effects, whereas
the latter is sensitive to dissipation alone.
Our work opens a few directions worth further inves-

tigation. First of all, our discussion on the umklapp terms,
or more broadly, dissipation effects, is qualitative. It will be
useful to examine their impact on the photon echo
quantitatively by employing the quantum kinetic theory
[24,25]. Second, it would be interesting to compare our
predictions with lattice model calculations. Our preliminary
results on the XY spin chain [26–30] show good agreement
with the bosonization predictions and will be published
elsewhere. Third, our analysis focuses on the gapless phase
of the XXZ-type spin chain. It would be interesting to
explore the nonlinear photon echo in the gapped phase by
using a semiclassical treatment [31–33], or in the vicinity of
the Heisenberg point where the proximate SU(2) symmetry
might give rise to new universal features [34,35]. We also
note an interesting recent work where the generalized
hydrodynamics is employed to compute some nonlinear
responses of integrable systems including the XXZ spin
chain [36]. Finally, even though we exclusively consider
the spatially uniform (momentum q ¼ 0) magnetic
response in this work, our calculations can be generalized
to finite q. It has been shown that, in a magnetized
antiferromagnetic Heisenberg chain, the magnetic reso-
nance mode acquires a nonlinear dispersion at q ≠ 0 due to
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spinon interactions [37,38]. In light of these results, we
expect that the q ≠ 0 nonlinear magnetic resonance may
exhibit rich physics.Although opticalmeasurements usually
probe the q ¼ 0 response, the presence of Dzyaloshinskii-
Moriya (DM) interaction in a spin chain may allow for
optical measurement of the q ≠ 0 responses. The DM
interaction may be eliminated by a gauge transformation
at the expense of a momentum boost [39]. Hence, the q ¼ 0
response of the spin chain with a uniform DM interaction is
equivalent to the finite q response of the corresponding spin
chain without the DM interaction [40,41].
Looking beyond the Luttinger spin liquids, we think our

method and the physical picture could be applicable to
other one-dimensional critical systems and potentially
higher-dimensional systems. Perhaps the most experimen-
tally relevant are gapless systems with charged excitations,
where the charge degrees of freedom could directly couple
to the electric component of the THz pulse and therefore
produce stronger nonlinear response. In short, we believe
future investigation on the nonlinear response of many-
body systems will uncover far richer dynamical phenomena
and offer deeper insight into these systems.
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APPENDIX A: COMMUTATION RELATION
PRESCRIPTIONS

In this Appendix, we discuss the different choices for the
commutation relation between the ϕ and θ fields and the
subtle issues [42] associated with these choices. Although
elementary, these issues are pertinent to the calculation of
higher-order response functions.
In bosonization ϕ and ∇θ form a pair of canonical

conjugate variables:

½ϕðxÞ;∇θðyÞ� ¼ iπδðx − yÞ: ðA1Þ
The above does not uniquely fix the commutator between ϕ
and θ. Several popular choices exist in the literature. In this
work, we use

½ϕðxÞ; θðyÞ� ¼ −iπΘðx − yÞ: ðA2Þ

We term this choice the “Heaviside prescription” for later
convenience. A closely related variant is ½ϕðxÞ; θðyÞ� ¼
iπΘðy − xÞ [15]. Since the two variants are rather similar,
we shall focus the prescription Eq. (A2). Another popular
choice is [16]

½ϕðxÞ; θðyÞ� ¼ −i
π

2
Sgnðx − yÞ: ðA3Þ

We term this choice the “signum prescription.”
In what follows, we show that the different prescriptions

result in different bosonization dictionaries. We first
consider the fermion field operator. For noninteracting
fermions (Luttinger parameter K ¼ 1), the left and right
chiral boson fields are dynamically coupled:

ϕL ¼ θ þ ϕ; ϕR ¼ θ − ϕ: ðA4Þ

The commutation relation of ϕL, and likewise ϕR, are
identical for both prescriptions. However, the commutator
between ϕL and ϕR depends on the prescription

½ϕLðxÞ;ϕRðyÞ� ¼
�−iπ ðHÞ;
0 ðSÞ: ðA5Þ

In other words, boson fields with different chiralities do not
commute (commute) in the Heaviside (signum) prescrip-
tion. As a result, in the Heaviside prescription, the left and
right chiral fermions

ψL ∼ eiϕL ; ψR ∼ eiϕRðHÞ ðA6aÞ

anticommute thanks to the commutator between ϕL and ϕR.
By contrast, in the signum prescription, Klein factors are
needed to ensure the anticommutation relation

ψL ∼ ηLeiϕL ; ψR ∼ ηReiϕRðSÞ; ðA6bÞ

where ηL;R are the Klein factors obeying the Clifford
algebra η2L ¼ η2R ¼ 1 and ηLηR ¼ −ηRηL.
It is important to bear in mind that choosing different

prescriptions does not change the dynamics of the boson
fields. Furthermore, including fermion interactions (K ≠ 1)
does not spoil the commutator between the left and right
chiral boson fields. In this case, the two dynamically
decoupled fields read

ϕL ¼
ffiffiffiffi
K

p
θ þ ϕffiffiffiffi

K
p ; ϕR ¼

ffiffiffiffi
K

p
θ −

ϕffiffiffiffi
K

p ; ðA7Þ

and we find Eq. (A5) holds regardless of the value of K.
Next, we consider the Jordan-Wigner string operator,

which plays a crucial role in the bosonization of the XXZ
spin chain
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Sj ¼ cos

�
π
X
n<j

c†ncn

�
; ðA8Þ

where cn is the fermion annihilation operator on lattice site
n. In particular,

ciSj ¼ ð−ÞΘðj−i−1=2ÞSjci: ðA9Þ

We now bosonize the string operator following the standard
procedure [15,16]:

Sj ≈ cos

�
kFx −

Z
x

−∞
∇ϕðyÞdy

�
¼ cos½kFx − ϕðxÞ þ ϕð−∞Þ�: ðA10Þ

In the Heaviside prescription, the boundary term ϕð−∞Þ
commutes with θðxÞ. We thus may regard it as a number
and omit it:

Sj ¼ cos½kFx − ϕðxÞ� ðHÞ: ðA11aÞ

By contrast, in the signum prescription, we must keep
the boundary term as ½ϕð−∞Þ; θðxÞ� ≠ 0:

Sj ¼ cos½kFx − ϕðxÞ þ ϕð−∞Þ� ðSÞ: ðA11bÞ

In the signum prescription, the boundary term ϕð−∞Þ is
needed to reproduce the commutation relation between the
fermion field operator and the string operator [Eq. (A9)]. If
we drop the boundary term, we find

ciSj ¼! e−iπ=2Sgnðx−yÞSjci; ðA12Þ

which disagrees with Eq. (A9).
Finally, we are ready to bosonize the spin operators of

the XXZ chain using the bosonization expressions of the
fermion operator and the string operator. We assume the
chain is antiferromagnetic (J⊥ < 0) without loss of gen-
erality. Following Refs. [15,16] but keeping a close eye on
the Klein factors and the boundary term, we find the
staggered components of the spin operators are given by

Nz
j ∼

(
cosð2ϕÞ ðHÞ;
ηLηRe−2iϕ þ H:c: ðSÞ; ðA13Þ

N−
j ∼

(
eiθ ðHÞ;
ηLei(θþϕð−∞Þ) þ ηRei(θ−ϕð−∞Þ) ðSÞ: ðA14Þ

We stress that the Klein factors and the boundary term are
essential in reproducing the correct commutation relations.
For instance, if we drop the Klein factors and the boundary
term, we obtain

NzðxÞN−ðyÞ¼! − N−ðyÞNzðxÞ ðA15Þ

using the signum prescription. This equation is incorrect
because these two operators must commute.
For the uniform components, we have

Mz
j ∼ −

1

π
∇ϕ; ðA16Þ

which is independent of the prescription, and

M−
j ∼

(
eiθ cosð2ϕÞ ðHÞ;
ηLei(θþ2ϕ−ϕð−∞Þ) þ ηRei(θ−2ϕþϕð−∞Þ) ðSÞ:

ðA17Þ

We see that the bosonization dictionary takes a much
simpler form in the Heaviside prescription. In fact, the
Heaviside prescription has been used in the literature
[43,44] when the precise bosonization formulas are needed.
On the other hand, the full bosonization formulas of the
spin operators in the S ¼ 1=2 chain in the signum pre-
scription given in Eqs. (A13), (A14), and (A17) are new to
the best of our knowledge. For the signum prescription, one
might hope that we could omit the Klein factors and the
boundary term in calculations and still get correct results.
This is indeed the case when calculating two-point
functions, which is a fortunate coincidence. In fact, drop-
ping the Klein factors and the boundary term from the
bosonization dictionary can lead to incorrect results in
the signum prescription when calculating higher-order
response functions.
To illustrate this point, consider the following four-point

response function:

GRð1; 2; 3Þ ¼ i3Θðt1ÞΘðt2 − t1ÞΘðt3 − t2Þ
× h½½½Nxð0Þ; Nzð−1Þ�; Nxð−2Þ�; Nzð−3Þ�i:

ðA18Þ

If we drop the Klein factors and the boundary term in the
signum prescription, we find Nx and Nz anticommute
when they are spacelike separated [Eq. (A15)]. As a result,
GR ≠ 0 even when the point of detection is outside the light
cone of the perturbation, thereby violating the causality
principle.
To recapitulate, different choices for the commutation

relation of θ and ϕ lead to different bosonization diction-
aries. The bosonization dictionary in the signum prescrip-
tion includes Klein factors and the boundary term, which
cannot be omitted in calculating the higher-order response
functions.
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APPENDIX B: CAUSALITY OF THE
RESPONSE FUNCTION

In this Appendix, we prove the causality of the response
function GR [Eq. (8)].
To set the stage, we recall that causality in relativistic

quantum field theory requires that two observables com-
mute if their separation is spacelike:

½O1ðt1; x1Þ; O2ðt2; x2Þ� ¼ 0; ðu2t212 − x212 < 0Þ; ðB1Þ

where O1;2 are arbitrary observables.
We first prove the following general statement: GR is

causal provided that all the operators that appear in Eq. (8)
fulfill the condition Eq. (B1). Specifically, we need to show
GR ¼ 0 if any of the three spacetime points ð−t1;−x1Þ,
ð−t2;−x2Þ, ð−t3;−x3Þ are outside the light cone of (0,0).
We prove this statement by exhaustion:

(i) If ð−t1;−x1Þ is outside the light cone of (0,0)
[Fig. 8(a)], then Eq. (B1) implies ½V0; V1� ¼ 0,
and consequently, GR ¼ 0.

(ii) Now suppose ð−t1;−x1Þ is inside the light cone of
(0,0). If ð−t2;−x2Þ is outside the light cone of (0,0),
it must also be outside the light cone of ð−t1;−x1Þ
[Fig. 8(b)]. Thus, ½V0; V2� ¼ ½V1; V2� ¼ 0 by virtue
of Eq. (B1). It then follows that ½½V0; V1�; V2� ¼ 0,
and consequently, GR ¼ 0.

(iii) Now suppose both ð−t1;−x1Þ and ð−t2;−x2Þ are
inside the light cone of (0,0). If ð−t3;−x3Þ is outside
the light cone of (0,0), it must also be outside the
light cone of ð−t1;−x1Þ and ð−t2;−x2Þ [Fig. 8(c)].
Thus, ½V0; V3� ¼ ½V1; V3� ¼ ½V2; V3� ¼ 0 thanks to
Eq. (B1). It follows that ½½½V0; V1�; V2�; V3� ¼ 0, and
thus, GR ¼ 0.

This completes our proof.

Next, we turn to the Tomonaga-Luttinger liquid theory
and show that the local vertex operators

V ¼ eimθþ2inϕ; ðm; n ∈ ZÞ ðB2Þ

indeed fulfill the condition Eq. (B1). To this end, we
consider two vertex operators V1 and V2. Suppose they are
spacelike separated. We choose a reference frame in which
they are synchronous and compute their equal-time com-
mutator:

V1V2 ¼ ei(m1θðx1Þþ2n1ϕðx1Þ)ei(m2θðx2Þþ2n2ϕðx2Þ)

¼ e2πi(n1m2Θðx1−x2Þ−m1n2Θðx2−x1Þ)V2V1

¼ V2V1: ðB3Þ

The second equality follows from the Baker-Campbell-
Hausdorff formula; the third equality follows from the fact
m1;2; n1;2 ∈ Z. The above immediately implies

½V1ðx1Þ; V2ðx2Þ� ¼ 0: ðB4Þ

Thus, we verify that the local vertex operators fulfill the
causality condition Eq. (B1).
Combining the above results, we conclude that the

response function GR [Eq. (8)] is causal. We note that
one could also verify the causality of GR by using its
explicit expression Eq. (11).

APPENDIX C: ANTIFERROMAGNETIC
HEISENBERG CHAIN

In this Appendix, we compute χð3Þþ−−þ of the antiferro-
magnetic Heisenberg chain [Jz ¼ J⊥ > 0 in Eq. (1)] by
using the equation of motion of the lattice model [34,35].
The equation of motion for the total magnetization

M� ¼ Mx � iMy reads

i
∂M�

∂t ¼ ½M�; H� ¼ ½M�;−BMz� ¼ �BM�: ðC1Þ

The second equality follows from the fact that the
Heisenberg interaction being SU(2) symmetric commutes
with M�. Solving the above, we find

M�ðtÞ ¼ e∓iBtM�: ðC2Þ

Substituting the above into the Kubo formula for χð3Þþ−−þ,
and using the spin commutation relation, we obtain

χð3Þþ−−þ ¼ −4imΘðtÞΘðtwÞΘðτÞe−iBðt−τÞ; ðC3Þ

where m is the magnetization density. Therefore, for the
Heisenberg chain, the nonlinear magnetic susceptibility
shows oscillation with constant magnitude, which reflects

FIG. 8. (a)–(c) illustrate three possible cases in which the
spacetime points ð−t1;−x1Þ (red dot), ð−t2;−x2Þ (green dot),
ð−t3;−x3Þ (blue dot) lie outside of the past light cone (dashed
line) of the origin (black dot). In any of the three cases, the
response function GR [Eq. (8)] vanishes. (d) Causality requires
that all three points lie inside the past light cone of the origin to
induce a nonzero response.
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the Larmor precession of the total magnetization vector.
We stress that this simplicity is unique to the spatially
uniform (momentum q ¼ 0) response function. By con-
trast, the q ≠ 0 magnetic response functions may exhibit
rich physics that is beyond the Larmor precession. For
instance, the dispersion relation of the magnetic resonance
mode emanating from the Larmor frequency ω ¼ B
at q ¼ 0 acquires a curvature thanks to the spinon inter-
actions [37,38]. These effects are not visible in the q ¼ 0
response function.
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