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By analyzing the Lyapunov exponent (LE), we develop a rigorous, fundamental scheme for the study of
general non-Hermitian quasicrystals with both a complex phase factor and nonreciprocal hopping. Specially,
the localization-delocalization transition point, the PT -symmetry-breaking point, and the winding number
transition points are determined by LEs of its dual Hermitian model. The analysis was based on Avila’s global
theory, and we found that the winding number is directly related to the acceleration and the slope of the LE,
while quantization of acceleration is the crucial ingredient of Avila’s global theory. This result applies as well
to models with higher winding, not only the simplest Aubry-André model. As typical examples, we obtain
the analytical phase boundaries of the localization transition for the non-Hermitian Aubry-André model in the
whole parameter space, and the complete phase diagram is straightforwardly determined. For the non-Hermitian
Soukoulis-Economou model, a high winding model, we show how the phase boundaries of the localization
transition and winding number transitions are related to the LEs of its dual Hermitian model. Moreover, we
discover an intriguing feature of the robust spectrum, i.e., the spectrum remains invariant when one changes the
complex phase parameter h or the nonreciprocal parameter g in the region of h < |hc| or g < |gc| if the system is
in the extended or localized state, respectively.
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I. INTRODUCTION

Localization induced by disorder is an old but enduring
research topic in condensed-matter physics [1]. While Ander-
son localization induced by random disorder has been studied
thoroughly [2–5], the localization transition in quasiperi-
odic systems has attracted increasing interest in recent
years [6–10]. In comparison with random disorder systems,
quasiperiodic systems manifest some peculiar properties and
may support exact results due to the existence of duality
relation for the transformation between lattice and momen-
tum spaces. A typical example is the Aubry-André (AA)
model [8], which undergoes a localization transition when the
quasiperiodic potential strength exceeds a transition point de-
termined by a self-duality condition [11]. Various extensions
of AA models have been studied [10,12–19]. The quasiperi-
odic lattice models can support energy-dependent mobility
edges when either short-range (long-range) hopping processes
[20–26] or modified quasiperiodic potentials [27–29] are
introduced.

The interplay of non-Hermiticity and disorder brings a
new perspective for the localization phenomena. Due to the
release of the Hermiticity constraint, non-Hermitian random
matrices contain much richer symmetry classes according to
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Bernard-LeClair classification [30–33] than the correspond-
ing Hermitian Altland-Zirnbauer classification. In the scheme
of random matrix theory, it has been demonstrated that the
spectral statistics for non-Hermitian disorder systems displays
many different features from the Hermitian systems [34–41].
The interplay of the nonreciprocal hopping and random dis-
order has been studied in terms of the Hatano-Nelson-type
models [42–47]. The effect of complex disorder potentials
has also been investigated [48–50]. Non-Hermitian quasiperi-
odic systems have also attracted intensive studies very
recently [51–67].

The LE is an important quantity to characterize the local-
ization properties of disorder systems, and it plays an essential
role in the study of the localization transition. As part of
Avila’s Fields Medal work, he developed a global theory of
quasiperiodic cocycles, and he studied the delicate but fun-
damental property of LE. This is quite important progress in
the spectral theory of self-adjoint quasiperiodic Schrödinger
operators [68,69]. Nevertheless, the application of the global
theory to the study of physical properties of quasiperiodic
systems is not well recognized in the physics communities. In
particular, the study of non-Hermitian quasicrystals in terms
of global theory was only addressed very recently [61], and
a systematic scheme applicable for general non-Hermitian
quasiperiodic systems has not been established yet. The stud-
ies of the general non-Hermitian quasiperiodic models with
high winding number are neglected due to the lack of exact
transition points and universal formulas. In this paper, we

2469-9950/2021/104(2)/024201(16) 024201-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2605-6128
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.024201&domain=pdf&date_stamp=2021-07-01
https://doi.org/10.1103/PhysRevB.104.024201


YANXIA LIU, QI ZHOU, AND SHU CHEN PHYSICAL REVIEW B 104, 024201 (2021)

develop a fundamental scheme for the study of general non-
Hermitian quasiperiodic systems by applying Avila’s global
theory, where the non-Hermitian systems can be realized by
introducing both nonreciprocal hopping and a complex phase
factor in the Hermitian quasiperiodic model. We find some
universal results to determine the localization-delocalization
transition point, the PT -symmetry-breaking point, and the
winding number transition points. In the presence of a com-
plex phase factor, the picture of LE actually gives us the
mechanism of how a winding number and a localized phase
change with a complex phase factor. It is surprising that
the relevant information for the non-Hermitian systems can
be acquired from their dual Hermitian models. In the pres-
ence of nonreciprocal hopping, the skin effect–localization
transition and the winding number transition are also directly
related to LEs.

We stress that our theory and formalism are valid for
general non-Hermitian quasiperiodic systems. For a better
understanding, our general theory is made concrete by fo-
cusing on two typical examples, i.e., the non-Hermitian
AA model and the Soukoulis-Economou model, as showcases
for presenting the main results. Despite its deceptively simple
form, the phase boundaries of the localization-delocalization
transition of the general non-Hermitian AA model are still
not known, except for two limit cases in the absence of ei-
ther nonreciprocal hopping [55] or a complex potential [56].
A complete phase diagram with analytical phase boundaries
in the full parameter space is lacking. In addition, although
the coincidence of the localization transition point with
the the PT -symmetry-breaking point in the PT -symmetry
AA model has been numerically observed [55], no analyti-
cal proof is given. We shall clarify these issues by applying
our general scheme. Some unusual and unexplored spectrum
features of non-Hermitian AA models, i.e., the spectra are
invariant with the change of complex phase parameter h or
nonreciprocal parameter g in specific regions, are also un-
veiled. The feature of robust spectra is found to exist very
commonly in non-Hermitian quasiperiodic systems.

The paper is organized as follows. In Sec. II, we first
introduce the general model and we present the formalism of
our general theory. We start from the systems with a complex
quasiperiodic potential in the Sec. II A, and we demonstrate
that the localization-delocalization transition point for general
non-Hermitian quasicrystals with a complex phase factor can
be determined by the LEs of its dual Hermitian model. Un-
der the general framework, both the complex AA model and
the Soukoulis-Economou model are studied. Then we study
the general case in the presence of nonreciprocal hopping in
Sec. II B. Taking the non-Hermitian AA model as a typical
example, we obtain the complete phase diagram, which is
determined by an analytical formula for the localization tran-
sition point. In Sec. III, We study the properties of winding
numbers and we relate them directly to the slope of LEs.
Then we identify that the phase diagram of non-Hermitian
quasiperiodic models can be characterized by winding num-
bers. In Sec. IV, we study the properties of the robust spectrum
and the skin effect. The invariance of the spectrum structure
of the non-Hermitian AA model under the change of h or g
in specific regions is studied and analyzed. Then we study the
interplay of the skin effect and localization, and we demon-

strate that the sensitivity of the spectrum structures to the
change of the boundary condition from periodic to open (PBC
to OBC) can distinguish the skin and localized phases. In
Sec. V, we give some examples beyond the AA model and
the Soukoulis-Economou model. A summary is given in the
final section.

II. MODELS AND GENERAL THEORY

We consider the general non-Hermitian quasiperiodic mod-
els with both a complex potential and nonreciprocal hopping,
described by

H =
N∑

j=1

(tL| j〉〈 j + 1| + tR| j + 1〉〈 j| + Vj | j〉〈 j|), (1)

where tL = te−g and tR = teg are the left-hopping and right-
hopping amplitude, respectively, Vj is given by

Vj =
d∑

l=1

2λl cos[l (2πω j + θ )], (2)

with

θ = φ + ih

describing a complex phase factor, and N is the lattice
size. For convenience, we set t = 1 as the unit of energy
and we take ω = (

√
5 − 1)/2, which can be approached by

ω = limn→∞
Fn−1

Fn
with the Fibonacci numbers Fn defined re-

cursively by Fn+1 = Fn + Fn−1 and F0 = F1 = 1. By taking
|ψ〉 = ∑

j u j | j〉, the eigenequation is given by

Euj = e−gu j+1 + egu j−1 + Vju j, (3)

where the eigenvalue E is generally complex.

A. Models with a complex quasiperiodic potential

We first discuss the case in the absence of nonrecipro-
cal hopping, i.e., g = 0. For φ = 0, we have Vj = V ∗

− j ; the
model (1) with g = 0 has PT symmetry [52,70]. Our whole
analysis depends on Avila’s global theory of a quasiperiodic
Schrödinger operator [68] (see Appendix A for a brief intro-
duction), where the key is to analyze the LE γ (E , h) with
respect to h. The LE is given by

γ (E ) = lim
n→∞

1

n
ln ||Tn(E )||, (4)

where the transfer matrix

Tn(E ) =
n∏

j=1

T j =
n∏

j=1

(
E − Vj −1

1 0

)
(5)

and ||A|| represents the norm of the matrix A, defined by

||A|| = max
i=1:n

√
λi(AT A),

with λi(AT A) being the ith eigenvalue of AT A.
As shown in [68], γ (E , h) is a convex and piecewise linear

function with respect to h with their slopes being integers.
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If Vj is a trigonometric polynomial (i.e., d < ∞), then the
extreme points of γ (E , h) can be determined by the LE of

the corresponding dual Hermitian Hamiltonian [71]. More
precisely, it has the following expansion:

γ (E , h) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ (E , 0), h ∈ [0, χ1(E )],
...

...

γ (E , χi(E )) + [h − χi(E )]
∑i

j=1 n j, h ∈ (χi(E ), χi+1(E )],
...

...

γ (E , χ
(E )) + [h − χl (E )]
∑


j=1 n j, h ∈ (χ
(E ),∞),

(6)

where 0 � χ1(E ) < · · · < χ
(E ) are the non-negative LEs
with multiplicity n1, . . . , n
 for the dual model of the system
(1) with h = 0,

Eũk =
d∑

l=−d

λ|l|ũk+l + 2 cos(2πωk)ũk . (7)

This means that the LE γ (E , h) can be uniquely determined
by γ (E , 0), χi, and ni. These points h = χi are knotted,
corresponding to some physical consequence. However, we
emphasize that duality is not the essence of our approach.
The crucial elements are the extreme point and the slope
of γ (E , h), and duality only provides an efficient way to
achieve these parameters. That is also the reason why our ap-
proach works for general non-Hermitian quasiperiodic models
(cf. Sec. V). We should also point out that in the following
discussion, we only need to consider the case E belonging to
the spectrum of the Hermitian case (h = 0). Actually, based
on Avila’s global theory, we can see that if E does not be-
long to the spectrum of the Hermitian case, γ (E , 0) > 0 and
χ1(E ) > 0. To better understand Eq. (6), we show the LE
γ (E , h) in Figs. 1(a) and 1(b) as a function of h with h > 0.
Note that γ (E , h) is symmetric over h, i.e.,

γ (E , h) = γ (E ,−h). (8)

An intriguing issue is that the PT -symmetry-breaking
transition and the transition from extended to localized states
can both be determined by the LE of the Hermitian dual model
χ1(E ). To explain it clearly, we will start with a representative
model, namely the AA model, i.e., only λ1 	= 0, which is
discussed in detail in the following. The dual model form for
the model (1) with g = 0, h = 0, and λl�2 = 0 is

Eũk = λ1ũk+1 + λ1ũk−1 + 2 cos(2πωk)ũk . (9)

The exact LE χ (E ) of this dual model can be obtained by
Eq. (4) with the transfer matrix Tn given by

Tn(E ) =
n∏

j=1

T j =
n∏

j=1

(E−2 cos(2πωk)
λ1

−1
1 0

)
. (10)

From the discussions in [29,68], we have

χ (E ) = max{− ln |λ1|, 0} (11)

if the energy E belongs to the spectrum. Thus the LE for the
original model with h 	= 0 can be written as

γ (E , h) =
{

γ (E , 0), h ∈ (0, χ (E )),
γ (E , χ (E )) + [h − χ (E )], h ∈ (χ (E ),∞),

(12)

which can also be rewritten as

γ (E , h) = max{ln |λ1| + |h|, 0}. (13)

The LE can also be directly derived from the original model
(see Appendix A 1) without the need to introduce the
dual model.

Figures 1(c) and 1(d) show the LE γ (E , h) for noncritical
AA models with |λ1| < 1 and |λ1| > 1, respectively. Note that
γ (E , h) = 0 indicates the extended state, and γ (E , h) > 0
corresponds to the localized state. Thus if |λ1| < 1, all the
eigenstates of the Hermitian AA model (h = 0) are extended.
When |h| > 0, there exists a localization-delocalization tran-
sition point determined by

|h| = − ln |λ1|. (14)

If |λ1| > 1, all the eigenstates of the Hermitian AA model are
localized and all the eigenstates stay localized with |h| > 0.

In the following, we first consider the case |λ1| < 1. For
simplicity, we only discuss the case h > 0. According to
Avila’s global theory [68], E does not lie in the spectrum

(a) (b)

(c) (d)

FIG. 1. Schematic representation of Eq. (6): the LE γ (E , h)
as a function of h for (a) χ 	= 0 and (b) χ = 0, respectively. For
the AA model, the LE γ (E , h) with (c) |λ1| < 1 and (d) |λ1| > 1,
respectively.
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of the Hamiltonian h = h0 if and only if γ (E , h0) > 0, and
γ (E , h) is a linear function around h0. Therefore, if E lies
in the spectrum of the Hermitian case h = 0, it belongs to
the spectrum of the system with h < − ln |λ1|, but it does
not belong to the spectrum of the system with h > − ln |λ1|,
as shown by the blue dashed line in Fig. 1(c). Conversely,
if the energy E (which might be complex) does not lie in
the spectrum of the Hermitian case h = 0, then γ (E , 0) > 0,
and γ (E , h) is locally constant in h, as shown by the red
dashed line in Fig. 1(c). Note that h0 is an extreme point of
γ (E , h) if and only if h0 > − ln |λ1|. Therefore, these en-
ergies E do not belong to the spectrum of the system with
h < − ln |λ1|, but they might belong to the spectrum of the
system with h > − ln |λ1|. By the above discussions, we prove
that the extended states have real energies when h < − ln |λ1|,
and the localized states have complex eigenvalues when
h > − ln |λ1|. This explains why the localization-transition
point coincides with the PT -symmetry-breaking point. Fur-
thermore, the spectrum remains invariant in the regime of
extended states, which is indeed a Cantor set by the famous
result of Avila-Jitomirskaya [72].

However, the case |λ1| > 1 will be much simpler. Similar
to what was discussed above, one can easily deduce that
when h > 0, all the states that have complex eigenvalues are
localized, as shown in Fig. 1(d).

To get a straightforward understanding, next we demon-
strate the numerical results of LE, the inverse participation
ratio (IPR), the normalized participation ratio (NPR) [23–25],
and the energy spectrum as a function of h. For a finite system,
the LE can be numerically calculated via

γ (E ) = ln ( max (θ+
i , θ−

i )), (15)

where θ±
i ∈ R denote eigenvalues of the matrix

� =(T †
N TN )1/(2N ). (16)

The IPR and NPR of an eigenstate are defined as

IPR(n) =
(∑

j

∣∣un
j

∣∣4

)
/

(∑
j

∣∣un
j

∣∣2

)2

and

NPR(n) =
[

N
∑

i

∣∣un
i

∣∣4

]−1

, (17)

where the superscript n labels the nth eigenstate of the sys-
tem, and j represents the lattice coordinate. For an extended
eigenstate, IPR 
 1/N approaches zero as N → ∞ and NPR
is a finite value. On the other hand, IPR 
 1 and NPR 
 0 for
a full localized eigenstate.

Figures 2(a) and 2(c) show the numerical results of the LE
and IPR versus h, respectively. If |λ1| < 1, when |h| < χ (E ),
where χ (E ) = − ln |λ1| ≈ 0.7 for λ1 = 0.5, all eigenstates
are extended states and both LE and IPR approach zero.
On the other hand, when h > χ (E ), both LE and IPR have
a sudden increase. If |λ1| > 1, all eigenstates are localized,
as shown in Fig. 2(a) with λ1 = 2. The numerical results
of LE for a finite-size system are found to agree well with
the analytical result (13). In Fig. 2(b), we display the real
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FIG. 2. (a) Numerical results for the LE of eigenstates corre-
sponding to the minimum (circles) and maximum (dots) real part of
eigenvalues Re(E ) vs h for the system with g = 0, N = 1597, and
λ = 0.5 and 2, respectively. The black solid lines represent the exact
solution of the LE obtained by (13). (b) The real and the imaginary
part of the eigenvalue spectra vs h for the system with λ1 = 0.5,
g = 0, and N = 55. (c) The fidelity F and IPR of the eigenstate
corresponding to the minimum real part of eigenvalues Re(E ) vs h
for the system with g = 0, N = 1597, and λ1 = 0.5.

and imaginary parts of eigenvalues versus h for the sys-
tem with λ1 = 0.5. While all eigenvalues are real for h <

χ (E ), they become complex when h exceeds χ (E ). This
clearly shows that the transition from extended to localized
states and the PT -symmetry breaking transition have the
same boundary.

It is also interesting to notice that the spectrum does not
change with h in the extended region as long as h < χ (E ).
This kind of phenomenon is quite unusual, since the Hamilto-
nian with different h is not unitarily equivalent, and it is just a
kind of robust spectrum. The similarity of two eigenstates can
be characterized by the fidelity

F (h) = 〈ψg(0)|ψg(h)〉, (18)

where ψg(h) is the eigenstate of the corresponding minimum
real part of the eigenvalue, and ψg(0) with h = 0. The eigen-
states vary only slightly from h = 0 to h < χ (E ), and they
change suddenly at the transition point h = χ (E ), as shown
in Fig. 2(c).

Although the above phenomena occur in a simple case,
they can be commonly found in general non-Hermitian
quasiperiodic models (1) with g = 0. If χ1(E ) = 0, which
means γ (E , 0) > 0, there is no extended-localized transition
for the complex phase h > 0. We thus only need to consider
the case χ1(E ) > 0. If 0 < h < χ1(E ) for a given eigen-
value E of the system with h = 0, the eigenvalue remains
unchanged and the corresponding eigenstate is extended. If
h > χ1(E ), the eigenvalue becomes complex and the cor-
responding eigenstate is localized. As a consequence, h =
min{χ1(E )} gives the beginning of PT -symmetry breaking
and the extended-mixed transition, while h = max{χ1(E )}
gives us the mixed-localized transition. That is to say, if
min{χ1(E )} < h < max{χ1(E )}, the mobility edges will oc-
cur, the spectrum will have both real and complex energies,
and the phases will be a mixture of extended and localized
states. Moreover, if 0 < h < min{χ1(E )}, the spectrum is ex-
actly the same as the Hermitian case h = 0, thus it has a robust
spectrum with changing h. Just note that if min{χ1(E )} =
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max{χ1(E )} or say χ1(E ) is a constant, then h = min{χ1(E )}
gives the extended-localized transition point, as in the non-
Hermitian AA model. Finally, we point out that χ1(E ) is also
the inverse of the localization length of the eigenstate for the
Hermitian dual model (7), and if χ1(E ) > 0, the correspond-
ing eigenstate of system (7) is localized.

Next we will demonstrate this with the Soukoulis-
Economou model [73], one of the first proposals of one-
dimensional quasiperiodic models containing single-particle
mobility edges. It is a tight-binding model with nearest-
neighbor hopping terms as well as two quasiperiodic on-site
potentials:

Vj = 2λ1 cos(2πω j + ih) + 2λ2 cos(4πω j + 2ih). (19)

Our analysis shows that the mobility edge for the system
with any h can be determined by the LE χ1(E ) for its dual
Hermitian system (7).

For the potential (19) with h = 0, its dual model (7) is

Eũk = λ1(ũk+1 + ũk−1) + λ2(ũk+2 + ũk−2) + 2 cos(2πωk)ũk

(20)

and ũk = ∑
n e−i2πωk ju j . We can rewrite (20) as⎛

⎜⎝
ũk+3

ũk+2

ũk+1

ũk

⎞
⎟⎠ = T k

⎛
⎜⎝

ũk+1

ũk

ũk−1

ũk−2

⎞
⎟⎠,

with

T k =
(

C−1
2 (EI2 − B2) −C−1

2 C∗
2

I2 0

)
,

where I2 is the 2 × 2 identity matrix, and the matrices C2 and
B2 are given by

C2 =
(

λ2 λ1

0 λ2

)
and

B2 =
(

2 cos (2πω(k + 1)) λ1

λ1 2 cos(2πωk)

)
.

If we denote the transfer matrix Tn(E ) = ∏
k T k , then the LEs

of the model (20) are given by

χi = ln θi, (21)

where θi are the eigenvalues of the matrix,

� = (
T †

N TN
)1/(2N )

.

Since T k is a 4 × 4 complex symplectic matrix, their LEs (21)
come in pairs, and we write it as −χ2(E ) � −χ1(E ) � 0 �
χ1(E ) � χ2(E ). The LE (6) for the original model with d = 2
and h 	= 0 can be written as

γ (E , h) =
⎧⎨
⎩

γ (E , 0), h ∈ [0, χ1(E )],
γ (E , χ1(E )) + [h − χ1(E )], h ∈ (χ1(E ), χ2(E )],
γ (E , χ2(E )) + 2[h − χ2(E )], h ∈ (χ2(E ),∞).

(22)

Figure 3(a) shows the LEs χ1(E ) and χ2(E ) of the dual
model (20) with λ1 = 0.2 and λ2 = 0.25 as a function of
eigenenergy E , and in Figs. 3(b) and 3(c) we display its
spectrum versus h. We also show the averaged IPR and NPR
in Fig. 3(d) to distinguish these phases. From these pic-
tures, it is clear that the spectrum remains invariant in the
region of h < h1, where h1 = min{χ1(E )} = 0.23 is also the
PT -symmetry-breaking point, all the eigenvalues are real,
and all the eigenstates are extended. The mobility edge region
h1 < h < h2 represents the system with a mixture of localized
and extended states, where h2 = max{χ1(E )} = 0.6. The ex-
tended states have real eigenvalues, while the localized states
have complex eigenvalues, as shown in Figs. 3(b3) and 3(c).
Eventually, when h > h2, all the eigenstates are localized,
and their corresponding eigenvalues are complex. Our results
clearly indicate that the three distinct phases can be divided
by h = max{χ1(E )} and h = max{χ1(E )}.

B. Effect of nonreciprocal hopping

Now we consider the general case with g 	= 0. The non-
reciprocal hopping breaks the PT symmetry and may induce

the skin effect under OBC. The Hamiltonian H (g) under OBC
can be transformed to H ′ via a similar transformation,

H ′ = SH (g)S−1, (23)

where

S = diag(e−g, e−2g, . . . , e−Ng)

is a similarity matrix with only diagonal entries, and H ′ =
H (g = 0) is the Hamiltonian with g = 0. The eigenvectors of
H and H ′ satisfy |ψ〉 = S−1|ψ ′〉. An extended state |ψ ′〉 under
the transformation S−1 becomes skin states, which exponen-
tially accumulate to one of the boundaries [56,74–78].

A localized state of H ′ generally takes the
following form:

|ui| ∝ e−|i−i0|/ξ ,

where i0 represents the position of the localization center of a
given localized state, ξ = 1/γ is the localization length, and γ

is the LE of the localized state for the system with g = 0. Then
the corresponding wave function of H (g) takes the following
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FIG. 3. (a) The LE of the dual model with λ1 = 0.2 and λ2 = 0.25. (b) The complex spectrum for systems with (b1) h = 0, (b2) 0.2,
(b3) 0.4, and (b4) 1.1, respectively. (c) The real and imaginary part of the eigenvalue spectra vs h for the system with g = 0, λ1 = 0.2, and
λ2 = 0.25. Dashed blue lines indicate the transition point: h1 = 0.23 and h2 = 0.6. (d) Averaged IPR and NPR for all eigenstates in the model.

form:

|ui| ∝
{

e−(γ−g)|i−i0|, i > i0,
e−(γ+g)|i−i0|, i < i0,

(24)

which has different decaying behaviors on different sides of
the localization center. When |g| � γ , delocalization occurs
on one side and then the skin state emerges to the boundary.
The transition point from the localized state to the skin state
is given by

γ (E ) = |g|. (25)

Since a localized state is not sensitive to the boundary con-
dition of the system, we conclude that the boundary of the
localization-delocalization transition under the PBC is also
given by Eq. (25).

For the general Hermitian quasiperiodic model (1), LEs
might depend on E , and a mobility edge will occur. Con-
sequently, if g 	= 0, Eq. (25) gives the mobility edge from
the localized state to the extended (skin) state. The localized
eigenstate in the case g = 0 is still localized when 0 < g <

γ (E ). However, the localized eigenstate becomes extended
(skin) under the PBC (OBC) when g > γ (E ).

For the non-Hermitian AA model with h 	= 0 and g = 0,
the LEs of the localized states are given by γ = |h| + ln |λ1|
according to Eq. (13). Thus if g 	= 0, by using Eq. (25), the
localization-transition boundary is determined by

|h| + ln |λ1| = |g|, (26)

which can be alternatively represented as

|λ1| = e−|h|+|g|. (27)

While all eigenstates are localized for |λ1| > e−|h|+|g|, they
become extended (skin) states under PBC (OBC) for |λ1| <

e−|h|+|g|. The model reduces to the classical AA model when
h = 0 and g = 0. Equation (27) recovers the result of Ref. [55]
for h 	= 0 and g = 0 and the result of Ref. [56] for g 	= 0
and h = 0.

By using either Eq. (26) or Eq. (27), we can obtain the
complete phase diagram. For a given λ1, we display the phase
diagram in Fig. 4 with the phase boundaries (solid lines)
determined by Eq. (26). Figures 4(a) and 4(b) correspond to
the case λ1 < 1 and λ1 > 1, respectively. Here regions labeled
by A denote the Anderson localized phase, and regions labeled
by L or R represent the left or right skin states under OBC,
which are an extended phase under PBC. From the phase dia-
grams, we can see that, while increasing |h| tends to drive the
system into the localized phase, increasing |g| tends to drive
the system into the extended (skin) phase. When |h| = |g|,
the transition point is given by λc = 1, which is irrelevant to
the values of h and g, and the eigenstates for the system with
λ1 < 1 (λ1 > 1) are extended (localized).

For the AA model, the LE of the localized state is indepen-
dent of E . This suggests that all eigenstates are either localized

-2 -1 0 1 2
h
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0

1

g

-1 0 1
h

-2

-1

0

1

2

g

(a) (b)

A(1,0)

R(0,-1)

L(0,1)
L(0,1)

R(0,-1)

A(1,0) A(-1,0)A(-1,0)

1
<1

1
>1

FIG. 4. Phase diagrams for the case with (a) |λ1| < 1 and
(b) |λ1| > 1, respectively. The phase boundaries are denoted by the
green solid lines, which are determined by |g| = ln |λ1| + |h|. The
winding numbers (νφ, νψ ) are defined in the text. {L, R, A} represent
the left-skin, right-skin, and Anderson localized phases, respec-
tively. The left-skin and right-skin phases under OBC correspond
to extended phases under PBC. We have taken λ1 = 0.5 in (a) and
λ1 = 2 in (b).
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FIG. 5. The distribution of eigenstates for systems with λ1 = 2,
h = 0.5, N = 1597, g = 0.2, and 0.8, respectively. The red circles
and blue crosses represent the eigenvalues under PBC and OBC,
respectively. The solid line is plotted by using Eq. (24). The local-
ization centers for states shown in (a) and (b) are at j = 1449, and
for (c) and (d) they are at j = 139.

or extended (skin) states with the transition point independent
of E . Also, we can conclude that all localized states of the
non-Hermitian AA model can be described by a unified wave
function (24) with different states having different localization
centers, as shown in Figs. 5(a) and 5(c) or Figs. 5(b) and 5(d).

III. WINDING NUMBERS

The phase factor φ of the potential provides a parameter
space to define the topological invariant, i.e., the winding
number, to characterize the topological phase of the non-
Hermitian quasiperiodic system. Changing the complex phase
h may induce a topological phase transition. Recall that the
winding number of the system can be defined as

νφ = 1

2π i

1

N

∫ 2π

0
dφ ∂φ ln det[H (φ) − EB], (28)

which measures the change of the spectrum with respect to
the base energy EB when φ is changed continuously. Thus an
interesting question is, where does the topological transition
occur? Indeed, this question can also be answered with the
help of LE. As we explained above, the slope of LE, which
is called acceleration [68], is quantized. We will show that
quantization of the winding number just means that the accel-
eration is quantized.

Let us explain in more detail. In the case g = 0, as we show
in Appendix B, based on the Cauchy-Riemann equation, we
have the following relation:

νφ (E , h) = −∂γ (E , h)

∂h
. (29)

Here ∂γ (E ,h)
∂h is exactly the “acceleration” as defined by Avila

[68]. Note that γ (E , h) is a piecewise linear function with
respect to h with their slopes being integers, and then acceler-
ation is just the slope. In the following sections, we only need
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(c)
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FIG. 6. The winding number νφ , νψ vs h for the system with g =
1 (a) and vs g for the system with h = 1.5 (b). The IPR of eigenstates
corresponding to the middlemost real part of eigenvalue Re(E ) vs h
for the system with g = 1 (c) and vs g for the system with h = 1.5
(d). Other parameters are λ1 = 0.5 and N = 233, and we have taken
PBC in the numerical calculations.

to consider h > 0. Due to the symmetry (8), νφ (E , h) always
satisfies

νφ (E ,−h) = −νφ (E , h). (30)

If g 	= 0, then boundary conditions make things different.
Under PBC, we will show that

νφ (E , h, g) =
{

0, |g| > γ (E , h),
− ∂γ (E ,h)

∂h , 0 < |g| < γ (E , h).
(31)

However, within OBC, we have

νφ (E , h, g) = νφ (E , h) = −∂γ (E , h)

∂h
(32)

for any g 	= 0. Equations (31) and (32) are strictly evoked in
Appendix B. The different boundary conditions correspond
to the different winding number, which can also be inter-
preted as a phenomenon for the breakdown of bulk-boundary
correspondence.

Based on Eqs. (6), (29), and (31), our analysis really
shows the topological transition of general non-Hermitian
quasiperiodic models, that is to say, the transition point is
also determined by the LE χi(E ) of the dual model (7). For
simplicity, we will just demonstrate this with the AA model
and the Soukoulis-Economou model.

For the non-Hermitian AA model, when λ1 < 1, Eqs. (29)
and (31) can be expressed as

νφ (E , h) =
{

0, h < − ln |λ1|,
−1, h > − ln |λ1| (33)

and

νφ (E , h, g) =
{

0, g > h + ln |λ1|,
−1, g < h + ln |λ1|, (34)

based on Eq. (13). In Fig. 6, we show how the winding
numbers and IPR change with h or g. Figures 6(a) and 6(c)
are for the system with fixed λ1 = 0.5 and g = 1. According
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FIG. 7. (a) The winding numbers νφ , spectrum, and phases for
the system with potential (19) and g = 0 vs h, which is associated
with the minimum and maximum values of χ1,2(E ). Numerical re-
sults for the LE (b) and the winding numbers νφ (c) of systems
with λ1 = 0.2, λ2 = 0.25, g = 0, and EB = −0.071 and 2.1 vs h.
For this case, the minimum and maximum values of χ1,2(E ) are
min{χ1(E )} = 0.23, max{χ1(E )} = 0.6, min{χ2(E )} = 0.786, and
max{χ2(E )} = 1.156, respectively.

to Eq. (25), we have |hc| = |g| − ln |λ1| ≈ 1.7. It is shown
that the winding number νφ takes a different integer 0 or ±1
in the region |h| < 1.7 or |h| > 1.7, and IPR shows that the
corresponding states are extended or localized. Figures 6(b)
and 6(d) show the winding numbers νφ and IPR of the system
with λ1 = 0.5 and h = 1.5 versus g. According to Eq. (25), we
have |gc| = |h| + ln |λ1| ≈ 0.8. The winding number νφ takes
a different integer 0 or −1 in the region |g| < 0.8 or >0.8,
and IPR shows that the corresponding states are localized or
extended. The numerical results clearly indicate that the wind-
ing number changes its value when crossing the boundary of
the localization transition and it takes a different integer in the
extended and localized regions. Consequently, we also show
that different phases in the phase diagram of Fig. 4 can be
characterized by different νφ .

Next we turn to the Soukoulis-Economou model (19). Take
the eigenvalue EB of the Hermitian system as the base energy,
and substitute Eq. (22) into Eq. (29). Then one obtains its
winding number when changing the parameter h:

νφ (EB, h) =
⎧⎨
⎩

0, 0 < h < χ1(EB),
−1, χ1(E ) < h < χ2(EB),
−2, h > χ2(EB).

(35)
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FIG. 8. (a) The real and the imaginary part of the eigenvalue
spectra vs h for the AA model with λ1 = 0.5, g = 1, and N = 55.
(b) The real and imaginary part of the eigenvalue spectra vs g for
the system with λ1 = 0.5, h = 1.5, and N = 55. Dashed gray lines
represent transition points.

In Fig. 7(a), we schematically display the winding number
versus the change of h. Clearly, the value of the winding num-
ber depends on the choice of base energy. Figures 7(b) and
7(c) show the numerical results of the LE and winding number
as a function of h with g = 0, λ1 = 0.2, λ2 = 0.25, EB = 2.1,
and −0.07, respectively. When h = 0, all eigenstates of the
system are extended, thus γ (EB, 0) = 0. It is clear that each
of the LE γ (EB, h) is a continuous piecewise linear function
with variable h and it has two extreme points, h = χ1(EB)
and χ2(EB), where χ1,2(EB) are the LEs of the dual model
(20), as shown in Fig. 3(a). It is obvious that the slope of
the LE is zero in the region 0 < h < χ1(EB) and the winding
number νφ (EB, h) = 0, all the eigenstates are extended, and all
the eigenenergies are real in this region. The slope of the LE
γ (EB, h) is 1 and the winding number νφ (EB, h) = −1 in the
region χ1(E ) < h < χ2(E ). The slope of the LE γ (EB, h) is 2
and the winding number νφ (EB, h) = −2 if h > χ2(E ). Con-
sequently, according to min{χ1,2(EB)} and max{χ1,2(EB)},
the parameter space h > 0 can be divided into five regions,
as shown in Fig. 7(a). In the regions 0 < h < min{χ1(EB)},
max{χ1(EB)} < h < min{χ2(EB)}, and max{χ2(EB)} < h, the
winding numbers νφ (EB, h) are 0, 1, and 2, respectively, and
they do not change with EB. In the region min{χ1(EB)} < h <

max{χ1(EB)}, νφ (EB) = −1 or 0, which depends on the selec-
tion of EB, as shown in Fig. 8(c). Indeed, not only the winding
numbers but also the states are mixed in this region. In the
region min{χ2(EB)} < h < max{χ2(EB)}, νφ (EB, h) = −2 or
−1, which also depends on the selection of EB. Although the
winding numbers are mixed, the states are not mixed, and all
the eigenstates are localized in this region.

IV. ROBUST SPECTRUM AND SKIN EFFECT

In Sec. II, we unveiled that for general non-Hermitian
quasiperiodic models (1), if all the eigenstates of the
Hermitian case (h = 0) are extended, then the real
spectrum remains invariant in the whole extended
region h < min{χ1(E )}, i.e., there is a robust spec-
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trum. In this section, we will show that this kind of
intriguing phenomenon could also happen for nonre-
ciprocal hopping. We will demonstrate this with the
AA model.

For the AA model, and the PT -symmetric case with g = 0,
the robust spectrum takes place in the regime |h| < |hc| =
− ln |λ1|. On the other hand, for the case h = 0, we find
that the robust spectrum also occurs in the whole localized
region |g| < |gc| = ln |λ1|. The spectrum properties in these
two limits can be understood from the observation that the
two limit cases can be related by a dual transformation [56].
For the general case with g 	= 0 and h 	= 0, with the PBC, the
spectrum is complex. Nevertheless, we find that the complex
spectrum still remains invariant when we change h in the
extended region |h| < |hc| = |g| − ln |λ1| for a fixed g or we
change g in the localized region |g| < |gc| = |h| + ln |λ1| for
a fixed h. To give some concrete examples, we display the
spectrum for the system with λ1 = 0.5 and g = 1 versus h in
Fig. 8(a) and the system with λ1 = 0.5 and h = 1.5 versus g
in Fig. 8(b). For the case of Fig. 8(a), all eigenstates in the
region of |h| < 1.7 are extended states, and the corresponding
spectrum does not change with h as long as |h| < 1.7. For
Fig. 8(b), all eigenstates in the region of |g| < 0.8 are local-
ized states, and the corresponding spectrum does not change
with g as long as |g| < 0.8.

Next we shall give a straightforward explanation of the
robust spectrum shown in Fig. 8(b). In the region |g| < 0.8,
the states are localized and are not sensitive to the boundary
condition. Therefore, the spectra under PBC and OBC should
be the same in the large size limit as long as |g| < |gc|.
From Eq. (23), we know that the open boundary spectrum
is irrelevant with g and should be identical to the case of
g = 0 because the similar transformation does not change the
spectrum. Therefore, it is not hard to understand why the
periodic boundary eigenenergies do not change with g for
the localized states. When |g| > |gc|, the spectra are sensitive
to the boundary condition, and the corresponding states are
extended or skin states under PBC or OBC.

It is not so straightforward to understand the invariance of
the spectrum shown in Fig. 8(a). Nevertheless, we can give an
explanation by resorting to the dual transformation. From this
aspect, it is also useful to consider the ring chain with a flux
penetrating through the center, yielding

H (ψ ) =
∑

j

[tLeiψ | j〉〈 j + 1| + tRe−iψ | j + 1〉〈 j|

+λ1 cos(2πω j + θ )| j〉〈 j|], (36)

or equivalently by replacing the hopping term connecting the
first and N th site as hIN = tLe−iNψ |N〉〈1| + tReiNψ |1〉〈N |, and
the winding number is defined as

νψ = 1

2π i

1

N

∫ 2π

0
dψ ∂ψ ln det[H (ψ ) − EB]. (37)

νψ have been utilized to characterize the loop of the energy
spectra of extended and localized states [45,55,56,59].

By utilizing the dual transformation

| j〉 = 1√
N

∑
k

e−i2πωk j |k〉,

we can get a duality form of the Hamiltonian (1) with λl�2 =
0, given by

H̃ =
∑

k

(λL|k〉〈k + 1| + λR|k + 1〉〈k| + tk|k〉〈k|), (38)

where λL = λ1e−h, λR = λ1eh, and tk = 2 cos(2πωk + ig).
The Hamiltonian (1) with λl�2 = 0 and (38) have simi-
lar formulas, only with different coefficients, but they have
the same spectrum, although the wave functions of the two
Hamiltonians are entirely different. Let λ1 denote the unit of
energy. We can relabel g′ = h, h′ = g, λ′ = 1/λ1. Now we can
see that the case of Fig. 8(a) with a fixed g and different h can
be mapped to the case with a fixed h′ and different g′, i.e.,
the case of Fig. 8(b) in the dual Hamiltonian (38). So we can
apply a similar explanation as to why the spectrum is invariant
in the region of g′ < |g′

c| (h < |hc|) for fixed h′ (g). We note
that under the dual transformation, the flux phase factor ψ

is transformed to the phase factor φ′, i.e., H (ψ, λ1, h, g) is
mapping to H̃ (φ′, λ′, h′, g′). Therefore, from the definitions
of Eqs. (28) and (37), we find that νφ,ψ can be related by the
following relation:

νψ (λ1, h, g) = νφ (1/λ1, g, h), (39)

i.e., νψ for the system with parameters λ1, h, and g can be
obtained from νφ of the corresponding system with λ′ = 1/λ1,
h′ = g, and g′ = h.

From the phase diagrams in Fig. 4, we always have νφ = 0
in the extended region and νψ = ±1. Nonzero winding num-
ber νψ indicates the existence of skin states for the system
under OBC [79–81]. On the other hand, we have always
νψ = 0 in the localized region and νφ = ±1. The relation (39)
constructs a mapping between the phase diagram of λ1 < 1
and that of λ1 > 1. The winding number νφ (νψ ) in Fig. 4(a)
can be read out from νψ (νφ) in Fig. 4(b) and vice versa.

By comparing the dual Hamiltonian (38) with the original
Hamiltonian (1) with λl�2 = 0, we can see the exis-
tence of a self-duality point at g = h and λ1 = 1. At this
self-duality point, λc = 1 is usually taken as the localization-
delocalization transition point [59]. From Eq. (27), we have
seen that λc = 1 is a transition point when |h| = |g|, i.e., the
self-duality relation is only a special case of our general result
Eq. (27). It is worth noting that our analytical result Eq. (27)
does not rely on the self-duality relation or even the dual
transformation.

Next we compare the spectra of the system under PBC
and OBC to see the sensitivity of spectra to the change of
boundary conditions. If the non-Hermitian skin effect exists,
the system shall display remarkably different eigenspectra
under PBC and OBC [78–82]. In Figs. 9(a)–9(c), we show
the spectra in the complex space spanned by Re(E ) and
Im(E ) for systems with λ1 = 0.5, h = 1.5, and g = −1, 0.5,
and 1, respectively, under both PBC and OBC. As shown in
Fig. 9(b), in the localized region, the spectra under PBC and
OBC are almost the same except for several isolated points
corresponding to edge states. On the other hand, the spectra
under PBC and OBC are obviously different in the delocalized
region as shown in Figs. 9(a) and 9(c), which is a signature
of the existence of the skin effect under OBC as witnessed
in the distributions of eigenstates shown in Figs. 9(d) and
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FIG. 9. (a)–(c) The complex spectrum for systems with λ1 =
0.5, h = 1.5, N = 55, and g = −1, 0.5, and 1, respectively. The
red circles and blue crosses represent the eigenvalues under PBC
and OBC, respectively. (d)–(f) The distribution of eigenstates cor-
responding to the minimum real part of eigenvalues for systems with
λ1 = 0.5, h = 1.5, g = −1, 0.5, and 1, respectively. The solid line in
(e) is plotted by using Eq. (24).

9(f), respectively. The distributions of localized states under
PBC and OBC are identical, as shown in Fig. 9(e), show-
ing clearly that the localized states are independent of the
boundary conditions. The numerical results also indicate that
the distributions of localized states can be well described
by Eq. (24).

V. APPLICATION TO OTHER MODELS

A. Generalized Ganeshan-Pixley–Das Sarma model

Next we consider the generalized complex Ganeshan-
Pixley–Das Sarma model [22]

Vj = 2λ
cos(2πω j + ih)

1 − b cos(2πω j + ih)
, (40)

which is the first quasiperiodic model in which the mobility
edges have an analytic formula for the Hermitian case (g, h =
0). By applying Avila’s global theory, the LE of the non-
Hermitian model can be easily derived, and the expression is

γ (E , h) = max

{
|h|+ln

|bE + 2λ|+
√

(bE+2λ)2 − 4b2

2(1+√
1 − b2)

, 0

}
,

(41)

when |h| < ln | 1+√
1−b2

b |. The slope of γ (E , h) might be ±1 or
0. Figure 10(a) shows the spectrum for the system with g = 0,
λ = 0.5, and b = 0.1 versus h. The spectrum does not change
with h in the extended-state region: h < 0.5. This indicates
clearly the existence of a robust spectrum in the complex
Ganeshan-Pixley–Das Sarma model. For h > 0.5, the eigen-
states with a high real part of energies become localized first,
thus the LE of eigenstates corresponding to the minimum and
maximum real part of eigenvalues can determine the mobility
edge region, as shown in Fig. 10(b). In the region h > 0.95,
all eigenstates are localized. Then we consider the system
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FIG. 10. (a) The real and the imaginary part of the eigenvalue
spectra vs h for the system with potential (40). Here g = 0, λ = 0.5,
b = 0.1, and N = 55. (b) The LE of eigenstates corresponding to
the minimum (circles) and maximum (dots) real part of the eigen-
values. For accuracy of LE, we choose N = 1597. (c1) and (c2)
The distribution of eigenstates corresponding to the minimum real
part of eigenvalues for systems with λ = 0.5, h = 1.2, g = 0.1, and
0.8, respectively. (c3) and (c4) The distribution of eigenstates corre-
sponding to the maximum real part of eigenvalues for systems with
λ = 0.5, h = 1.2, b = 0.1, g = 0.1, and 0.8, respectively. The solid
lines in (c1) and (c3) are plotted by using Eq. (24). In (c), N = 55.

with g 	= 0. The wave function (24) and the transition point
(25) tell us that when |g| < γ , the states stay localized, while
when |g| > γ , the states become extended, where γ is the LE
with g = 0. Figure 10(c) shows the distribution of eigenstates
corresponding to the minimum and maximum real part of the
eigenvalues for systems with h = 1.2. Eigenstates are local-
ized with g = 0.1 and are extended with g = 0.8, as shown
in Fig. 10(c).

B. Quasiperiodic exponential potential

The nonreciprocal hopping model with the quasiperiodic
exponential potential

Vj = Vei(2πω j+φ) (42)

has the same basic idea to determine the transition point (25).
The LE of the localized states for this model with g = 0 is
γ = ln(V ), so the boundary of the localization transition is
given by

|V | = e|g|. (43)

The full details for the calculation of the LE are given in the
Appendix A. While all eigenstates are localized for |V | > e|g|,
the eigenstates are extended states (skin states) under PBC
(OBC) for |V | < e|g|. When g = 0, the model reduces to the
one studied in Ref. [54] and no skin effect occurs. For g 	= 0,
the skin effect occurs in the region of |V | < e|g|.

The unusual spectrum feature can also be found in this
model. Equation (43) suggests that the localized phase exists
only for |V | > 1. For a given V with |V | > 1, the system is
in the localized phase in the region |g| < gc with gc = ln |V |.
We find that the spectrum of the system is invariant with
the change of g as long as |g| < gc, which is verified by our
numerical result and can be explained in a similar way to that
presented in the above subsection.
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VI. SUMMARY AND OUTLOOK

In summary, based on Avila’s global theory, which was part
of his Fields Medal work, we developed a rigorous and general
scheme for the study of non-Hermitian quasiperiodic systems
with both a complex phase factor and nonreciprocal hopping.
We demonstrated that the localization-delocalization transi-
tion point, i.e., the PT -symmetry-breaking point for general
non-Hermitian quasicrystals with h 	= 0, can be described by
a conclusive expression h = min{χ1(E )}, where χ1(E ) is the
smallest positive LE of its dual model with h = 0 for a given
eigenvalue E . The general relation between winding numbers
and acceleration is also unveiled. Consequently, we obtained
that the winding number is just the slope of LE, and the
topological transition points for the winding numbers are de-
termined by all dual-model LEs h = χi(E ). These results are
applied to study the typical examples, including both the non-
Hermitian AA model and the Soukoulis-Economou model. In
particular, for the non-Hermitian AA model we analytically
determined the complete phase diagram in the whole parame-
ter space, which can be alternatively characterized by winding
numbers. Moreover, we discovered an intriguing feature of the
robust spectrum, i.e., the spectrum remains invariant under the
change of the complex phase parameter h or nonreciprocal
parameter g as long as h < |hc| or g < |gc| for the system in
the extended or localized region, respectively. We found that
the existence of the robust spectrum is a very common feature
of non-Hermitian quasiperiodic systems. Models beyond the
two typical examples are also discussed. Our analysis opens a
door to further study of intriguing properties of non-Hermitian
quasicrystals.

Photonic systems provide a valid platform of realization
of non-Hermitian Hamiltonians with quasiperiodic potentials,
which are manifested by the gain and loss of the laser pulse
inside the optic fiber. Many typical phenomena have been
observed in photonic experiments, such as PT symmetry, ex-
ceptional points, the non-Hermitian skin effect, etc. [83–88].
We expect that our theoretical work will stimulate an exper-
imental study of the localization transition in non-Hermitian
quasiperiodic systems.
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APPENDIX A: GLOBAL THEORY OF THE
ONE-FREQUENCY COCYCLE

Suppose that A is an analytic function from the circle S1 to
the group SL(2,C). An analytic quasiperiodic cocycle (ω, A)
can be seen as a linear skew product:

(ω, A) : S1 × R2 → S1 × R2,

(θ, v) �→ (θ + ω, A(θ ) · v).

If A(θ ) admits a holomorphic extension to |Imθ | < δ, then for
|ε| < δ we can define Aε (θ ) = A(θ + iε), and define its LE by

γ (E , h) = lim
n→∞

1

2πn

∫ 2π

0
ln ||Tn(E , φ, h)||dφ, (A1)

where Tn is the transfer matrix. The key observation of Avila’s
global theory is that h → γ (E , h) is convex and piecewise
linear, with right-derivatives satisfying

lim
h→0+

1

2πh
[γ (E , h) − γ (E , 0)] ∈ Z.

Similarly, the left-derivative satisfies

lim
h→0−

1

2πh
[γ (E , h) − γ (E , 0)] ∈ Z.

Note that a sequence (un)n∈Z is a formal solution of the
eigenvalue equation

un+1 + un−1 + V (θ + nω)un = Eun

if and only if it satisfied(
un+1

un

)
=

(
E − v(θ + nω) −1

1 0

)(
un

un−1

)
,

therefore any quasiperiodic model (1) can be seen as a
quasiperiodic cocycle.

Generally speaking, it is difficult to exactly calculate the
LE, however Avila’s global theory actually provides an ef-
ficient way to calculate the LE, and thus to determine the
localize-delocalize transition. In the following, we will illus-
trate this by two well-known models, and we will explain the
general results.

1. AA model

The eigenvalue equation of the AA model is

un+1 + un−1 + 2λ1 cos 2π (θ + nω)un = Eun,

thus the corresponding cocycle is (ω, T (θ )), where

T (θ ) =
(

E − 2 cos θ −1
1 0

)
.

Let us complexify the phase, and let h → +∞. Direct com-
putation shows that

T (φ + ih) = ehei2π (θ+ω)

(−λ 0
0 0

)
+ o(1).

Thus we have γ (E , h) = h + log |λ| + o(1). Note γ (E , h) is a
convex, piecewise linear function of h with their slopes being
integers, thus if h is large enough,

γ (E , h) = h + log |λ|.
Furthermore, E does not lie in the spectrum of the
Hamiltonian H if and only if γ (E , h) > 0, and γ (E , h) is
a linear function around h. Thus if the energy E lies in the
spectrum, we have

γ (E , h) = max{ln |λ| + h, 0}, ∀ h � 0.

Note that T (θ ) ∈ SL(2,R), thus the LE is an even function
with respect to h, which gives

γ (E , h) = max{ln |λ| + |h|, 0}, ∀ h ∈ R.
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2. Complex quasiperiodic potential

For the complex quasiperiodic model Vn = Ve−i(2πωn+φ),

the transfer matrix takes the form

T (φ) =
(

E − Vei(2πω+φ) −1
1 0

)
,

thus T (φ) ∈ SL(2,C), i.e., it does not belong to SL(2,R)
anymore, thus compared to the AA model the LE is not an
even function with respect to h. Still if we complexify the
phase, and let h → +∞, direct computation shows that

T (φ + ih) = ehe−i2π (φ+ω)

(−V 0
0 0

)
+ o(1).

Thus we have γ (E , h) = h + log |V | + o(1), h � 0. Note that
γ (E , h) is a convex, piecewise linear function of h with
their slopes being integers. then if the energy belongs to the
spectrum, then

γ (E , h) = max{ln |λ| + h, 0}, ∀ h � 0,

consequently, we have

γ (E , 0) = max{ln |V |, 0}.
On the other hand, for the model Vn = Vei(2πωn+φ) we

can complexify the phase, and let h → −∞, which gives us
γ (E , h) = −h + log |V | + o(1), h � 0. Similarly, we have

γ (E , 0) = max{ln |V |, 0}. (A2)

3. General models

As we mentioned above, one of the fundamental results
of Avila’s global theory is that γ (E , h) is a piecewise affine
function in h for each E , and the slope of each piece is an
integer. Indeed, as proved in [71], one can give the exact
turning points of γ (E , h) and the exact slope of it in every
piece, which can be seen as a quantitative version of Avila’s
global theory. In the following, we will try to explain this.

For any trigonometric polynomials

Vj =
∑
k=1

2λl cos(2lπω j),

consider the quasiperiodic model

Euj = u j+1 + u j−1 + Vju j, j ∈ Z. (A3)

Through the transformation

u j =
∑

k

ei2πωk j ũk, k ∈ Z,

the dual model has the form

Eũk =
d∑

l=−d

λ|l|ũk+l + 2 cos(2πωk)ũk . (A4)

The model (A4) can be written as the following form:

ũk+d = 1

λd

{
[E − 2 cos(2πωk)]ũk −

d−1∑
l=−d

λ|l|ũk+l

}
. (A5)

So the matrix form for the model (A5) can be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ũk+d
...

ũk+1

ũk
...

ũk−d+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= Ak

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ũk+d−1
...

ũk

ũk−1
...

ũk−d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Ak =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λd−1

λd
· · · E−2 cos(2πωk)

λd

−λ1
λd

· · · −1
1 · · · 0 0 · · · 0

0 . . . 0
... 1

...
. . .

0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a 2d × 2d matrix. Then we can define the matrix

� = (
T †

N TN
)1/(2N )

, (A6)

where TN = ∏
k Ak is the total transfer matrix. When N → ∞,

� is finite, which can be guaranteed by Oseledec’s ergodic
theorem. The LEs are

χi = ln θi,

where θi are the eigenvalues of matrix �.
It is easy to check that

T dn =
dn+d−1∏

k=dn

Ak =
(

C−1
d (EI − Bdn) −C−1

d C∗
d

Id Od

)
, (A7)

where

Cd =
⎛
⎝λd · · · λ1

0 . . .
...

0 0 λd

⎞
⎠,

C∗
d is its adjoint, and Bdn is the Hermitian matrix,

Bdn =

⎛
⎜⎜⎜⎝

Wdn+n−1 λ1 · · · λd−1

λ1
. . .

. . .
...

...
. . . Wdn+1 λ1

λd−1 · · · λ1 Wdn

⎞
⎟⎟⎟⎠,

where Wk = 2 cos(2πωk), and Id and Od are the
d-dimensional identity and zero matrices.

Note that the matrix (A7) is complex symplectic, thus the
eigenvalues of (A6) will come in pairs. The LEs can then
be denoted by ±χ1, . . . ,±χ
 with multiplicity n1, . . . , n
,
respectively. We may assume that 0 � χ1(E ) < · · · < χ
(E ).
It is obvious that n1 + · · · + n
 = d .

As proved in [71], the LEs for the model (1) with g = 0 can
be written as the following:
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γ (E , h) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ (E , 0), h ∈ [0, χ1(E )],
...

...

γ (E , χi(E )) + [h − χi(E )]
∑i

j=1 n j, h ∈ (χi(E ), χi+1(E )],
...

...

γ (E , χ
(E )) + [h − χl (E )]
∑


j=1 n j, h ∈ (χ
(E ),∞),

(A8)

where E ∈ C and 1 < i < 
. For the PT -symmetrical case,
the model (1) with g = 0, the boundaries of the extended-
mixed transformation and mixed-localized transformation can
be determined by h = min (χ1(E )) and h = max (χ1(E )),
which only depends on χ1(E ) in connection with longest
localization length for the dual model (A5).

APPENDIX B: WINDING NUMBER νφ FOR g = 0 AND g �= 0

The definition of winding number νφ is

νφ (g) = lim
N→∞

1

2π i

∫ 2π

0
dφ ∂φ

ln det[H (θ, g) − EB]

N

= lim
N→∞

1

2π i

∫ 2π

0
dφ ∂φζ (EB, θ, g), (B1)

where θ = φ + ih and the analytical function

ζ (EB, θ, g) = ln Dn(EB, θ, g)

N
(B2)

with

Dn(EB, θ, g) = det |H (θ, g) − EB|.
According to the Cauchy-Riemann equation in complex form,
we can get

∂ζ (EB, θ, g)

∂h
= i

∂ζ (EB, θ, g)

∂φ
. (B3)

Then we can get

νφ = 1

2π i
lim

N→∞

∫ 2π

0
dφ ∂φζ (EB, θ, g)

= − 1

2π
lim

N→∞

∫ 2π

0
dφ ∂hζ (EB, θ, g)

= − 1

2π
lim

N→∞
∂h

∫ 2π

0
dφ ζ (EB, θ, g).

When g = 0 and n → ∞, the normal of the transfer matrix is

lim
n→∞

ln ||Tn(EB, θ )||
N

= lim
n→∞ ζ (EB, θ, 0).

The transfer matrix of the system with g = 0 can be written as

Tn(E , θ ) =
n∏

j=1

T j =
n∏

j=1

(
E − Vj −1

1 0

)
.

The transfer matrix can also be expressed as

Tn(E , θ ) =
(

Dn(EB, θ, 0) −Dn−1(EB, θ, 0)
Dn−1(EB, θ, 0) −Dn−2(EB, θ, 0).

)
.

Then we can get

lim
N→∞

∫ 2π

0
dφ ζ (EB, θ, 0)

= lim
N→∞

∫ 2π

0
dφ

ln ||TN (EB, θ )||
N

= 2πγ (EB, h).

Finally, we get the relation

νφ (0) = −∂hγ (EB, h).

Now, we calculate the winding number of system with
g 	= 0. The Hamiltonian with a general boundary condition in
matrix form can be written as

H (φ, g) =

⎛
⎜⎜⎜⎜⎝

V1 1 ηeNg

1 V2 1
. . .

. . .
. . .

1 VN−1 1
ηe−Ng 1 VN

⎞
⎟⎟⎟⎟⎠, (B4)

where η is a finite value. η = 0 or 1 corresponds to PBC or
OBC. In the large-N limit, the determinant of H (φ) is

det H (φ, g) = (−1)N+1ηeN |g| − 2 × (−1)N+1 + det H (φ, 0).

First we calculate the integrand

1

2π i
∂φ

ln[D(EB, θ, g)]

N

= 1

2π i

∂φD(EB, θ, 0)

ND(EB, θ, g)

= 1

2π i

∂φD(EB, θ, 0)

N[(−1)N+1ηeNg + D(EB, θ, 0)]
.

To calculate the above equation, we need to get the behavior
of ∂φD(EB, θ, 0) and D(EB, θ, 0). According to the definition
of the LE,

lim
N→∞

ln |D(EB, θ, 0)|/N = γ (B5)

and thus |D(EB, θ, 0)| can be written as

|D(EB, θ, 0)| = eγ N .

According to the definition of the winding number,

lim
N→∞

1

2π i

∫ 2π

0
dφ ∂φ

ln det[H (θ, 0) − EB]

N
= νφ (0),

we can obtain

∂φD(EB, θ, 0)

D(EB, θ, 0)
= N�(ψ ),
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with

lim
N→∞

∫ 2π

0
�(ψ ) = 2πνφ (0)i.

Then, we can obtain

1

2π i
∂φ

ln[D(EB, θ, g)]

N
=

{
0, |g| > γ ,

�(ψ ), |g| < γ
(B6)

for η 	= 0 and

1

2π i
∂φ

ln[D(EB, θ, g)]

N
= �(ψ ) (B7)

for η = 0. Finally, substitution of Eq. (B6) into Eq. (B1) yields
the winding number of the system with g 	= 0 and η 	= 0,

νφ (g) = lim
N→∞

1

2π i

∫ 2π

0
dφ ∂φ

ln det[H (θ, g) − EB]

N

=
{

0, |g| > γ ,

νφ (0) = −∂hγ (EB, h), |g| < γ .
(B8)

Substitution of Eq. (B7) into Eq. (B1) yields the winding
number of the system under OBC (η = 0),

νφ (g) = νφ (0). (B9)

Thus we can see that the winding number remains unchanged
under different boundary conditions except OBC.
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