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Systems with non-Hermitian skin effects are very sensitive to the imposed boundary conditions and
lattice size, and thus an important question is whether non-Hermitian skin effects can survive when
deviating from the open boundary condition. To unveil the origin of boundary sensitivity, we present exact
solutions for one-dimensional non-Hermitian models with generalized boundary conditions and study
rigorously the interplay effect of lattice size and boundary terms. Besides the open boundary condition, we
identify the existence of non-Hermitian skin effect when one of the boundary hopping terms vanishes.
Apart from this critical line on the boundary parameter space, we find that the skin effect is fragile under
any tiny boundary perturbation in the thermodynamic limit, although it can survive in a finite size system.
Moreover, we demonstrate that the non-Hermitian Su-Schreieffer-Heeger model exhibits a new phase
diagram in the boundary critical line, which is different from either open or periodical boundary case.
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Introduction.—It is well known that the spectrum of a
periodic crystal can be characterized by the Bloch wave
vector and the periodic boundary condition (PBC) is
usually taken for the convenience of calculating the band
structure [1]. If the system size is large enough, the bulk
spectrum is stable against boundary perturbations even
though the translation invariance of the system is broken
[2–4]. This constitutes the foundation for understanding
why the bulk energy levels of a large system with an open
boundary condition (OBC) can be reproduced from the
Bloch band calculation. However, such a paradigm is
challenged in some non-Hermitian systems [5–9], for
which the wave functions in large systems with OBC
accumulate on the boundary accompanying with a remark-
ably different eigenvalue spectrum from the periodic
system [10–16]. This phenomenon is coined as the non-
Hermitian skin effect (NHSE) [9] and recently attracted
intensive studies [17–33].
The NHSE suggests that the change of the boundary

condition may induce dramatic change of bulk properties of
non-Hermitian systems [9–16,34–40]. Size-dependent
NHSEs are also observed in some coupled non-
Hermitian chains [41,42] and nonreciprocal chains with
impurity [43,44]. These studies indicate that both bounda-
ries and lattice size play an important role in these boundary
sensitive effects. Although the spectral flow from PBC to
OBC is studied by introducing an imaginary flux [13,45], it
is still elusive to get a quantitative understanding of
the sharp change of spectrum and wave functions of
skin modes under tiny boundary perturbations. A more

challenging task is to quantitatively count the interplay
effect of system size and boundary perturbations and unveil
the intrinsic reason behind the boundary sensitive effects.
As numerical methods for boundary sensitive problems are
time consuming and sometimes unreliable due to the
existence of numerical errors and calculation precision
[46,47], exact solutions are highly desirable for analytically
exploring the size-dependent boundary effect.
In this Letter, we present exact solutions of non-Hermitian

models with nonreciprocal hopping under generalized
boundary conditions (GBCs), which enable us to rigorously
explore the interplay effect of lattice size and boundary
perturbations. Our analytical results show explicitly how the
lattice size and boundary terms affect the solutions of
eigenequations. Particularly, we find the existence of
NHSE in a critical line on the boundary parameter space,
including the OBC as a special case. Apart from the critical
line, the NHSE is unstable against any tiny boundary
perturbations in the thermodynamic limit and thus is fragile,
although it may survive in a finite size system.Moreover, we
find that the two-band system can exhibit a new phase
diagram in the critical line, which is different from either
PBCorOBCcase, but is a combination of the two cases. Our
work demonstrates novel phenomena induced by the boun-
dary terms from the perspective of an exact solution and
provides a firm ground for understanding boundary sensi-
tivity phenomena in non-Hermitian systems.
Hatano-Nelson model with generalized boundary

conditions.—We start with the Hatano-Nelson (HN) model
[48,49] with GBC described by
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Ĥ ¼
XN−1

n¼1

½tLĉ†nĉnþ1 þ tRĉ
†
nþ1ĉn� þ δRĉ

†
1ĉN þ δLĉ

†
Nĉ1; ð1Þ

where N is the number of lattice sites, δL; δR ∈ R deter-
mines the GBC, and tL; tR ∈ R are imbalanced hopping
amplitudes which can be parametrized as tL ¼ te−g and
tR ¼ teg with real t and g.
The eigenvalue equation ĤjΨi ¼ EjΨi with jΨi ¼P
n ψnjni and jni ¼ ĉ†nj0i (n ¼ 1;…; N)consists of a

series of equations, including bulk equations

tRψ s − Eψ sþ1 þ tLψ sþ2 ¼ 0 ð2Þ

with s ¼ 1;…; N − 2, and the boundary equations
given by −Eψ1 þ tLψ2 þ δRψN ¼ 0 and δLψ1 þ tRψN−1−
EψN ¼ 0, which are equivalent to

tRψ0 ¼ δRψN; δLψ1 ¼ tLψNþ1: ð3Þ

Because of spatial translational property from bulk equa-
tions, we set the ansatz of wave function Ψi which satisfies
the bulk equations Eq. (2) as follows:

Ψi ¼ ðzi; z2i ; z3i ;…; zN−1
i ; zNi ÞT: ð4Þ

By inserting Eq. (4) into Eq. (2), we obtain the expression
of eigenvalue in terms of zi:

E ¼ tR
zi
þ tLzi: ð5Þ

For a given E, there are two solutions zi ðz1; z2Þ, and thus
they should fulfill the constraint condition as follows:

z1z2 ¼
tR
tL
: ð6Þ

The superposition of these two linearly independent
solutions is also the solution of Eq. (2), i.e., Ψ ¼ c1Ψ1þ
c2Ψ2 ¼ ðψ1;ψ2;…;ψNÞT , where ψn ¼

P
2
i¼1ðcizni Þ ¼

c1zn1 þ c2zn2 with n ¼ 1; 2;…; N.
To solve the eigenequation, the general ansatz of wave

function should satisfy the boundary conditions. By
inserting the expression of Ψ into Eq. (3), the boundary
equations transforms into HBðc1; c2ÞT ¼ 0 with

HB ¼
�

tR − δRzN1 tR − δRzN2
z1ðδL − tLzN1 Þ z2ðδL − tLzN2 Þ

�
:

The condition for the existence of nontrivial solutions for
ðc1; c2Þ, is determined by det½HB� ¼ 0, which gives rise to
the general solution as follows:

ðzNþ1
1 − zNþ1

2 Þ − δRδL
t2L

ðzN−1
1 − zN−1

2 Þ

−
�
δL
tL

þ δR
tR

�
tR
tL

�
N
�
ðz1 − z2Þ ¼ 0: ð7Þ

Equations (7) and (6) together determine the solution of z1
and z2 exactly. The solutions of z1 and z2 give the finite-
size generalized Brillouin zone [9,14,15,50], which may be
different for different lattice size. According to the
constraint condition of Eq. (6), we can always set the
solution as

z1 ¼ reiθ; z2 ¼ re−iθ; ð8Þ

with r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtR=tLÞ
p ¼ eg, then Eq. (7) becomes

sin½ðN þ 1Þθ� − η1 sin½ðN − 1Þθ� − η2 sin½θ� ¼ 0; ð9Þ

where η1¼ðδRδL=tRtLÞ and η2¼ðδL=tLÞr−NþðδR=tRÞrN¼
ðδL=tLÞe−gNþðδR=tRÞegN . The corresponding eigenvalue
is given by

E ¼ 2
ffiffiffiffiffiffiffiffi
tRtL

p
cos θ: ð10Þ

The solutions θ of Eq. (9) may take real or complex
depending on the values of η1 and η2. In the presence of
both nonzero boundary terms, i.e., with fixed δL;R ≠ 0, η2
always increases exponentially with N [51], and thus the
solutions are very sensitive to even a tiny boundary
perturbation since the perturbation is amplified exponen-
tially by a factor egN (g > 0) or e−gN (g < 0), which is the
origin of size-dependent boundary sensitivity. Such a size-
enhancing boundary sensitivity has no correspondence in
the Hermitian limit with g ¼ 0.
The OBC corresponds to δR ¼ δL ¼ 0, for which

η1 ¼ η2 ¼ 0 and Eq. (9) has N real solutions given by
θ ¼ ½mπ=ðN þ 1Þ� (m ¼ 1;…; N). The corresponding
eigenvalues are real with eigenstates given by Ψ ¼
ðr sin½θ�;…; rN sin½Nθ�ÞT . For cases with either δR ¼ 0

(δL ≠ 0) or δL ¼ 0 (δR ≠ 0), we have η1 ¼ 0 and η2 ¼
ðδL=tLÞr−N or η2 ¼ ðδR=tRÞrN. As long as jη2j < 1, Eq. (9)
has N real solutions, and the corresponding eigenvalues
given by Eq. (10) are real. Particularly, in the thermody-
namic limit we have jη2j → 0 for the case of δR ¼ 0 and
r > 1 or δL ¼ 0 and r < 1, and the solutions θ ¼
½mπ=ðN þ 1Þ� are identical to the OBC case. The analytical
results indicate clearly that in these cases the system
exhibits NHSE as all wave functions accumulate either
on the left (r < 1) or right (r > 1) edge in the large
size limit.
Consider the general case with nonzero δL and δR. In the

region of 0 < ðδR=tRÞ, ðδL=tLÞ < 1, we have 0 < η1 < 1
and η2 > 0. When η2 < 1þ η1, Eq. (9) has N real solu-
tions. When η2 > N þ 1 − η1ðN − 1Þ which always holds
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true in the large N limit, Eq. (9) has no real solutions
but N complex solutions, and the corresponding eigen-
values are complex. In the thermodynamic limit, jz1=2j → 1

and jz2=1j → ðtR=tLÞ suggest that the spectrum approaches
to the periodic spectrum [52].
To give a concrete example, we display the energy

spectra and averaged inverse participation ratio (IPR)
in Fig. 1 for the case of tR=tL < 1 in the region of
0 ≤ ðδR=tRÞ, ðδL=tLÞ ≤ 1. The averaged IPR is defined
as IPR ¼ ð1=NÞPN

s¼1 IPRs ¼ ð1=NÞPN
s¼1½

P
n jhnjΨsij4=

ðhΨsjΨsiÞ2�, where Ψs is the sth right eigenstate Ψ of H.
While IPR ∼ ð1=NÞ approaches zero in large N limit for
homogeneously distributed eigenstates, a finite IPR gives
signature of NHSE. As shown in Fig. 1(A) for N ¼ 10, the
eigenstates in the yellow region are similar to the OBC
case, and the corresponding eigenvalues are real as dis-
played in Figs. 1(a)–1(d). When we increase the size N, the
yellow region becomes narrow. The eigenvalues with the
same parameters as in Fig. 1(d) become complex as
displayed in Figs. 1(e) and 1(f) for N ¼ 20 and 80,
respectively. Particularly, for N ¼ 80, the spectrum almost
completely overlaps with the PBC spectrum, and the blue
region almost spreads over the whole parameter space
except a very narrow region near the axis of δL ¼ 0,
consistent with our analytic prediction.
For the special case of c2 ¼ 0, eigenfunction is

composed of only one solution, i.e., jΨi ¼ c1jΨ1i, and
the boundary equation HBðc1; 0ÞT ¼ 0 requires that

tR ¼ δRzN1 ; δL ¼ tLzN1 ; ð11Þ

which can be satisfied simultaneously only if

tR
δR

¼ δL
tL

¼ μ: ð12Þ

Here μ ¼ 1 corresponds to the PBC. Under the boundary
condition (12), the solution of z1 is determined by zN1 ¼ μ,
which gives rise to z1 ¼ ffiffiffi

μN
p

eið2mπ=NÞ, (m ¼ 1;…; N). It
then follows that the spectrum is given by

E¼
�
tL

ffiffiffi
μN

p þ tRffiffiffi
μN

p
�
cosðθÞþ i

�
tL

ffiffiffi
μN

p
−

tRffiffiffi
μN

p
�
sinðθÞ ð13Þ

with θ ¼ ð2mπ=NÞ, and eigenstates as Ψ ¼
½ ffiffiffi

μN
p

eiθ;…; ð ffiffiffi
μN

p
eiθÞN �T . For the general case (μ ≠ 1), while

the system may exhibit NHSE for a finite N, the NHSE
disappears in the large size limit as jz1j always approaches
1 when N → ∞ for a fixed μ, as displayed in Fig. 2 (here
z ¼ z1). Therefore, this case is similar to the PBC case in
the thermodynamic limit. If we take μ ¼ rN , we have E ¼
2

ffiffiffiffiffiffiffiffi
tLtR

p
cos θ with θ ¼ ð2mπ=NÞ. This special case is the so

called modified PBC studied in Ref. [22]. When μ ¼ r2N ,
the system has the same spectrum as under PBC and we call
it pseudo-PBC, as the corresponding wave functions
exhibit NHSE. We also present the spectra flow of the
HN model in the Supplemental Material [52].
Non-Hermitian Su-Schrieffer-Heeger model.—We can

also exactly solve the one-dimensional (1D) non-
Hermitian Su-Schrieffer-Heeger (SSH) model with GBC,
described by

FIG. 1. (A)–(C) IPR on the parameter space of δL=tL and δR=tR for HN model withN ¼ 10, 20, 80, respectively. (a)–(f) Spectrum (red
circles and dots) corresponding dots a–f in (A)–(C), respectively. The analytical results (red circles) are in exact agreement with the
numerical results (red dots). The green and blue lines represent the spectrum corresponding to OBC and PBC case in the thermodynamic
limit, respectively. Common parameters: tL ¼ 1, tR ¼ 0.85.
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Ĥ ¼
X

n

½t1Lĉ†nAĉnB þ t1Rĉ
†
nBĉnA þ t2Rĉ

†
ðnþ1ÞAĉnB

þ t2Lĉ
†
nBĉðnþ1ÞA� þ δRĉ

†
1AĉMB þ δLĉ

†
MBĉ1A; ð14Þ

where t1L=1R and t2L=2R are imbalanced hopping terms
between intracell and intercell sites, and the summation of
n is over M cells. The phase boundaries under PBC are
determined by the gap closing condition [9,53–55]:
jt1R=t2Lj ¼ 1 or jt1L=t2Rj ¼ 1, as shown in Fig. 3(a). All
parameters t1L=1R and t2L=2R are taken to be positive.
In the same framework we can obtain the analytical

solution of model (14) [52]. From the expression of E in
terms of zi, it follows that z1 and z2 fulfill the constraint
condition as follows:

z1z2 ¼
t1Rt2R
t1Lt2L

: ð15Þ

Similarly, the boundary equation leads to

ðzMþ1
1 − zMþ1

2 Þ þ χ1ðzM1 − zM2 Þ
− χ2ðzM−1

1 − zM−1
2 Þ − χ3ðz1 − z2Þ ¼ 0; ð16Þ

with χ1¼½ðt2Rt2L−δRδLÞ=t1Lt2L�, χ2 ¼ ðt1RδRδL=t1Lt22LÞ,
and χ3 ¼ ðδL=t2LÞ þ ðδR=t2RÞðt1Rt2R=t1Lt2LÞM. According
to Eq. (15), we can always set the solution as the form of
Eq. (8) with r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt1Rt2R=t1Lt2LÞ

p
. Then Eq. (16) becomes

sin½ðM þ 1Þθ� þ η1 sin½Mθ� − η2 sin½ðM − 1Þθ� ¼ η3 sin½θ�;
ð17Þ

where η1 ¼ ½ðt2Rt2L − δRδLÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1Rt2Rt1Lt2L

p �, η2 ¼
ðδRδL=t2Rt2LÞ, and η3 ¼ ðδL=t2LÞr−M þ ðδR=t2RÞrM.
For the OBC case, we have η2 ¼ η3 ¼ 0 and η1 ¼ α with

α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt2Rt2L=t1Rt1LÞ
p

. While Eq. (17) hasM real solutions
corresponding to bulk states when α < αc, it hasM − 1 real
solutions corresponding to bulk states and one complex
solution (θ ¼ π þ iφ) corresponding to edge states when
α > αc. In the thermodynamic limit, αc ¼ 1þ ð1=MÞ → 1,
and thus the boundary of topological phase transition is
given by α ¼ 1, i.e., t2Rt2L ¼ t1Rt1L as shown in Fig. 3(b).
For the case with δL ¼ 0 and δR ≠ 0, we have η1 ¼ α,

η2 ¼ 0 and η3 ¼ ðδR=t2RÞrM. In the thermodynamic limit,
η3 → 0 for r < 1, and the solutions of θ are identical to the
OBC case, whereas η3 → ∞ for a finite δR=t2R when r > 1.
It follows that Eq. (17) has no real solutions butM complex
solutions, and jz1j → 1 and jz2j → ðt1Rt2R=t1Lt2LÞ for bulk
states as M → ∞. In this case, the spectrum in the
thermodynamic limit approaches to the periodical spec-
trum. Since the spectra in the regions of r < 1 and r > 1
take different forms, the phase diagram should display
different behaviors in these regions as shown in Fig. 3(c).
While the phase boundary in the region of r < 1 is similar
to OBC case, it is similar to PBC case in the region
of r > 1.
For the other case with δR ¼ 0 and δL ≠ 0, we have

η3 ¼ ðδL=t2LÞr−M. In the large M limit, η3 → 0 for r > 1
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FIG. 2. (a) jzj as a function of lattice size N for HN model with
μ ¼ 0.01, 1, 100. (b),(c) The profile of all eigenstates with
N ¼ 10 and N ¼ 100 independent of tR, tL, respectively. (d),(e)
The finite-size generalized Brillouin zones z with μ ¼ 0.01 and
μ ¼ 100 for different size N ¼ 10, 20, 100 independent of tR, tL,
respectively. The curve formed by black dots represents Brillouin
zone for PBC case.

FIG. 3. Phase diagram for non-Hermitian SSH model (a) PBC
case, (b) OBC case, (c) case of δL ¼ 0, δR ≠ 0, (d) case of
δR ¼ 0, δL ≠ 0. The phase boundaries are denoted by blue lines,
and bound states exist in the shadow region. The bulk states in the
blue region and orange region are located at the left and right
edge, respectively. There is no NHSE in the white region.
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and η3 → ∞ for r < 1. Similarly, we can get the phase
diagram as shown in Fig. 3(d). The phase boundaries in
Figs. 3(c) and 3(d) are determined by the gap closing
conditions. In the shadow regions, there exist in-gap bound
states. In contrast to the OBC case, only left or right skin
states exist in Fig. 3(c) or Fig. 3(d).
In the presence of finite δL and δR, Eq. (17) does not

support real solutions in the largeM limit, and the spectrum
approaches the spectrum of the PBC case. Similar to the
HN model, in the thermodynamic limit the NHSE is
unstable to the perturbation with both δL ≠ 0 and
δR ≠ 0, while it may exist in the finite size system.
Conclusions.—We exactly solved the non-Hermitian HN

model and SSH model with GBCs and predicted the
existence of NHSE beyond the OBC when one of the
boundary hopping terms is absent. Apart from this critical
line on the boundary parameter space, the NHSE is
unstable under tiny boundary perturbations and vanishes
in the thermodynamic limit, whereas it may exist in a finite
size system. Based on the analytical results, we uncovered
the origin of size-dependent NHSE and gave quantitative
description of the interplay effect of boundary hopping
terms and lattice size. We also applied our analytical results
to explore the phase diagram of non-Hermitian SSH model
under different boundary conditions and identified a novel
phase diagram in the critical boundary line. The fragility of
NHSE under boundary perturbations can be also found
in other 1D nonreciprocal systems and even higher-
dimensional systems with NHSE [23,56]. Consider a
n-dimensional nonreciprocal system which exhibits
NHSE under OBC, if we add a boundary perturbation
along one of directions and take PBC in the other n − 1
directions, the higher-dimensional system can be mapped
to a 1D nonreciprocal system with GBC by applying
Fourier transformation. Then we can conclude the exist-
ence of fragility of NHSE by following similar calculations
in 1D systems. We give examples of two-dimensional (2D)
models in the Supplemental Material [52] and numerically
confirm the fragility of NHSE in the large-size limit
under tiny boundary perturbations along both x and y
directions.
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